1
|
Jiao X, Chong X, Du H, Yang M, Zhu Z, Ma Z, Wen Y. Development of pH and enzyme dual responsive chitosan/polyaspartic acid nanoparticle-embedded nanofibers for fruit preservation. Int J Biol Macromol 2025; 297:139903. [PMID: 39818386 DOI: 10.1016/j.ijbiomac.2025.139903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.22 % at pH 5.0 after 120 h, compared to 26.70 % at pH 7.0. In the presence of 1 mg/mL protease, the release of TP increased by 25.31 %. Furthermore, the nanofibers displayed excellent antimicrobial properties, inhibiting the growth of Escherichia coli, Staphylococcus aureus, and Botrytis cinerea, and exhibited antioxidant activity with a DPPH scavenging rate of 43.1 % at 10 mg/mL. When applied to strawberries, the nanofibers significantly prolonged shelf life, maintaining a 0 % mold growth rate over six days compared to 100 % in the control group. This innovative packaging system presents a promising solution for the intelligent control of active substance release, offering valuable insights into the application of stimulus-responsive nanoparticles in food preservation.
Collapse
Affiliation(s)
- Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaona Chong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyao Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhu Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengfeng Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 265503, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Yu JQ, Ji FY, Yang XK, Cheng Y, Gao HS, Sheng LX. A genome-wide investigation of the mechanism underlying the effect of exogenous boron application on sugar content and overall quality of "Benihoppe" strawberries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109116. [PMID: 39260263 DOI: 10.1016/j.plaphy.2024.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the widespread application of growth regulators and nutrients to boost yield and quality of strawberry fruits has led to the rapid growth of strawberry industry globally. Although the effects of major nutrients on strawberry yield have been widely studied, investigations into the effect of trace elements such as boron remain limited. This study examined the effect of boron application on the yield and quality of "Benihoppe" strawberry fruits. Nutrient solutions with varying boron concentrations (0, 0.024, 0.048, 0.072, and 0.096 mM) were applied to the plants, and their effect on fruit quality was evaluated. The results indicated that boron application enhanced the yield per plant, nutrient composition (total amino acid and vitamin C content), antioxidant properties (total phenol) and volatile components (esters) in strawberry fruits. Specifically, treatment with 0.048 mM boron concentration significantly increased the accumulation of soluble sugars, such as sucrose, whose concentration was 154.29% higher than that of the control treated with 0 mM concentration. This enhancement is attributable to the regulated expression of sucrose phosphate synthase (maker-Fvb2-2-augustus-gene-229.38) and β-fructofuranosidase-1/2/3 (augustus-masked-Fvb5-4-processed-gene-2.0, maker-Fvb5-3-augustus-gene-272.30, and maker-Fvb5-1-augustus-gene-0.37) genes, which play crucial roles in sugar metabolism and enzyme activity. Overall, boron application enhanced the quality of "Benihoppe" strawberries. The findings of this study offer substantial theoretical and practical guidance for using boron fertilizers in strawberry farming.
Collapse
Affiliation(s)
- Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Fang-Yan Ji
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ke Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yu Cheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; Xijiang Ecological Park, Shatou Town, Guangling District, Yangzhou 225105, China
| | - Hong-Sheng Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Priyadarshi R, Jayakumar A, de Souza CK, Rhim JW, Kim JT. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13417. [PMID: 39072989 DOI: 10.1111/1541-4337.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | | | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Hong W, Xie C, Zhao J, Dai Z. Application of plasma-activated hydrogen peroxide solution synergized with Ag@SiO 2 modified polyvinyl alcohol coating for strawberry preservation. Heliyon 2024; 10:e31239. [PMID: 38803948 PMCID: PMC11129012 DOI: 10.1016/j.heliyon.2024.e31239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
To extend the postharvest storage time of strawberries, this study aims to prepare a composite coating using plasma-activated hydrogen peroxide solution (PAH) synergized with nano-Ag@SiO2 by blending method to modify polyvinyl alcohol (PVA) solution. Results showed that the viscosity and the swelling rate of PVA significantly decreased with the addition of Ag@SiO2 at 0.18 %. Meanwhile, the elongation at break and the tensile strength of PVA increased to 0.87 MPa and 214 %. When the addition of Ag@SiO2 was 0.18 % and the composite ratio of PAH to PVA was 1:1, the composites could inactivate the pathogenic bacteria at 2 h. During the storage of strawberries, the initial colony counts on the surface of strawberries could be reduced by about 1 lg CFU/g after coating with the composite film. Moreover, with the extension of the storage time to 7 d, the respiratory intensity, colony counts, and rot index in the strawberries were 65.7 mg/(kg•h), 4.05 log CFU/g, and 38.7 %. Meanwhile, the superoxide dismutase activity and Vc content were 944 U/g and 690 μg/g, respectively. Overall, this study provides ideas and the theoretical basis for applying composite films in fruit preservation.
Collapse
Affiliation(s)
- Wenlong Hong
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chunqin Xie
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Jianying Zhao
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Zhaoqi Dai
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| |
Collapse
|
5
|
Shen A, Zhang T, Li S, Zhou X, Xiao M, Chen X, Zhang B, Yang W. Beneficial Effects of Pleurotus citrinopileatus Polysaccharide on the Quality of Cherry Tomatoes During Storage. Foodborne Pathog Dis 2023; 20:398-404. [PMID: 37486675 DOI: 10.1089/fpd.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Cherry tomatoes are highly well-liked and have a lot of nutritional value. However, the edible value of cherry tomatoes rapidly declines as their storage duration is extended. Pleurotus citrinopileatus polysaccharide (PCP) is a kind of polysaccharide obtained from P. citrinopileatus by water extraction. The effects of PCP were investigated to identify a way to maximally postpone cherry tomato degradation. The results showed that PCP had inhibitory effects on all 10 tested strains, and the inhibitory effect on Pseudomonas aeruginosa was the strongest. PCP could effectively reduce the weight loss rate and malondialdehyde accumulation of cherry tomatoes during storage, weaken the activity of polyphenol oxidase, and delay the decline of hardness, titratable acid content, and VC content compared with untreated cherry tomatoes. PCP solution at a concentration of 2 g/L exerted the best preservation effects. Therefore, PCP can potentially contribute to the preservation of vegetables and fruits.
Collapse
Affiliation(s)
- Ao Shen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Tianzhu Zhang
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Department of Pharmaceutics, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Xiaoqing Zhou
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Miaorong Xiao
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaodi Chen
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Bowen Zhang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| | - Weiwei Yang
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Yang F, Sun X, Hu J, Cai H, Xiao H, Wu X, Liu C, Wang H. Edible gum addition improves the quality of freeze-dried restructured strawberry blocks. Food Chem X 2023; 18:100702. [PMID: 37206321 PMCID: PMC10189369 DOI: 10.1016/j.fochx.2023.100702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Freeze-dried restructured strawberry blocks (FRSB) have become an increasingly popular product. In this study, the effects of six edible gums (guar gum, gelatin, xanthan gum, pectin, konjac gum, and carrageenan) on the FRSB quality were investigated. For FRSBs, compared with those in untreated samples, the 0.6 % guar gum addition increased texture profile analysis (TPA) hardness, chewiness, and puncture hardness by 29.59%, 174.86%, and 25.34%, respectively; after the 0.6% gelatin addition, the sensory evaluation sourness was reduced by 8.58%, whereas yield, TPA chewiness, and puncture hardness were increased by 3.40%, 28.62%, and 92.12%, respectively; with the 0.9% gelatin addition, the sensory evaluation sourness was reduced by 8.58%; with the 0.9% pectin addition, the yield, TPA hardness, chewiness, and puncture hardness were increased by 4.55%, 5.94%, 77.49%, and 103.62%, respectively. In summary, 0.6-0.9% pectin, gelatin, and guar gum addition are recommended to improve the main qualities of FRSBs.
Collapse
Affiliation(s)
- Feifei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Jiaqi Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Honghong Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xianghua Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Chunju Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Corresponding author.
| |
Collapse
|
7
|
Niu B, Fei Y, Liu R, Chen H, Fang X, Wu W, Mu H, Gao H. Effect of oxyresveratrol on the quality and membrane lipid metabolism of shiitake mushroom (Lentinus edodes) during storage. Food Chem 2023; 427:136700. [PMID: 37356268 DOI: 10.1016/j.foodchem.2023.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The effect of oxyresveratrol on postharvest quality and membrane lipid metabolism of shiitake mushroom was investigated. The result exhibited that oxyresveratrol retarded browning, maintained firmness and alleviated occurrence of decay of shiitake mushroom. The oxidation and hydrolysis of membrane phospholipids were suppressed by oxyresveratrol treatment, which was associated with reduced LOX and PLD activities and increased SOD and CAT activities. The membrane lipidomics of shiitake mushroom was determined by LC-MS. 385 lipid species and 13 fatty acids in membrane lipids were identified by multiple reaction monitoring method. Compared with control group, the phospholipic acid and lysophospholipid reduced by 29.24% and 21.29% in oxyresveratrol-treated group, respectively, which alleviated hydrolysis of phospholipid. Meanwhile, oxyresveratrol maintained the unsaturation of fatty acids and alleviated oxidation of phospholipid. These results demonstrated that oxyresveratrol could play a dual role of inhibiting the oxidation and hydrolysis of phospholipids to mitigate cellular damage of shiitake mushroom.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchang Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
8
|
Chen Y, Li D, Zhang X, Ma Q, Xu Y, Luo Z. Azacytidine-induced hypomethylation delays senescence and coloration in harvested strawberries by stimulating antioxidant enzymes and modulating abscisate metabolism to minimize anthocyanin overproduction. Food Chem 2023; 407:135189. [PMID: 36525805 DOI: 10.1016/j.foodchem.2022.135189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is increasingly known to be essential for fruit ripening and senescence. Currently, 5-azacytidine (AZ) was selected as an effective demethylator and it successfully shaped the genomic hypomethylation in harvested strawberries. This was associated with the reprogramming of global gene expressions, which influenced downstream food traits. The alleviation of decay and softening, as well as the deceleration of soluble solid accumulation, were included. Coloration was also delayed as a result of the AZ-induced hypomethylation. Our examinations of anthocyanin biosynthesis and transport revealed that they were markedly minimized, which was probably involved with the decreased abscisate level and its weakened metabolism. Additionally, under AZ, the retarded postharvest senescence process was observed and it might be induced by the inhibited ROS accumulation accompanying the peroxidase and catalase activities alteration. Overall, these findings underlined the importance of methylation in strawberries and suggested the potential role of epigenetic regulators in the postharvest industry.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, Zhejiang University, Hangzhou, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Zhang J, Pan L, Tu K. Aroma in freshly squeezed strawberry juice during cold storage detected by E-nose, HS–SPME–GC–MS and GC-IMS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Zhang N, Zhang C, Liu J, Fan C, Yin J, Wu T. An oral hydrogel carrier for delivering resveratrol into intestine-specific target released with high encapsulation efficiency and loading capacity based on structure-selected alginate and pectin. Food Funct 2022; 13:12051-12066. [DOI: 10.1039/d2fo01889f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resveratrol (RES) has many beneficial effects on the human body, but it is always unstable, resulting in low oral bioavailability, especially in the gastrointestinal tract.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chuanbo Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiaming Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chaozhong Fan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| |
Collapse
|