1
|
Higgins E, Bouyoucos IA, Downie AT, Illing B, Martins APB, Simpfendorfer CA, Rummer JL. How hot is too hot? Thermal tolerance, performance, and preference in juvenile mangrove whiprays, Urogymnus granulatus. J Therm Biol 2024; 124:103943. [PMID: 39151217 DOI: 10.1016/j.jtherbio.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (ṀO2max and ṀO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (ṀO2max) and 1.6 (ṀO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.
Collapse
Affiliation(s)
- Emily Higgins
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.
| | - Adam T Downie
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Björn Illing
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Ana P B Martins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
González-Ferreras AM, Barquín J, Blyth PSA, Hawksley J, Kinsella H, Lauridsen R, Morris OF, Peñas FJ, Thomas GE, Woodward G, Zhao L, O'Gorman EJ. Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids. Nat Commun 2023; 14:8309. [PMID: 38097543 PMCID: PMC10721842 DOI: 10.1038/s41467-023-43478-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.
Collapse
Affiliation(s)
- Alexia M González-Ferreras
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain.
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Jose Barquín
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Penelope S A Blyth
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jack Hawksley
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Hugh Kinsella
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Trinity College Dublin, Dublin, Ireland
| | - Rasmus Lauridsen
- Game & Wildlife Conservation Trust, Salmon and Trout Research Centre, East Stoke, Wareham, BH20 6BB, UK
- Six Rivers Iceland, Reykjavik, 101, Iceland
| | - Olivia F Morris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Francisco J Peñas
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Gareth E Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
3
|
Giacomini HC. Metabolic responses of predators to prey density. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.980812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The metabolic cost of foraging is the dark energy of ecological systems. It is much harder to observe and to measure than its beneficial counterpart, prey consumption, yet it is not inconsequential for the dynamics of prey and predator populations. Here I define the metabolic response as the change in energy expenditure of predators in response to changes in prey density. It is analogous and intrinsically linked to the functional response, which is the change in consumption rate with prey density, as they are both shaped by adjustments in foraging activity. These adjustments are adaptive, ubiquitous in nature, and are implicitly assumed by models of predator–prey dynamics that impose consumption saturation in functional responses. By ignoring the associated metabolic responses, these models violate the principle of energy conservation and likely underestimate the strength of predator–prey interactions. Using analytical and numerical approaches, I show that missing this component of interaction has broad consequences for dynamical stability and for the robustness of ecosystems to persistent environmental or anthropogenic stressors. Negative metabolic responses – those resulting from decreases in foraging activity when more prey is available, and arguably the most common – lead to lower local stability of food webs and a faster pace of change in population sizes, including higher excitability, higher frequency of oscillations, and quicker return times to equilibrium when stable. They can also buffer the effects of press perturbations, such as harvesting, on target populations and on their prey through top-down trophic cascades, but are expected to magnify bottom-up cascades, including the effects of nutrient enrichment or the effects of altering lower trophic levels that can be caused by environmental forcing and climate change. These results have implications for any resource management approach that relies on models of food web dynamics, which is the case of many applications of ecosystem-based fisheries management. Finally, besides having their own individual effects, metabolic responses have the potential to greatly alter, or even invert, functional response-stability relationships, and therefore can be critical to an integral understanding of predation and its influence on population dynamics and persistence.
Collapse
|
4
|
Byrnes EE, Lear KO, Brewster LR, Whitney NM, Smukall MJ, Armstrong NJ, Gleiss AC. Accounting for body mass effects in the estimation of field metabolic rates from body acceleration. J Exp Biol 2021; 224:239068. [PMID: 34424983 DOI: 10.1242/jeb.233544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 01/24/2023]
Abstract
Dynamic body acceleration (DBA), measured through animal-attached tags, has emerged as a powerful method for estimating field metabolic rates of free-ranging individuals. Following respirometry to calibrate oxygen consumption rate (ṀO2) with DBA under controlled conditions, predictive models can be applied to DBA data collected from free-ranging individuals. However, laboratory calibrations are generally performed on a relatively narrow size range of animals, which may introduce biases if predictive models are applied to differently sized individuals in the field. Here, we tested the mass dependence of the ṀO2-DBA relationship to develop an experimental framework for the estimation of field metabolic rates when organisms differ in size. We performed respirometry experiments with individuals spanning one order of magnitude in body mass (1.74-17.15 kg) and used a two-stage modelling process to assess the intraspecific scale dependence of the ṀO2-DBA relationship and incorporate such dependencies into the coefficients of ṀO2 predictive models. The final predictive model showed scale dependence; the slope of the ṀO2-DBA relationship was strongly allometric (M1.55), whereas the intercept term scaled closer to isometry (M1.08). Using bootstrapping and simulations, we evaluated the performance of this coefficient-corrected model against commonly used methods of accounting for mass effects on the ṀO2-DBA relationship and found the lowest error and bias in the coefficient-corrected approach. The strong scale dependence of the ṀO2-DBA relationship indicates that caution must be exercised when models developed using one size class are applied to individuals of different sizes.
Collapse
Affiliation(s)
- Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,Bimini Biological Field Station Foundation, South Bimini, Bahamas
| | - Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia
| | - Lauran R Brewster
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, USA
| | - Nicholas M Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Matthew J Smukall
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, Fairbanks, AK 99775, USA
| | - Nicola J Armstrong
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia.,College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
VanderWright WJ, Bigman JS, Elcombe CF, Dulvy NK. Gill slits provide a window into the respiratory physiology of sharks. CONSERVATION PHYSIOLOGY 2020; 8:coaa102. [PMID: 33304587 PMCID: PMC7720089 DOI: 10.1093/conphys/coaa102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Metabolically important traits, such as gill surface area and metabolic rate, underpin life histories, population dynamics and extinction risk, as they govern the availability of energy for growth, survival and reproduction. Estimating both gill surface area and metabolic rate can be challenging, especially when working with large-bodied, threatened species. Ideally, these traits, and respiratory physiology in general, could be inferred from external morphology using a faster, non-lethal method. Gill slit height is quick to measure on live organisms and is anatomically connected to the gill arch. Here, we relate gill slit height and gill surface area for five Carcharhiniform sharks. We compared both total and parabranchial gill surface area to mean and individual gill slit height in physical specimens. We also compared empirical measurements of relative gill slit height (i.e. in proportion to total length) to those estimated from field guide illustrations to examine the potential of using anatomical drawings to measure gill slit height. We find strong positive relationships between gill slit height and gill surface area at two scales: (i) for total gill surface area and mean gill slit height across species and (ii) for parabranchial gill surface area and individual gill slit height within and across species. We also find that gill slit height is a consistent proportion of the fork length of physical specimens. Consequently, relative gill slit height measured from field guide illustrations proved to be surprisingly comparable to those measured from physical specimens. While the generality of our findings needs to be evaluated across a wider range of taxonomy and ecological lifestyles, they offer the opportunity that we might only need to go to the library and measure field guide illustrations to yield a non-lethal, first-order approximation of the respiratory physiology of sharks.
Collapse
Affiliation(s)
- Wade J VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Cayley F Elcombe
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
6
|
The power struggle: assessing interacting global change stressors via experimental studies on sharks. Sci Rep 2020; 10:19887. [PMID: 33199809 PMCID: PMC7669887 DOI: 10.1038/s41598-020-76966-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Ocean warming and acidification act concurrently on marine ectotherms with the potential for detrimental, synergistic effects; yet, effects of these stressors remain understudied in large predatory fishes, including sharks. We tested for behavioural and physiological responses of blacktip reef shark (Carcharhinus melanopterus) neonates to climate change relevant changes in temperature (28 and 31 °C) and carbon dioxide partial pressures (pCO2; 650 and 1050 µatm) using a fully factorial design. Behavioural assays (lateralisation, activity level) were conducted upon 7–13 days of acclimation, and physiological assays (hypoxia tolerance, oxygen uptake rates, acid–base and haematological status) were conducted upon 14–17 days of acclimation. Haematocrit was higher in sharks acclimated to 31 °C than to 28 °C. Significant treatment effects were also detected for blood lactate and minimum oxygen uptake rate; although, these observations were not supported by adequate statistical power. Inter-individual variability was considerable for all measured traits, except for haematocrit. Moving forward, studies on similarly ‘hard-to-study’ species may account for large inter-individual variability by increasing replication, testing larger, yet ecologically relevant, differences in temperature and pCO2, and reducing measurement error. Robust experimental studies on elasmobranchs are critical to meaningfully assess the threat of global change stressors in these data-deficient species.
Collapse
|
7
|
A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic. Sci Rep 2020; 10:19297. [PMID: 33168918 PMCID: PMC7653932 DOI: 10.1038/s41598-020-76371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.
Collapse
|
8
|
Lear KO, Morgan DL, Whitty JM, Whitney NM, Byrnes EE, Beatty SJ, Gleiss AC. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitation in aquatic ectotherms. Oecologia 2020; 193:311-323. [PMID: 32435843 DOI: 10.1007/s00442-020-04669-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
Environments where extreme temperatures and low productivity occur introduce energetically challenging circumstances that may be exacerbated by climate change. Despite the strong link between metabolism and temperature in ectotherms, there is a paucity of data regarding how the metabolic ecology of species affects growth and fitness under such circumstances. Here, we integrated data describing field metabolic rates and body condition of two sympatric species of ectotherms with divergent lifestyles, the benthic freshwater (or largetooth) sawfish (Pristis pristis) and the epipelagic bull shark (Carcharhinus leucas) occurring in the Fitzroy River, Western Australia, to test the implications of their differing metabolic ecologies for vulnerability to rising temperatures. Over a temperature range of 18-34 °C, sawfish had lower field metabolic rates (63-187 mg O2 kg-0.86 h-1) and lower temperature sensitivity of metabolic rates [activation energy (EA) = 0.35 eV] than bull sharks (187-506 mg O2 kg-0.86 h-1; EA = 0.48 eV). Both species lost body mass throughout the dry season, although bull sharks significantly more (0.17% mass loss day-1) than sawfish (0.07% mass loss day-1). Subsequent bioenergetics modelling showed that under future climate change scenarios, both species would reach potentially lethal levels of mass loss during dry season periods before the end of the century. These results suggest that ectotherms with low metabolic rates may be better suited to extreme environmental conditions, and that even small increases in temperature due to climate change could have substantial impacts on the ability of ectotherms to grow and survive in harsh conditions, including high temperatures and energy-limiting circumstances.
Collapse
Affiliation(s)
- Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Jeff M Whitty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Nicholas M Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA, 02110, USA
| | - Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|