1
|
Tsai MY, Lu CK, Shu LH, Liu HT, Wu YH, Lin YS, Yang YH, Shih WT, Lee IY, Wu YH, Wu CY. Antrodia cinnamomea Formula Suppresses Prostate Cancer Progression via Immune Modulation and PD-1/PD-L1 Pathway Inhibition. Int J Mol Sci 2025; 26:2684. [PMID: 40141325 PMCID: PMC11942070 DOI: 10.3390/ijms26062684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Prostate cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. This study investigated the therapeutic potential of the Antrodia cinnamomea formula (XIANZHIFANG formula, XZF), comprising Antrodia cinnamomea, Sanghuangporus sanghuang, Ganoderma lucidum, Ganoderma sinense, and Inonotus obliquus, in prostate cancer treatment. HPLC analysis confirmed the presence of key triterpenoids, including Antcin A, B, C, K, and Zhankuic acid B, C, and 4,7-dimethoxy-5-methyl-1,3-benzodioxole. Cytotoxicity assays demonstrated that XZF (50-200 μg/mL) exhibited selective activity, maintaining viability in non-cancerous 293T-cells while enhancing the viability of activated CD8+ and CD4+ T-cells in a dose-dependent manner. XZF significantly reduced PD-1 expression in CD8+ T-cells but not in CD4+ T-cells and inhibited the PD-L1/PD-1 interaction, achieving 93% inhibition at 200 μg/mL. Furthermore, when combined with atezolizumab (1 μg/mL), XZF demonstrated complete blockade of PD-L1/PD-1 interaction. In prostate cancer cells, XZF exhibited differential antiproliferative effects. In PC-3 cells, XZF significantly reduced viability across a concentration range of 25-200 μg/mL, whereas DU145 cells showed only partial inhibition at higher concentrations (100-200 μg/mL). LNCaP cells exhibited a dose-dependent reduction in viability, mirroring the response pattern of PC-3 cells. Conditioned medium from XZF-treated macrophages, particularly human THP-1 cells, significantly suppressed the viability and migration of prostate cancer cells in a dose-dependent manner. Notably, the conditioned medium from XZF-treated THP-1 cells exhibited a stronger inhibitory effect on prostate cancer cell viability and migration compared to murine RAW 264.7 macrophages. These findings indicate that XZF exerts its therapeutic potential through multiple mechanisms, including direct antiproliferative effects on cancer cells, enhancement of T-cell responses, modulation of immune checkpoint pathways, and macrophage-mediated suppression of prostate cancer cell survival and migration. The pronounced effects observed in human macrophage models suggest a promising avenue for further investigation in clinical settings, particularly in combination with existing immunotherapies.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chung-Kuang Lu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Huei Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Heng Wu
- Institute of Communications Engineering, The National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan;
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
2
|
Zhang X, Liu S, Kong F, Shu L, Li Y, Wang D, Li L. Acidic polysaccharide from Ganoderma tsugae: Structural characterization and antiatherosclerotic related to macrophage polarization. Food Res Int 2025; 203:115913. [PMID: 40022418 DOI: 10.1016/j.foodres.2025.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025]
Abstract
Herein, a water-soluble Ganoderma tsugae acidic polysaccharide (GTP-2) was isolated and purified from the fruiting bodies of G. tsugae. GTP-2 has a molecular weight of 13.059 kDa, composed of →3)-β-d-Glcp-(1 → 3)-β-d-Glcp-(1 → 4)-GlcpUA-(1 → 4)-β-d-Glcp-1→ glucan backbone and branches ending with β-d-Glcp-(1 → 6)-β-d-Glcp-(1→, which is attached at C6 of →3,6)-β-d-Glcp-(1→. Subsequently, the antiatherosclerotic activity of GTP-2 was examined in apolipoprotein E deficient (ApoE-/-) mice fed with high-fat diet, and its potential mechanism of action was investigated. GTP-2 ameliorated blood lipid levels (total cholesterol, triglycerides, and low-density lipoprotein), while improving the serum levels of high-density lipoprotein. Furthermore, GTP-2 alleviated the atherosclerotic lesions and reduced levels of inflammatory cytokines. Analysis of the gut microbiota revealed that GTP-2 enhanced the abundance of beneficial bacteria (Lactobacillu and Akkermansia). The serum metabolite composition was further altered, with a significant reduction in octadecanoic acid level. GTP-2 regulated the nuclear factor kappa-B signaling pathway by inhibiting macrophage polarization to M1 phenotype. Collectively, these findings support the potential use of GTP-2 as an antiatherosclerotic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China.
| | - Shuai Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Lili Shu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China.
| | - Yu Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| |
Collapse
|
3
|
Rasool K, Bhatti A, Satti AM, Paracha RZ, John P. Computational insights into the inhibitory mechanism of type 2 diabetes mellitus by bioactive components of Oryza sativa L. indica (black rice). Front Pharmacol 2024; 15:1457383. [PMID: 39380907 PMCID: PMC11459461 DOI: 10.3389/fphar.2024.1457383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Background Type 2 diabetes mellitus is a metabolic disease categorized by hyperglycemia, resistance to insulin, and ß-cell dysfunction. Around the globe, approximately 422 million people have diabetes, out of which 1.5 million die annually. In spite of innovative advancements in the treatment of diabetes, no biological drug has been known to successfully cure and avert its progression. Thereupon, natural drugs derived from plants are emerging as a novel therapeutic strategy to combat diseases like diabetes. Objective The current study aims to investigate the antidiabetic potential of natural compounds of Oryza sativa L. indica (black rice) in disease treatment. Methods Antioxidant activity and alpha amylase assays were performed to evaluate the therapeutic potential of the extract of Oryza sativa L. indica. Gas chromatography-mass spectrometry (GC-MS) was used for identification of constituents from the ethanol extract. ADMET profiling (absorption, distribution, metabolism, excretion, and toxicity), network pharmacology, and molecular dynamics simulation were employed in order to uncover the active ingredients and their therapeutic targets in O. sativa L. indica against type 2 diabetes mellitus. Results GC-MS of the plant extract provided a list of 184 compounds. Lipinski filter and toxicity parameters screened out 18 compounds. The topological parameters of the protein-protein interaction (PPI) were used to shortlist the nine key proteins (STAT3, HSP90AA1, AKT1, SRC, ESR1, MAPK1, NFKB1, EP300, and CREBBP) in the type 2 diabetes mellitus pathways. Later, molecular docking analysis and simulations showed that C14 (1H-purine-8-propanoic acid, .alpha.-amino-2, 3, 6, 7-tetrahydro-1,3,7-trimethyl-2,6-dioxo-) and C18 (cyclohexane-carboxamide, N-furfuryl) bind with AKT1 and ESR1 with a binding energy of 8.1, 6.9, 7.3, and 7.2 kcal/mol, respectively. RMSD (root-mean-square deviation) and RMSF (root-mean-square fluctuation) values for AKT1 and ESR1 have shown very little fluctuation, indicating that proteins were stabilized after ligand docking. Conclusion This study suggests therapeutic drug candidates against AKT1 and ESR1 to treat type 2 diabetes mellitus. However, further wet-lab analysis is required to discover the best remedy for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kashaf Rasool
- Department of Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Department of Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abid Majeed Satti
- Crop Science Institute (CSI), PARC-National Agriculture Research Center (NARC) Islamabad, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Department of Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
4
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
5
|
Ma Y, Han J, Wang K, Han H, Hu Y, Li H, Wu S, Zhang L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024; 10:e33307. [PMID: 39022015 PMCID: PMC11253544 DOI: 10.1016/j.heliyon.2024.e33307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.
Collapse
Affiliation(s)
- YiZheng Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - JingBo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - KangFeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - Huan Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - YiBin Hu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - ShengXian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - LiJuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| |
Collapse
|
6
|
Zhang H, Xu Z, Gao H, Zhang Q. Systematic analysis on the mechanism of Zhizi-Bopi decoction against hepatitis B via network pharmacology and molecular docking. Biotechnol Lett 2023; 45:463-478. [PMID: 36807721 DOI: 10.1007/s10529-023-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Zhizi-Bopi decoction (ZZBPD) is a classic herbal formula with wide clinical applications in treating liver diseases including hepatitis B. However, the mechanism needs to be elucidated. METHODS Chemical components of ZZBPD were identified by ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF-MS). Then we used network pharmacology to identify their potential targets. Network construction, coupled with protein-protein interaction and enrichment analysis was used to identify representative components and core targets. Finally, molecular docking simulation was conducted to further refine the drug-target interaction. RESULTS One hundred and forty-eight active compounds were identified in ZZBPD, targeting 779 genes/proteins, among which 174 were related to hepatitis B. ZZBPD mainly influences the progression of hepatitis B through the hepatitis B pathway (hsa05161) via core anti-HBV targets (AKT1, PIK3CA, PIK3R1, SRC, TNF, MAPK1, and MAPK3). Enrichment analysis indicated that ZZBPD can also potentially regulate lipid metabolism and enhance cell survival. Molecular docking suggested that the representative active compounds can bind to the core anti-HBV targets with high affinity. CONCLUSION The potential molecular mechanisms of ZZBPD in hepatitis B treatment were identified using network pharmacology and molecular docking approaches. The results serve as an important basis for the modernization of ZZBPD.
Collapse
Affiliation(s)
- He Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China
| | - Zhouyi Xu
- School of Aerospace Engineering, Xiamen University, Xiamen, 361000, China
| | - Haojun Gao
- New Zhonglu Traditional Chinese Medicine Hospital, Ji'nan, 250011, China
| | - Qinyuan Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China.
| |
Collapse
|
7
|
Wang YX, Yang Z, Wang WX, Huang YX, Zhang Q, Li JJ, Tang YP, Yue SJ. Methodology of network pharmacology for research on Chinese herbal medicine against COVID-19: A review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:477-487. [PMID: 36182651 PMCID: PMC9508683 DOI: 10.1016/j.joim.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China; Department of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhen Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
8
|
Mechanism of enhanced production of triterpenoids in algal-fungal consortium. Bioprocess Biosyst Eng 2022; 45:1625-1633. [PMID: 35963944 DOI: 10.1007/s00449-022-02768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chlorella pyrenoidosa-Ganoderma lucidum symbiotic systems were constructed. The mechanism of enhanced production of triterpenoids in algal-fungal consortium by comparing the contents of triterpenoids in individual fungal systems and algal-fungal consortium systems was investigated. The production of triterpenoids in C. pyrenoidosa-G. lucidum consortium increased significantly (P < 0.05). The categories and relative abundances of metabolites in the individual systems and algal-fungal systems were measured and analyzed by metabonomic tests. There were 57 significant different metabolites (VIP > 1 and P < 0.05) including 12 downregulated metabolites and 45 upregulated metabolites were obtained. The significant enriched metabolic pathways (VIP > 1 and P < 0.05) of citrate cycle (TCA cycle), tyrosine metabolism, glycolysis, and terpenoid backbone biosynthesis in algal-fungal consortium were obtained. The relative abundances of important precursors of triterpenoids including mevalonic acid, lanosterol, and hydroquinone were 1.4 times, 1.7 times, and 2 times, respectively, in algal-fungal consortium than that in the individual fungal systems. The presence of C. pyrenoidosa in algal-fungal consortium promoted the biosynthesis of triterpenoids in G. lucidum.
Collapse
|
9
|
Hu Y, Liu L, Wang Z, Jiang CP, Zhu Z, Li H, Zeng Q, Xue Y, Wu Y, Wang Y, Yi Y, Zhu H, Shen C, Liu Q. Network pharmacology, molecular docking and in vivo and in vitro experiments to explore the molecular mechanism of licorice green tea beverage to scavenge oxygen free radicals. J Food Biochem 2022; 46:e14315. [PMID: 35855584 DOI: 10.1111/jfbc.14315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Excessive oxygen free radicals can lead to aging, cancer, and other diseases. Therefore, searching for effective antioxidants to scavenge oxygen free radicals has become the focus of modern medicine. In this study, the molecular mechanism of Licorice Green Tea Beverage (LGTB) in scavenging oxygen free radicals was investigated by means of network pharmacology, molecular docking and experimental verification. Network pharmacology studies have shown that paeonol, eugenol, cinnamaldehyde, swertisin, rutin, glycyrrhetinic acid, oleic, pelargonidin-3-O-glucoside and quercetin, kaferempol were the main active components of LGTB, and SOD and CAT are important targets for LGTB in scavenging oxygen free radicals. The results of molecular docking showed that these representative compounds had good affinity to SOD and CAT target proteins. In vitro free radical scavenging experiments showed that LTGB had significant scavenging effects on both DPPH and ABTS radicals, and had strong total reducing power. In vitro cell experiments showed that LGTB could protect HaCaT cells from oxidative stress induced by H2 O2 . The mechanism of LGTB was related to the increase of SOD and CAT activity. Western blotting showed that LGTB could inhibit PI3K/AKT/HIF-1 signaling pathway and improve the antioxidant capacity of HaCaT cells. In vivo experiments showed that LGTB could significantly increase mouse visceral index, increase serum SOD and GSH-Px activity, decrease the content of MDA, and improve liver and kidney pathological state. This study reported the molecular mechanism of LTGB scavenging oxygen free radicals, which provided scientific basis for the treatment and clinical research of aging and other diseases caused by excessive free radicals. PRACTICAL APPLICATIONS: Free radicals are produced by the normal response of cells during aerobic respiration and perform various functions, such as signaling and providing protection against infection. However, excessive free radicals can lead to aging, cancer, and other diseases. The antioxidant can overcome the harm caused by excessive free radicals. In this study, we investigated the molecular mechanism of scavenging oxygen free radicals of Licorice Green Tea Beverage (LGTB) through network pharmacology and molecular docking, and its efficacy was verified by free radical scavenging experiment in vitro, HaCaT cell oxidative stress injury induced by H2 O2 , D-galactose to establish an aging model in mice and Western blotting experiment. It not only elucidates its mechanism at the system level, but also proves its validity at the biological level. It provides the theoretical basis and experimental evidence for the follow-up research and promotion of the product.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Cui Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Root-Knot Disease Suppression in Eggplant Based on Three Growth Ages of Ganoderma lucidum. Microorganisms 2022; 10:microorganisms10051068. [PMID: 35630510 PMCID: PMC9144836 DOI: 10.3390/microorganisms10051068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
This investigation presents a novel finding showing the effect of culture filtrates (CFs) of macrofungi, Ganoderma lucidum, against Meloidogyne incognita evaluated in vitro and in planta. To determine the nematicidal activity, juveniles of M. incognita were exposed to Ganoderma CFs of three different ages (Two, four and eight weeks old) of pileus and stipe at different concentrations, i.e., 100%, 50%, 10% and 1% for different time intervals (12, 24, 48 and 72 h). Ganoderma species were examined morphologically based on external appearance and analytically using SEM. The ethanolic samples of basidiocarp were prepared and analyzed for in vitro nematicidal assay and different bioactive compounds. The in vitro experiment results revealed that among all three ages of pileus and stipe, two-week-old pileus and stipe exhibited great nematotoxic potency and caused 83.8% and 73.8% juveniles’ mortality at 100% concentration after 72 h of exposure time, respectively. Similarly, the two-week-old pileus and stipe showed the highest egg hatching inhibition of 89.2% and 81.0% at the 100% concentration after five days. The eight-week-old pileus and stipe were not more effective than the two- and four-week-old pileus and stipe. The metabolites were characterized using GC-MS, including sugar alcohol, steroids, silanes, glucosides, pyrones, ester, oleic acid, phthalic acid, linoleic acid, palmitates and ketones. The in planta study conducted in the greenhouse demonstrated that the root dip treatment for 30 min with Ganoderma CFs curtailed the infection level of M. incognita and promoted the eggplant plant growth. The maximum percent increase in plant length, plant fresh weight, plant dry weight, total chlorophyll, carotenoids and yield/plant was obtained at 100% conc. of fungus CFs, whereas a reduction was observed in nematode infestation parameters. It was concluded from the study that Ganoderma CFs can be explored as an effective and eco-friendly antinemic biocontrol agent in fields infected with root-knot nematodes.
Collapse
|
11
|
Khoba K, Kumar S, Chatterjee S, Purty RS. Isolation, Characterization, and In Silico Interaction Studies of Bioactive Compounds from Caesalpinia bonducella with Target Proteins Involved in Alzheimer's Disease. Appl Biochem Biotechnol 2022; 195:2216-2234. [PMID: 35507252 DOI: 10.1007/s12010-022-03937-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by memory loss, cognitive deterioration, and neuropsychiatric symptoms. Various drug targets implicated in AD are amyloid beta peptides, cholinesterase enzymes, and anti-amylogenic protein. Medicinal plants derived phytochemical constituents provide a vast pool of diverse compounds as a source of novel drugs. In view of this, the Caesalpinia bonducella seed extract and its active phytoconstituents were used to study the disease-modifying effects in Alzheimer's disease. The present study successfully demonstrated the therapeutic potential of various phytochemicals as it binds to multiple drug targets, resulting in inhibition of acetylcholinesterase (AChE) enzyme, butyrylcholinesterase (BuChE), BACE-1 enzyme, and anti-amylogenic protein as indicated by docking analysis. In conclusion, phytochemicals identified can be used as a suitable lead to developing a molecule that might have multi-targeted directed ligand (MTDL) potential and disease amelioration effects in Alzheimer's disease.
Collapse
Affiliation(s)
- Kanika Khoba
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
12
|
Sivasakthi P, Sabarathinam S, Vijayakumar TM. Network pharmacology and in silico pharmacokinetic prediction of Ozanimod in the management of ulcerative colitis: A computational study. Health Sci Rep 2022; 5:e473. [PMID: 35229041 PMCID: PMC8865056 DOI: 10.1002/hsr2.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Priya Sivasakthi
- Department of Pharmacy PracticeSRM College of Pharmacy, SRM ISTKancheepuramIndia
| | - Sarvesh Sabarathinam
- Department of Pharmacy PracticeSRM College of Pharmacy, SRM ISTKancheepuramIndia
| | | |
Collapse
|
13
|
Oh KK, Adnan M, Cho DH. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk ( Stigma Maydis) against Obesity: A Network Pharmacology Study. Curr Issues Mol Biol 2021; 43:1906-1936. [PMID: 34889899 PMCID: PMC8929052 DOI: 10.3390/cimb43030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (β-Amyrone, β-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and β-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|