1
|
Liu J, Liu Y, Liu T, Zhao C, Wang Y, Huang K, Xu A, Liu L, Gong L, Lü Z. Transcriptomic profiling revealed the regulatory pathways and key genes associated with cold tolerance in two eel gobies. J Therm Biol 2025; 130:104136. [PMID: 40408822 DOI: 10.1016/j.jtherbio.2025.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025]
Abstract
Closely related species of the eel goby family (Gobiidae) have evolved divergent resistance to low temperatures, but the molecular mechanisms remain poorly understood. This study used a comparative transcriptomic approach to identify key pathways and genes associated with cold tolerance in two eel goby species. Expression profiles of the cold-tolerant O. lacepedii and the cold-sensitive O. rebecca in control (23 °C) and cold stress groups (15 °C and 11 °C) were analyzed. Differentially expressed genes closely linked to interspecific cold tolerance divergence were identified through transcriptome profiling and Venn diagram analysis. GO and KEGG enrichment analyses revealed that processes related to cellular homeostasis, the PPAR signaling pathway, cellular respiration, and oxidative phosphorylation were activated during the cold tolerance response of eel gobies. WGCNA analysis indicated that the hub genes related to thermogenesis and microtubular stability, specifically PPARGC1A and α-tubulin, may contribute to the high cold tolerance in O. lacepedii. These findings provide key clues for dissection of the molecular mechanisms behind the formation of cold tolerance in eel gobies.
Collapse
Affiliation(s)
- Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Cheng Zhao
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Kun Huang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - An Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Zhang Y, Luo Y, Huang K, Liu Q, Fu C, Pang X, Fu S. Constraints of digestion on swimming performance and stress tolerance vary with habitat in freshwater fish species. Integr Zool 2025; 20:88-107. [PMID: 38288562 DOI: 10.1111/1749-4877.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Limited aerobic scope (AS) during digestion might be the main constraint on the performance of bodily functions in water-breathing animals. Thus, investigating the postprandial changes in various physiological functions and determining the existence of a shared common pattern because of possible dependence on residual AS during digestion in freshwater fish species are very important in conservation physiology. All species from slow-flow habitats showed impaired swimming speed while digesting, whereas all species from fast-flow habitats showed strong swimming performance, which was unchanged while digesting. Only two species from slow-flow habitats showed impaired heat tolerance during digestion, suggesting that whether oxygen limitation is involved in the heat tolerance process is species-specific. Three species from slow- or intermediate-flow habitats showed impaired hypoxia tolerance during digestion because feeding metabolism cannot cease completely under hypoxia. Overall, there was no common pattern in postprandial changes in different physiological functions because: (1) the digestion process was suppressed under oxygen-limiting conditions, (2) the residual AS decreased during digestion, and (3) performance was related to residual AS, while digestion was context-dependent and species-specific. However, digestion generally showed a stronger effect on bodily functions in species from slow-flow habitats, whereas it showed no impairment in fishes from fast-flow habitats. Nevertheless, the postprandial change in physiological functions varies with habitat, possibly due to divergent selective pressure on such functions. More importantly, the present study suggests that a precise prediction of how freshwater fish populations will respond to global climate change needs to incorporate data from postprandial fishes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Yulian Luo
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Keren Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qianying Liu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Xu Pang
- College of Fisheries, Southwest University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
3
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
4
|
Liu J, Liu T, Liu Y, Wang Y, Liu L, Gong L, Liu B, Lü Z. Comparative Transcriptome Analyses Provide New Insights into the Evolution of Divergent Thermal Resistance in Two Eel Gobies. Curr Issues Mol Biol 2023; 46:153-170. [PMID: 38248314 PMCID: PMC10813846 DOI: 10.3390/cimb46010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Adaptation to thermal conditions in tidal mudflats always involves tolerating frequent fluctuations and often extreme environmental temperatures. Regulation of gene expression plays a fundamental role in the evolution of these thermal adaptations. To identify the key gene regulatory networks associated with the thermal adaptation, we investigated the capability of cold tolerance, as well as the transcriptomic changes under cold stress in two mudflat inhabitants (Odontamblyopus lacepedii and O. rebecca) with contrasting latitude affinity. Our results revealed a remarkable divergent capacity of cold tolerance (CTmin: 0.61 °C vs. 9.57 °C) between the two gobies. Analysis of transcriptomic changes under cold stress unveiled 193 differentially expressed genes exhibiting similar expression profiles across all tissues and species, including several classic metabolic and circadian rhythm molecules such as ACOD and CIART that may represent the core cold response machinery in eel gobies. Meanwhile, some genes show a unique expression spectrum in the more cold-tolerant O. lacepedii suggesting their roles in the enhanced cold tolerance and hence the extreme thermal adaptations. In addition, a weighted gene co-expression network analysis (WGCNA) revealed a subset of metabolic hub genes including MYH11 and LIPT2 showing distinct down-regulation in O. lacepedii when exposed to cold stress which highlights the role of reduced energy consumption in the enhanced cold tolerance of eel gobies. These findings not only provide new insights into how mudflat teleosts could cope with cold stress and their potential evolutionary strategies for adapting to their thermal environment, but also have important implications for sound management and conservation of their fishery resources in a scenario of global climate warming in the marine realm.
Collapse
Affiliation(s)
- Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (T.L.); (Y.L.); (L.L.); (L.G.); (B.L.)
| |
Collapse
|
5
|
Zillig KW, FitzGerald AM, Lusardi RA, Cocherell DE, Fangue NA. Intraspecific variation among Chinook Salmon populations indicates physiological adaptation to local environmental conditions. CONSERVATION PHYSIOLOGY 2023; 11:coad044. [PMID: 37346267 PMCID: PMC10281501 DOI: 10.1093/conphys/coad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Understanding interpopulation variation is important to predicting species responses to climate change. Recent research has revealed interpopulation variation among several species of Pacific salmonids; however, the environmental drivers of population differences remain elusive. We tested for local adaptation and countergradient variation by assessing interpopulation variation among six populations of fall-run Chinook Salmon from the western United States. Juvenile fish were reared at three temperatures (11, 16 and 20°C), and five physiological metrics were measured (routine and maximum metabolic rate, aerobic scope, growth rate and critical thermal maximum). We then tested associations between these physiological metrics and 15 environmental characteristics (e.g. rearing temperature, latitude, migration distance, etc.). Statistical associations between the five physiological metrics and 15 environmental characteristics supported our hypotheses of local adaptation. Notably, latitude was a poor predictor of population physiology. Instead, our results demonstrate that populations from warmer habitats exhibit higher thermal tolerance (i.e. critical thermal maxima), faster growth when warm acclimated and greater aerobic capacity at high temperatures. Additionally, populations with longer migrations exhibit higher metabolic capacity. However, overall metabolic capacity declined with warm acclimation, indicating that future climate change may reduce metabolic capacity, negatively affecting long-migrating populations. Linking physiological traits to environmental characteristics enables flexible, population-specific management of disparate populations in response to local conditions.
Collapse
Affiliation(s)
- Kenneth W Zillig
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Alyssa M FitzGerald
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Robert A Lusardi
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
- Center for Watershed Sciences, University of California, Davis, CA 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Nann A Fangue
- Corresponding author: One Shields Avenue, Davis, CA 95616, USA. Tel: +1 (530) 752-4997.
| |
Collapse
|
6
|
Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures. FISHES 2022. [DOI: 10.3390/fishes7030131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sub-Saharan Africa’s freshwater fisheries contribute significantly to the livelihoods and food security of millions of people within the region. However, freshwater fisheries are experiencing multiple anthropogenic stressors such as overfishing, illegal fishing, pollution, and climate change. There is a substantial body of literature on the effects of climate change on freshwater fisheries in Sub-Saharan Africa. This study reviews the existing literature and highlights the effects of climate change on freshwater fisheries, the adaptation strategies of fishery-dependent households in response to the effects, and fisheries’ management and mitigation efforts in the face of climate change. The general effects of climate change on freshwater environments include warming water temperatures, increased stratification, modified hydrological processes, and increased pollutants. These effects adversely affect the physiological processes of fish and the overall wellbeing of fishery-dependent people. To cope with the effects of fluctuating fishery resources due to climate change, fishery-dependent people have adopted several adaptation strategies including livelihood diversification, changing their fishing gear, increasing their fishing efforts, and targeting new species. Several management attempts have been made to enhance the sustainability of fishery resources, from local to regional levels. This study recommends the participation of the resource users in the formulation of policies aimed at promoting climate change adaptation and the resilience of freshwater fisheries for sustainable development.
Collapse
|
7
|
Drown MK, DeLiberto AN, Ehrlich MA, Crawford DL, Oleksiak MF. Interindividual plasticity in metabolic and thermal tolerance traits from populations subjected to recent anthropogenic heating. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210440. [PMID: 34295527 PMCID: PMC8292749 DOI: 10.1098/rsos.210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 05/05/2023]
Abstract
To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CTmax) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CTmax, the interindividual variation in acclimation response (log2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12-28°C versus 28-12°C). CTmax and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CTmax at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.
Collapse
Affiliation(s)
- Melissa K. Drown
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Amanda N. DeLiberto
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Moritz A. Ehrlich
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|