1
|
Gao SS, Cheng YX, Zhou Y, Liu RC, Li X, Xie XY, Chunli C. Comparative Study of Two Erythronium sibiricum Bulb Polysaccharide Fractions in Alleviating Airway Remodeling by Affecting Autophagy and Apoptosis. J Med Food 2025. [PMID: 40151882 DOI: 10.1089/jmf.2024.k.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Erythronium sibiricum (E. sibiricum), which is an indigenous herb in China, is gathered and consumed by nomads in Xinjiang due to its medicinal value. Only a few studies have evaluated its possible pharmacological activity. This study aims to examine and compare the ways in which two E. sibiricum bulb polysaccharide fractions (ESBP and E1P) alleviate airway remodeling based on apoptosis and autophagy. In a mouse model of chronic asthma produced by ovalbumin, the anti-asthmatic effects of E1P and ESBP were investigated. The expression levels of the proteins linked to autophagy and apoptosis (cleaved-caspase 3, Beclin1, LC3B, Bad, and Bax) as well as the activity of the PI3K/Akt/mTOR signaling pathway were assessed. Airway remodeling was alleviated by E1P and ESBP. While E1P could only prevent the increase in PI3K, ESBP was capable of inhibiting the PI3K/Akt/mTOR signaling pathway. Furthermore, ESBP decreased the levels of cleaved-caspase 3, Beclin1, LC3B, Bad, and Bax protein expressions. By modifying signaling pathways linked to autophagy and apoptosis, E. sibiricum bulb polysaccharides successfully improved the airway remodeling of asthma. Additionally, ESBP exhibited more potent inhibitory effects on asthmatic defective autophagy than E1P.
Collapse
Affiliation(s)
- Shan Shan Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yue Xuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yue Zhou
- Xinjiang Uygur Autonomous Region Science and Technology Resources Sharing Service Centre, Urumqi, China
- Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, China
| | - Rong Chang Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xue Li
- Supervision and Testing Center for Quality and Safety of Agri-products of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiang Yun Xie
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Urumqi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, China
| | - Chun Chunli
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Luo Q, Wang Q, Wu H, Chen Y. Areca nut polysaccharide induces M1 macrophage polarization through the NF-κB and MAPK pathways independent of TLR2 and TLR4 signaling. Int J Biol Macromol 2024; 281:136379. [PMID: 39396589 DOI: 10.1016/j.ijbiomac.2024.136379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
In this study, the structure of Areca nut polysaccharide (ANP) was characterized, and its effects on macrophage activation and the underlying molecular mechanisms were investigated. ANP was identified as a glucan with a molecular weight of 24.5 kDa, and its structure was analyzed using XRD, SEM, FT-IR, methylation, and NMR techniques. The main chain of ANP is composed of →4)-α-D-Glcp-(1 → and →4,6)-α-D-Glcp-(1→, with a branched α-D-Glcp-(1 → chain. Furthermore, the activation of macrophages by ANP was explored. Stimulation of RAW264.7 cells with ANP in vitro increased the expression of inflammatory cytokines (TNF-α and IL-6) and NO levels. Flow cytometry showed that ANP induced M1 macrophage polarization. RNA-seq and Western blot analyses revealed that ANP activated the NF-κB and MAPK pathways. Importantly, TLR2- and TLR4- specific antibodies did not affect ANP-induced M1 polarization, whereas endocytosis inhibitors reduced the production of inflammatory cytokines in ANP-treated macrophages. In conclusion, ANP engages macrophages without interacting with TLR2 and TLR4 receptors, inducing M1 polarization through the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qiyuan Luo
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Quanjiang Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Haowen Wu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China
| | - Yun Chen
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, PR China.
| |
Collapse
|
3
|
Zhao Y, Nie F, Liu W, He W, Guo Y. Preparation and exploration of anti-tumor activity of Poria cocos polysaccharide gold nanorods. Int J Biol Macromol 2024:135347. [PMID: 39260657 DOI: 10.1016/j.ijbiomac.2024.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
With the continuous advancement of nanotechnology, the application of gold nanorods (AuNRs) functionalized with polysaccharides in the realm of cancer photothermal therapy is garnering increasing attention. To harness photothermal therapy for cancer treatment, FLP-MPBA-AuNRs were successfully synthesized in this study for the first time, utilizing Poria cocos polysaccharides (FLP), mercaptophenylboronic acid (MPBA), and gold nanorods (AuNRs). FLP-MPBA-AuNRs is a nanomaterial characterized by a unique rod-shaped structure, featuring a long diameter of 29.3 nm and a short diameter of 6.5 nm, which conferred upon it exceptional photothermal stability and remarkable photothermal conversion efficiency. Under near-infrared light irradiation, FLP-MPBA-AuNRs elicited significant photothermal effects, effectively curtailing the proliferation of various cancer cells. Additionally, it impeded cancer progression by inducing cell apoptosis and releasing reactive oxygen species (ROS). Furthermore, FLP-MPBA-AuNRs suppressed the metastasis and growth of cancer cells in zebrafish models. In summary, FLP-MPBA-AuNRs showcased immense potential in cancer therapy by inhibiting tumor cell growth through photothermal and photodynamic mechanisms.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Luo Y, Chen H, Huang C, He S, Wen Q, Cai D. Structure Elucidation of a Novel Polysaccharide Isolated from Euonymus fortunei and Establishing Its Antioxidant and Anticancer Properties. Int J Anal Chem 2024; 2024:8871600. [PMID: 38827786 PMCID: PMC11142861 DOI: 10.1155/2024/8871600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 μg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.
Collapse
Affiliation(s)
- Yu Luo
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Nanning 530021, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hongtao Chen
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co., Ltd, Nanning 530000, China
| | - Chunxi Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shujia He
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qilong Wen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Danzhao Cai
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
5
|
Huang W, Wang C, Chen Q, Chen F, Hu H, Li J, He Q, Yu X. Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein. J Food Sci 2024; 89:259-275. [PMID: 37983838 DOI: 10.1111/1750-3841.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.
Collapse
Affiliation(s)
- Wangxiang Huang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chen Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Feng Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Haohan Hu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jianfei Li
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
7
|
Li H, Liu M, Liu Z, Cheng L, Li M, Li C. Purification, Structural Characterization, and Antitumor Activity of a Polysaccharide from Perilla Seeds. Int J Mol Sci 2023; 24:15904. [PMID: 37958887 PMCID: PMC10649407 DOI: 10.3390/ijms242115904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
A previous study found that a crude Perilla seed polysaccharide (PFSP) fraction exhibited obviously antitumor activity; however, the structural characterization and antitumor properties of this polysaccharide remain unclear. In this study, the PFSP was extracted and purified via combined column chromatography, and the structure of a single polysaccharide fraction was characterized by methylation, IC, GC-MS, NMR, and AFM. The results demonstrated that the efficient antitumor polysaccharide fraction PFSP-2-1 was screened from PFSP with a relative molecular weight of 8.81 × 106 Da. The primary structure of the PFSP main chain was →1)-Araf-(5→, →1,3)-Galp-(6→, →1)-Galp-(6→, →1,3)-Araf-(5→ and →1)-Xylp-(4→, and that of the side chains was →1)-Arap, →1,3)-Galp-(6→, →1)-Araf and →1)-Glcp-(4→, →1)-Galp-(3→ and →1)-Glcp, leading to a three-dimensional helical structure. CCK-8 experiments revealed that PFSP-2-1 significantly inhibited the growth of human hepatocellular carcinoma cells in vitro (p < 0.05), and its inhibitory effect positively correlation with the concentration of PFSP-2-1, and when the concentration of PFSP-2-1 was 1600 µg/mL, it showed the highest inhabitation rate on three hepatocellular carcinoma cells (HepG-2, Hep3b, and SK-Hep-1), for which the survival rates of HepG-2, Hep3b, and SK-Hep-1 were 53.34%, 70.33%, and 71.06%. This study clearly elucidated the structure and antitumor activity of PFSP-2-1, which lays a theoretical foundation for revealing the molecular mechanism of antitumor activity of Perilla seed polysaccharides and provides an important theoretical basis for the development of high-value Perilla.
Collapse
Affiliation(s)
- Hui Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ming Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zikun Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Li Cheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
| | - Mengsha Li
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150080, China
| | - Chongwei Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
8
|
Wang H, Lin Z, Li Y, Wang X, Xu J, Guo Y. Characterization, selenylation, and antineoplastic effects on HepG2 cell in vitro and in vivo of an arabinofuranan from the fruits of Akebia quinata. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Duan Y, Hu Z, Jin L, Zong T, Huang Y, Sun J, Zhou W, Li G. Isolation, characterization and anticomplementary activity of polysaccharides from the rhizomes of Belamcanda chinensis (L.) DC. Chem Biodivers 2022; 19:e202200525. [PMID: 35841390 DOI: 10.1002/cbdv.202200525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
The polysaccharides from the rhizomes of Belamcanda chinensis (L.) DC. (BCPs) were obtained by optimal water extraction (extraction temperature 84℃, liquid to solid ratio 42 mL/g and extraction time 100 min), the extraction yield of BCPs was 23.01 ± 0.27% (n=3). Furthermore, two novel polysaccharides (BCP-A1 and BCP-B1) were purified by column chromatography. The BCP-A1 (6.0820×104 kDa) was composed of β -D-Manp-(1→, β -D-Glcp-(1→, →4)-α-D-Galp-(1→ and →3,4)- β-D-Galp-(1→, and BCP-B1 (2.2744×104 kDa) was composed of →5)-α-L-Araf -(1→, β -D-Manp-(1→, β-D-Glcp-(1→, →4)-α-D-Glcp, →4)-α-D-Galp-(1→, →4)-α-D-Galp A-(1→ and →3,4)-β-D-Galp-(1→. In anticomplementary experiments, BCP-A1 (CH50: 0.009 ± 0.003 mg/mL; AP50: 0.015 ± 0.003 mg/mL) and BCP-B1 (CH50: 0.004 ± 0.001 mg/mL; AP50: 0.028 ± 0.005 mg/mL) exhibited potent anticomplementary activity, and acted on C2-, C4- and Factor B components. Our study provides a foundation for BCP-A1 and BCP-B1 as potential complement inhibitors to treat diseases involving with excessive activation of the complement system.
Collapse
Affiliation(s)
- Yuanqi Duan
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Zhengyu Hu
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Long Jin
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Tieqiang Zong
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Yanyan Huang
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Jinfeng Sun
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Wei Zhou
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Gao Li
- Yanbian University, Pharmacy, 977 Gongyuan Road, 133002, Yanji, CHINA
| |
Collapse
|
10
|
Lee YY, Yuk HJ, Saba E, Kim SD, Kim DS, Kopalli SR, Oh JW, Rhee MH. Duchesnea indica Extract Ameliorates LPS-Induced Septic Shock in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5783867. [PMID: 35607518 PMCID: PMC9124116 DOI: 10.1155/2022/5783867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Duchesnea indica has been reported for its anti-inflammatory properties. However, its efficacy in sepsis has yet to be reported. In this study, we studied the ability of Duchesnea indica extract (DIE) to rescue mice from septic shock and sepsis. Methods In vitro studies included the measurement of secreted nitric oxide, cell viability, gene and protein expression via real-time polymerase chain reaction and western blot, and confocal microscopy in RAW 264.7 cells. In vivo studies include a model of septic shock and sepsis in BALB/c mice induced by a lethal and sub-lethal dose of lipopolysaccharide (LPS). Results DIE suppressed the expression of proinflammatory cytokines induced by LPS and prevented the translocation of NFκB into the nucleus of RAW 264.7 cells. It also prevented reactive oxygen species damage induced by LPS in murine bone marrow-derived macrophages. Models of sepsis and septic shock were established in BALB/c mice and DIE-rescued mice from septic shock. DIE also reversed the increase in tumor necrosis factor-α and nitrite levels in the serum of mice induced with sepsis. DIE also prevented the translocation of NFκB from the cytosol into the nucleus in murine lungs. Histopathological damage induced by sepsis was reversed in the testis, liver, and lungs of mice. Conclusion In conclusion, DIE is a suitable candidate for development as a therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Yuan Yee Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Sung Dae Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-Gu, Seoul 05006, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Liu K, Xie L, Gu H, Luo J, Li X. Ultrasonic extraction, structural characterization, and antioxidant activity of oligosaccharides from red yeast rice. Food Sci Nutr 2022; 10:204-217. [PMID: 35035922 PMCID: PMC8751434 DOI: 10.1002/fsn3.2660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Red yeast rice is consumed as a medicinal food to lower blood lipids. Besides, it is used to color food, make wine, etc. In this study, water-soluble oligosaccharides in red yeast rice were extracted by ultrasonic-assisted extraction method. The parameters to extract oligosaccharides from red yeast rice were optimized by the Box-Behnken design under the following optimal extraction conditions: extraction temperature, 60°C; extraction time, 97 min; and liquid/material ratio, 25 ml/g. The structure and the antioxidant activity of the new oligosaccharide were preliminarily investigated. Total carbohydrates extracted from red yeast rice with 80% ethanol-water solution (v/v) were first removed from pigments using D101 macroporous adsorption resin. The total sugar contents were then purified by DE52 resins and Sephadex G-25 resins to obtain red yeast rice oligosaccharides, coded as RYRO1. Structural characterization experiments indicated that RYRO1 is an oligosaccharide with a weight average molecular weight of 874 Da and a theoretical degree of polymerization of 4.86. RYRO1 is composed of mannose, glucosamine, glucose, and galactose with a molar ratio of 0.248:0.019:1:0.026. The ABTS, DPPH, and hydroxyl free radical scavenging assays showed antioxidant nature of RYRO1.
Collapse
Affiliation(s)
- Kai Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Huan Gu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Jia Luo
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
12
|
Augustynowicz D, Latté KP, Tomczyk M. Recent phytochemical and pharmacological advances in the genus Potentilla L. sensu lato - An update covering the period from 2009 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113412. [PMID: 32987127 DOI: 10.1016/j.jep.2020.113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla plants are still common herbal medicines used in folk medicine. This review provides an update of research undertaken on Potentilla from 2009 until 2020. AIM OF THE STUDY This comprehensive review considers biological updates, recent advances in phytochemical and pharmacological research, and toxicological reports on Potentilla sensu lato based on available data since 2009. METHODS A literature search was conducted using available databases including ScienceDirect, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure and Google Scholar. RESULTS Until now, more than 210 new and known compounds, including flavonoids, tannins, triterpenes and phenolic compounds, have been confirmed and elucidated for numerous Potentilla species, i.e., in the underground and aerial parts of this genus. Modern pharmacology studies have revealed that those structures are responsible for a broad spectrum of pharmacological activities, such as anti-neoplastic, antihyperglycemic, anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, antibacterial and anti-yeast effects. CONCLUSIONS However, in vitro studies must be re-considered due to the discovery of urolithins and their origins, including microbiota, which can lead to different results when applying Potentilla species and their extracts to in vivo conditions. Thus, future research should focus more on in vivo and particularly clinical studies to confirm the validity and safety of traditional uses. Particularly, the use of Potentilla alba extracts in the treatment of thyroid gland disorders should be further explored to confirm the underlying mechanism of their action, efficacy and safety. In addition, more clinical studies should focus on Potentilla erecta rhizome extracts for application as herbal remedies against dysentery, diarrhoea and inflammation of the skin.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| |
Collapse
|
13
|
Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata. Carbohydr Polym 2020; 256:117521. [PMID: 33483042 DOI: 10.1016/j.carbpol.2020.117521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
In our continuous searching for natural active polysaccharides with immunomodulatory activity, an arabinofuranan (AQP70-3) was isolated and purified from the fruits of Akebia quinata (Houtt.) Decne. by using ion-exchange chromatography and gel permeation chromatography for the first time. AQP70-3 contained both α-l-Araf and β-l-Araf, and the absolute molecular weight was 1.06 × 104 g/mol. The backbone of AQP70-3 comprised →5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→, and →2,5)-α-l-Araf-(1→, with branches of →1)-β-l-Arafand →3)-α-l-Araf-(1→ residues. Biological assay suggested that AQP70-3 can stimulate phagocytic activity and promote the levels of nitric oxide (NO), interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) of RAW264.7 cells. Furthermore, AQP70-3 was found to increase the production of reactive oxygen species (ROS) and NO in zebrafish embryo model.
Collapse
|
14
|
Li S, Zhang Y, Guo Y, Yang L, Wang Y. Monpa, memory, and change: an ethnobotanical study of plant use in Mêdog County, South-east Tibet, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:5. [PMID: 32000826 PMCID: PMC6993401 DOI: 10.1186/s13002-020-0355-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Due to their relative isolation, the previous studies of Monpa plant use were only conducted in north-east India. In October 2013, Mêdog County was no longer remote, thanks to completion of a highway into the county. This study of plant species used by the Monpa had three research objectives. These were (i) to identify and record local names and uses of plants in Mêdog County, (ii) to assess which of these were uses of endemic or near-endemic species within this part of the Indo-Burma biodiversity hotspot, and (iii) to assess how plant uses reflect socio-economic change in Mêdog County? METHODS Field surveys were conducted in 12 villages of four townships in Mêdog County, Tibet, China. Two field visits were made. The first field trip was in November 2017 and the second field trip was in May 2018. We interviewed 64 key informants between 21 and 84 years old. Most of them were the village leaders and other local people who are knowledgeable about plants. After transect walks with knowledgeable local people, we used free listing, key informant interviews, and semi-structured interviews during the field work. Plants traditionally used by the Monpa were documented. Utilization frequency was used to assess the significance of each species, and the Cultural Importance index was used to estimate the cultural significance of the species in common. We also used the informant consensus factor (FIC) to determine the homogeneity of the informants' knowledge of medicinal plants. RESULTS One hundred ninety-four plant species belonging to 82 families and 158 genera were recorded and collected. One hundred twenty-two species, primarily fruits, were food plants. Forty-five species were used as traditional medicines. This included highly valued species collected in alpine areas (Paris polyphylla) and brought to villages in Mêdog, which are at a lower altitude (between 728 and 1759 m a.s.l). Seven edible plant species were also used as herbal medicines. We also recorded 39 species used for other purposes in Monpa daily life. These included nine species that were used to make agricultural tools, five species for dyes and mordants, four species for timber, three species for fuelwood, four species for religious ritual use, three species for washing, two species for incense, two species for thatching, two species for fiber (rope and paper), two "calendar plants" were used to indicate seasons for agricultural purposes, two fish poison plant species, and one species were used as a tobacco substitute. Based on taxonomic insights and from studies elsewhere, we suggested that fiber species were under-reported (c. 14 species were used vs. one species reported used). Even though these plant species are rich and diverse, the use of endemic or near-endemic species was rarely recorded in previous studies. These species included Arenga micrantha (used for starch), Hornstedtia tibetica (fruits), Castanopsis clarkei (edible nuts) and Gnetum pendulum (edible nuts), Ophiorrhiza medogensis (vegetables), Derris scabricaulis (fish poison), Radermachera yunnanensis (agricultural tools), Litsea tibetana (seed oil), Dendrocalamus tibeticus (wine strainers and implements for administering medicine), Zanthoxylum motuoense (spices), Cinnamomum contractum (tobacco substitutes), Morus wittiorum (medicines), and Garcinia nujiangensis (funeral rituals). Despite the absence of roads until 2013 and the impression of "isolation," Monpa knowledge of plant use reflects three categories of change. Firstly, oral histories of plants used in Bhutan were also encountered by Monpa people after their migration from Bhutan to south-eastern Tibet. Secondly, a "slow change" through centuries of exchange of knowledge (for example of Chinese and Tibetan medical systems), seeds of introduced crops (finger millet (indigenous to Africa), maize (from Meso-America)), and experimentation and use of introduced medicinal plants (such as Datura stramonium, which originates from North America). Thirdly, "fast change" over the past decade. This is reflected in changes in traditional architecture and in rising commercial trade in selected plant resources such as Dendrobium orchid stems and Paris polyphylla rhizomes which are in demand in China's Traditional Chinese Medicine (TCM) markets). CONCLUSIONS Monpa people in the south-eastern Tibet have detailed knowledge of the diverse plant resources. But that traditional knowledge is now faced with a crisis because of the modern socio-economic change. In addition, Monpa knowledge of plants reflects slower changes in knowledge as well. For example, Monpa ethnomedicine has been influenced by traditional Tibetan and Chinese medicine over a longer period in time. Overall, this study provides a deeper understanding of the Monpa peoples' knowledge on wild plants, including endemic and near-endemic species whose uses have not been previously recorded. Several of these narrowly distributed species, such as the fish poison Derris scabricaulis, could be the focus of further studies. Some wild edible plants may also have interesting dietary constituents which need in-depth studies. These detailed studies could enable the Monpa people to benefit from the use of their traditional plant-derived culture and therefore support the biodiversity conservation.
Collapse
Affiliation(s)
- Shan Li
- Department of Economic Plants and Biotechnology, Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, 650091 China
| | - Yu Zhang
- Department of Economic Plants and Biotechnology, Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Yongjie Guo
- Germplasm Bank of Wild Species of China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- University of Chinese Academy of Sciences, Beijing, CN-100049 China
| | - Lixin Yang
- Department of Economic Plants and Biotechnology, Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|