1
|
Ghaly HKF, Younis FAAY, Soliman AM, El-Sabbagh SM. Phytochemical and antibacterial properties of calyces Hibiscus sabdariffa L.: an in vitro and in silico multitarget-mediated antibacterial study. BMC Complement Med Ther 2025; 25:62. [PMID: 39966872 PMCID: PMC11837655 DOI: 10.1186/s12906-025-04794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant threat to human health worldwide by increasing the harmful impact of traditional synthetic antibiotics. Traditional medicinal plants have bioactive metabolites that can significantly modulate the growth rate, cell survival, and pathogenicity of antibiotic-resistant bacteria. Hibiscus sabdariffa L., known as Roselle or Karkade, belongs to the Malvaceae family. It is well-known for its edible aromatic red/purple calyces and is extensively utilized in the food industry and pharmacological applications. H. sabdariffa calyx bioactive phytocompounds have potent therapeutic activities such as antimicrobial, antidiabetic, antiobesity, antioxidant, anti-inflammatory, and anticancer properties. METHODS This study utilized gas chromatography-mass spectrometry (GC-MS) analysis to determine the volatile aromatic compounds that found in the hydroethanolic extract of Hibiscus sabdariffa calyces. The purpose was to verify the antibacterial properties of Roselle calyces against selective MDR clinical bacterial isolates, including A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa. RESULTS The GC-MS spectrum profile revealed the presence of twenty-seven volatile organic components, including organic fatty acid derivatives, ester compounds, sugar derivatives, and terpene components. The major GC-MS fractionations and the main active chemical compositions of the hydroethanolic extract of H. sabdariffa flowers were (E)-10-Octadecenoic acid methyl ester (59.23%), 8,11-Octadecadienoic acid, methyl ester (11.51%), Butanedioic acid, 3-hydroxy-2,2-dimethyl-, diethyl ester (6.22%), Diethyl succinate/Butanedioic acid, diethyl ester (2.35%), and Heptadecanoic acid, 16-methyl-, methyl ester/Methyl isostearate (2.31%). The hydroethanolic extract of H. sabdariffa dried calyces demonstrated potent antibacterial properties (zones diameter of inhibition growth, MIC, MBC, and MBC/MIC) against selective MDR clinical bacterial isolates, such as A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa, as determined by the phytochemical screening (TAC, TFC, and TPC) and antioxidant activity (DPPH). The surface morphological characteristics of the treated A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa clinical isolates have been affected in comparison to the untreated forms by the hydroethanolic extract of H. sabdariffa calyces, as determined by scanning electron microscopy (SEM). In silico predictive investigation revealed that the volatile aromatic components of the hydroethanolic extract of Roselle calyces exhibited significant scoring functions, binding affinities, and non-covalent intermolecular interactions with the MenB lyase and DNA gyrase targets of E. coli. These interactions significantly enhanced the activities of the volatile aromatic components against the bacterial pathogenicity, cell survival, growth, and differentiation of selective MDR clinical bacterial isolates. CONCLUSIONS According to the in vitro and in silico findings, the hydroethanolic extract of H. sabdariffa calyces has shown potentials as an effective antioxidant and antibacterial treatment. It contains volatile aromatic compounds that can modulate selective MDR Gram-negative clinical bacterial isolates.
Collapse
Affiliation(s)
- Hend Khairy Fekry Ghaly
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Fatema Aly Al-Yamany Younis
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
| | - Azza Mahmoud Soliman
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sabha Mahmoud El-Sabbagh
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
2
|
Pal P, Singh AK, Srivastava RK, Rathore SS, Sahoo UK, Subudhi S, Sarangi PK, Prus P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024; 13:3007. [PMID: 39335935 PMCID: PMC11431570 DOI: 10.3390/foods13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency. Novel contributions of this study include the development of bioproducts from various food waste streams, highlighting the potential of underutilized resources like bread and jackfruit waste. Through case studies and experimental findings, the paper illustrates the successful application of green techniques, such as microbial fermentation and bioprocessing, in valorizing food wastes. The implications of this research extend to policy frameworks, encouraging the adoption of circular bioeconomy models that not only address waste management challenges but also foster economic growth and sustainability. These findings underscore the potential for food waste to serve as a cornerstone in the transition to a circular, regenerative economy.
Collapse
Affiliation(s)
- Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India;
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India;
| | - Saurabh Singh Rathore
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | | | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003, India;
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| |
Collapse
|
3
|
Suárez-Diéguez T, Palma-Morales M, Camacho Bernal GI, Valdez López EN, Rodríguez-Pérez C, Cruz-Cansino NDS, Nieto JA. Modulation of the Hyperglycemia Condition in Diabetic Lab Rats with Extracts of the Creole Jamaica Flower ( Hibiscus sabdariffa L.) from the Morelia Region (Mexico). Antioxidants (Basel) 2024; 13:1010. [PMID: 39199254 PMCID: PMC11352102 DOI: 10.3390/antiox13081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Extracts from Jamaica flowers (Hibiscus sabdariffa) from Morelia (Mexico) were evaluated as antidiabetic ingredients in a diabetic rat lab model for 80 days at doses of 200, 400, and 600 mg extract/kg rat weight. The hydroalcoholic extract (water:ethanol 80:20 (v/v) at 50 °C) showed a TPC value of 403.28 ± 7.71 mg GAE/g extract, and an antioxidant activity of 0.219 ± 0.00003 mmol Trolox/g (ABTS) and 0.134 ± 0.00001 mmol Trolox/g (DPPH). The extract allowed reducing the diabetic glucose plasma levels under fasting conditions in a dose-dependent manner by 35.2%, 41.63%, and 50.1%. Additionally, the highest dose of the extract (600 mg/kg) slightly reduced the short-term postprandial glucose response while improving the long-term response, reducing hyperglycemia by 45.1%. The same dose also improved lipid metabolism by reducing total cholesterol, triglycerides, VLDL, and LDL, while the HDL level increased. The improvement in glucose and lipid management in the treated groups also led to reduced levels of glycosylated hemoglobin, as well as lower insulin resistance (TyG index), compared to the diabetic control group. The results of this study suggest that extracts from Hibiscus sabdariffa (Morelia) can be used as potential functional ingredients or nutraceuticals for managing the diabetic condition.
Collapse
Affiliation(s)
- Teodoro Suárez-Diéguez
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto E42000, Hidalgo, Mexico; (T.S.-D.); (G.I.C.B.); (E.N.V.L.) (N.d.S.C.-C.)
| | - Marta Palma-Morales
- Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) José Mataix, University of Granada, Av. Del Conocimiento s/n, E18071 Granada, Spain;
- Department of Nutrition and Food Science, Faculty of Farmacy, University of Granada, Cartuja Campus, E18011 Granada, Spain
| | - Gloria Isabel Camacho Bernal
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto E42000, Hidalgo, Mexico; (T.S.-D.); (G.I.C.B.); (E.N.V.L.) (N.d.S.C.-C.)
| | - Erick Noe Valdez López
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto E42000, Hidalgo, Mexico; (T.S.-D.); (G.I.C.B.); (E.N.V.L.) (N.d.S.C.-C.)
| | - Celia Rodríguez-Pérez
- Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) José Mataix, University of Granada, Av. Del Conocimiento s/n, E18071 Granada, Spain;
- Department of Nutrition and Food Science, Faculty of Farmacy, University of Granada, Cartuja Campus, E18011 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E18012 Granada, Spain
| | - Nelly del Socorro Cruz-Cansino
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Abasolo 600, Colonia Centro, Pachuca de Soto E42000, Hidalgo, Mexico; (T.S.-D.); (G.I.C.B.); (E.N.V.L.) (N.d.S.C.-C.)
| | - Juan Antonio Nieto
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002 Valencia, Spain;
| |
Collapse
|
4
|
Elsaba YM, El-Hennawi HM, Ibrahim MM, Wehaidy HR. Production of a novel laccase from Ceratorhiza hydrophila and assessing its potential in natural dye fixation and cytotoxicity against tumor cells. J Genet Eng Biotechnol 2023; 21:14. [PMID: 36757585 PMCID: PMC9911566 DOI: 10.1186/s43141-023-00473-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Flavonoid natural dyes have gained attention because they are nontoxic and eco-friendly. However, they do not work effectively with artificial fibers and require the use of mordants, which are considered as hazardous chemicals. Laccase enzyme catalyzes the oxidation of phenols, forming phenoxyl radicals that undergo a further polymerization process. So, laccase can oxidize flavonoid dyes, and it can be used instead of harmful mordants in flavonoid dye fixation on cotton fabrics. Laccases also are involved in a variety of metabolic processes, and they have anti-proliferative effects toward HepG2 and MCF-7 tumor cells. RESULTS Among fifteen fungal isolates, the fungus Ceratorhiza hydrophila isolated from the submerged plant Myriophyllum spicatum was selected as the most potent laccase producer. Optimization of the production medium resulted in a 9.9-fold increase in laccase productivity. The partially purified Ceratorhiza hydrophila laccase could successfully improve the affinity of cotton fabrics toward quercetin (flavonoid) dye with excellent color fastness properties. The partially purified laccase also showed anti-proliferative activity against HepG2 and MCF-7 tumor cells. However, high laccase concentration is required to estimate IC50. CONCLUSIONS Ceratorhiza hydrophila MK387081 is an excellent laccase producer. The partially purified laccase from Ceratorhiza hydrophila can be used in textile dyeing and printing processes as a safer alternative to the conventional hazardous mordants. Also, it can be used in preparation of cancer treatment drugs. However, further studies are needed to investigate IC50 for both cell types at higher laccase concentrations.
Collapse
Affiliation(s)
- Yasmin M. Elsaba
- grid.412093.d0000 0000 9853 2750Botany and Microbiology Department, Faculty of Sciences, Helwan University, Cairo, Egypt
| | - Heba M. El-Hennawi
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Textile Auxiliaries Department, National Research Centre, Dokki, Giza, Egypt
| | - Mona M. Ibrahim
- grid.419725.c0000 0001 2151 8157Plant Biotechnology Department, National Research Centre, Dokki, Giza, Egypt
| | - Hala R. Wehaidy
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Rangel-García CA, Reynoso-Camacho R, Pérez-Ramírez IF, Morales-Luna E, de los Ríos EA, Salgado LM. Serum Phospholipids Are Potential Therapeutic Targets of Aqueous Extracts of Roselle ( Hibiscus sabdariffa) against Obesity and Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16538. [PMID: 36554419 PMCID: PMC9779630 DOI: 10.3390/ijerph192416538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Roselle (Hibiscus sabdariffa) is rich in phenolic compounds with antiobesogenic and antidiabetic effects. In this study, the effects of aqueous extracts of two varieties of Hibiscus sabdariffa, Alma blanca (white-yellow color) and Cuarenteña (purple color), were evaluated for the prevention of obesity and insulin resistance in rats fed a high-fat and high-fructose diet (HFFD), identifying targeted molecules through global metabolomics. After sixteen weeks, both roselle aqueous extracts prevented body weight gain, and white roselle extract ameliorated insulin resistance and decreased serum free fatty acid levels. Moreover, white roselle extract decreased 18:0 and 20:4 lysophosphatidylethanolamines and purple roselle extract increased 16:0 and 20:4 lysophosphatidylinositol compared to HFFD-fed rats. These results demonstrate that roselle's beneficial health effects are variety-dependent. Interestingly, the white roselle extract showed a greater beneficial effect, probably due to its high contents of organic and phenolic acids, though its consumption is not as popular as that of the red/purple varieties.
Collapse
Affiliation(s)
- Carmen Alejandra Rangel-García
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Colinas del Cimatario, Queretaro 76090, Qro., Mexico
| | - Rosalía Reynoso-Camacho
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas, Queretaro 76010, Qro., Mexico
| | - Iza F. Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas, Queretaro 76010, Qro., Mexico
| | - Elizabeth Morales-Luna
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas, Queretaro 76010, Qro., Mexico
| | - Ericka A. de los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Queretaro 76230, Qro., Mexico
| | - Luis M. Salgado
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Colinas del Cimatario, Queretaro 76090, Qro., Mexico
| |
Collapse
|
6
|
Marques Mandaji C, da Silva Pena R, Campos Chisté R. Encapsulation of bioactive compounds extracted from plants of genus Hibiscus: A review of selected techniques and applications. Food Res Int 2022; 151:110820. [PMID: 34980372 DOI: 10.1016/j.foodres.2021.110820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022]
Abstract
The genus Hibiscus includes more than 250 species, and many studies showed that these plants contain bioactive compounds with technological potential to be used in the development of functional foods. However, the instability of these compounds during typical food processing conditions, such as exposure to high temperatures, pH changes and presence of light and oxygen have stimulated the use of encapsulation techniques to increase their stability and applicability. Among the existing Hibiscus species, only H. sabdariffa, H. cannabinus, and H. acetosella have been investigated in encapsulation studies, being spray drying the most common method approached. Considering the high technological potential offered by the incorporation of encapsulated bioactive compounds from plants of the genus Hibiscus in food formulations, this review discusses key information of selected encapsulation techniques, which represents promising alternatives to increase food systems' stability and stimulate the design of new functional foods. Relevant gaps in the literature were also noticed, mainly the lack of systematic studies regarding the composition of bioactive compounds after encapsulation, instead of total determinations, and biological activities in different analytical systems, such as antioxidant, antimicrobial and anti-inflammatory properties as well as bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Carolina Marques Mandaji
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil; Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
7
|
Alara OR, Abdurahman NH, Ali HA, Zain NM. Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: An optimization study and LC-QTOF-MS analysis. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Sharma M, Dash KK. Deep eutectic solvent‐based microwave‐assisted extraction of phytochemical compounds from black jamun pulp. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maanas Sharma
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| | - Kshirod K. Dash
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| |
Collapse
|
9
|
Methodologies in the Analysis of Phenolic Compounds in Roselle (Hibiscus sabdariffa L.): Composition, Biological Activity, and Beneficial Effects on Human Health. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Roselle (Hibiscus sabdariffa L.), as an edible flower, has long provided an array of positive effects on human health. This benefit is a result of phenolic compounds that are naturally present mainly in the calyx. Plentiful medicinal remedies and functional foods based on this flower are available worldwide, as supported by the studies of phenolic compounds in recent decades. This paper aims to provide a comprehensive review of the composition, biological activity, and beneficial effects on human health of phenolic compounds in roselle. This review was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. A structured search in the published literature for phenolics compositions in roselle was required prior to the evaluation on the validity of the reported analytical methods. Reliable identification and quantification of phenolic compounds in roselle can be achieved by employing the proper extraction and separation methods. With ample alternative analytical methods discussed here, this review provided an aid for comprehending and selecting the most appropriate method for a particular study. The applications of the analytical methods highlighted indicated that phenolic acids, flavonoids, and their derivatives have been identified and quantified in roselle with a range of biological activities and beneficial effects on human health. It was also disclosed that the composition and concentration of phenolic compounds in roselle vary due to the growth factors, cultivars, and environmental influence. Finally, apart from the research progress carried out with roselle during the last ten years, this review also proposed relevant future works.
Collapse
|
10
|
Jayasree Radhakrishnan A, Venkatachalam S. A holistic approach for microwave assisted solvent extraction of phenolic compounds from
Ficus benghalensis
fruits and its phytochemical profiling. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anupama Jayasree Radhakrishnan
- Food Process Engineering Lab, Department of Chemical Engineering A. C. Tech Campus, Anna University Chennai Tamil Nadu India
| | - Sivakumar Venkatachalam
- Food Process Engineering Lab, Department of Chemical Engineering A. C. Tech Campus, Anna University Chennai Tamil Nadu India
| |
Collapse
|
11
|
Dong YS, Yu N, Li X, Zhang B, Xing Y, Zhuang C, Xiu ZL. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8774-8787. [PMID: 32806121 DOI: 10.1021/acs.jafc.0c01668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1-Deoxynojirimycin (1-DNJ) is the major effective component of mulberry leaves, exhibiting inhibitory activity against α-glucosidase. However, due to the low content of 1-DNJ in mulberry products, its level cannot meet the lowest dose to exhibit its activity. In this study, a combination of dietary 5,6,7-trihydroxy-flavonoid aglycones with 1-DNJ showed synergistic inhibitory activity against maltase of mice α-glucosidase and recombinant C- and N-termini of maltase-glucoamylase (MGAM) and baicalein with 1-DNJ exhibited the strongest synergistic effect. The synergistic effect of the combination was also confirmed by the maltose tolerance test in vivo. Enzyme kinetics, molecular docking, fluorescence spectrum, and circular dichroism spectrometry studies indicated that the major mechanism of the synergism is that baicalein was a positive allosteric inhibitor and bound to the noncompetitive site of MGAM, causing an increase of the binding affinity of 1-DNJ to MGAM. Our results might provide a theoretical basis for the design of dietary supplements containing mulberry products.
Collapse
Affiliation(s)
- Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Na Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|