1
|
Liu M, Bai Y, Feng M, Wang X, Ni L, Cai L, Cao Y. The synergistic antibacterial effects of allicin nanoemulsion and ε-polylysine against Escherichia coli in both planktonic and biofilm forms. Food Chem 2025; 472:142949. [PMID: 39842203 DOI: 10.1016/j.foodchem.2025.142949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The synergistic effects of allicin nanoemulsion (AcN) and ε-polylysine (ε-PL) against Escherichia coli were investigated in this study. The combination of AcN and ε-PL synergistically inhibited the planktonic growth of E. coli, with a low fractional inhibitory concentration index of 0.252. AcN/ε-PL treatment remarkably promoted the agent-cell contacts compared to AcN or ε-PL treatment, as evidenced by the larger cellular size and lower absolute zeta potential value. Analysis of membrane potential, intracellular ATP and superoxide dismutase activity revealed that the co-treatment induced membrane depolarization and intracellular metabolic disorders. Laser scanning confocal microscope, flow cytometer, and scanning electron microscope revealed that the membrane integrity and cell structure were severely degraded. Further, biofilm formation, cluster motility, and mature biofilm of E. coli were disrupted substantially by AcN/ε-PL. Finally, the application of AcN/ε-PL in raw beef preservation verified the synergy. Therefore, AcN/ε-PL can be used as a potential bacteriostatic agent in food preservation.
Collapse
Affiliation(s)
- Miaomiao Liu
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yanan Bai
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Mingxing Feng
- Department of Life Science, Yuncheng University, Yuncheng 044000, China
| | - Xindi Wang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Laixue Ni
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Luyang Cai
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yungang Cao
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Lei XX, Liu ML, Lu CF, Han LL, Jia JZ, Li Z, Xu N, Li JF, Fu XJ, Jin YB, Tong RK, Yu YL, Luo GX, Chen Y. A self-hygroscopic, rapidly self-gelling polysaccharide-based sponge with robust wet adhesion for non-compressible hemorrhage control and infected wounds healing. Bioact Mater 2025; 46:311-330. [PMID: 39811462 PMCID: PMC11732608 DOI: 10.1016/j.bioactmat.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL). Upon application to the wound site, the sponge can rapidly absorb interfacial fluids and undergo a phase transition from sponge to gel. The transformed gel facilitates robust tissue adhesion and achieves synergistic hemostasis by enriching coagulation factors within the sponge phase and providing a barrier effect in the gel phase. The in vitro and in vivo studies revealed that the optimized OHN@ε-pL3 sponge possesses self-gelling capability, tissue adhesion, enhanced coagulation ability, and exhibits excellent biocompatibility and antibacterial efficacy. In hemostasis, OHN@ε-pL3 sponges exhibited reduced blood loss and decreased hemostatic time compared to commercial hemostatic agents, as demonstrated in rat liver, femoral vein, and tail truncation bleeding models. Furthermore, the OHN@ε-pL3 sponge exhibited superior performance in accelerating wound closure and healing of S. aureus-infected wounds. Collectively, OHN@ε-pL sponges represent a promising candidate for medical dressings, specifically for managing uncontrollable non-compressible hemorrhage and traumatic infections.
Collapse
Affiliation(s)
- Xiong-Xin Lei
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| | - Meng-Long Liu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Chao-Feng Lu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Li-Li Han
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Jie-Zhi Jia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Na Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jiang-Feng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Xuan-Jian Fu
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| | - Ya-Bin Jin
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ri-Kuan Tong
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China
| | - Yun-Long Yu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Gao-Xing Luo
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Yang Chen
- Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China
| |
Collapse
|
3
|
Liu X, Meng L, Song W, Zhi M, Wang P, Liu B, Du M, Feng Q. Efficacy of Toothpaste Containing Polylysine and Funme Peptide on Oral Microbiome and Oral Health. Int Dent J 2025; 75:1068-1080. [PMID: 39809651 PMCID: PMC11976545 DOI: 10.1016/j.identj.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE To evaluate the effect of the toothpaste containing ε-poly-L-lysine (ε-PL) and funme peptide (FP) as key components on oral microbial composition and oral health. METHODS An oral microbiome study was initially carried out to analyze the variation in the oral microbiota before and after use of antimicrobial peptide (AMP) toothpaste. Subsequently, a clinical trial was independently performed to assess the efficacy of AMP toothpaste by measuring the dental plaque index (PLI), volatile sulfur compounds (VSCs) levels, modified bleeding index (mBI), and bleeding on probing rate (BOP%). RESULTS The application of AMP toothpaste increased the α diversity and modified β diversity of oral microbiome across 3 oral niches. AMP toothpaste increased the relative abundance of the commensal oral microbes, and attenuated the abundance of pathogenic bacteria in gingivitis patients to normal levels. The clinical trial showed 44.33% and 12.29% reductions of PLI scores in the test and control groups, respectively, and the test group exhibited a more pronounced decrease in VSC levels. The test group recorded significant reductions in mBI and BOP% by 39.09% and 24.59%, respectively, exceeding the control group's reductions of 4.63% and -0.97% (P < .05). CONCLUSION The formulation of toothpaste with ε-PL and FP recalibrated the oral microbiome's diversity and abundance, and mitigated common oral health issues such as plaque, halitosis, and gingivitis while maintaining well safety. CLINICAL RELEVANCE Oral care products containing ε-PL and FP can be used as a new treatment for improving oral microbiota and oral diseases.
Collapse
Affiliation(s)
- Xu Liu
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Lei Meng
- Shandong University-BOP Joint Oral Microbiome Laboratory, Jinan, China
| | - Wenzhu Song
- Shandong University-BOP Joint Oral Microbiome Laboratory, Jinan, China
| | - Mengfan Zhi
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Peiyu Wang
- Shanghai Gemang Bio-Technology Co., Ltd, Shanghai, China
| | - Bin Liu
- Shanghai Gemang Bio-Technology Co., Ltd, Shanghai, China
| | - Mi Du
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Qiang Feng
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
4
|
Wang H, Wei X, Li D, Yan J, Wu Y, Zhou Z. Impact of surfactin on the physicochemical properties of dough and quality of corresponding steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3122-3132. [PMID: 39667925 DOI: 10.1002/jsfa.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The extensive use of additives in ultra-processed foods presents considerable health concerns. In light of the growing consumer demand for clean labels, a prominent trend is the development of multifunctional food additives that are both natural and beneficial to health. Surfactin, a compound produced by Bacillus subtilis, features both hydrophilic and hydrophobic groups and is noted for its safety, emulsifying and antimicrobial properties. This compound holds significant potential as a multifunctional additive in flour-based products. The present study aimed to evaluate the effects of surfactin on the physicochemical properties of dough and the quality of steamed bread, as well as to investigate the underlying mechanisms. RESULTS The results showed that the addition of surfactin significantly improved its rheological properties, increased elasticity and viscosity, improved extension resistance and increased disulfide bonding content in dough (P < 0.05), subsequently stabilizing the gluten network structure. With a 0.3% surfactin addition, the digestibility of steamed bread significantly reduced. After storing for 7 days, surfactin inhibited water migration, reduced the transfer from bound water to free water, delayed starch recrystallization, improved resistance to starch retrogradation and markedly extended the shelf life in steamed bread. CONCLUSION The addition of surfactin improved the quality of steamed bread through stabilizing the gluten network structure and improving storage properties, presenting it as a promising natural, multifunctional food additive for flour product innovation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huifang Wang
- College of Food Science and Engineering, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Wei
- College of Food Science and Engineering, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Dengdeng Li
- College of Food Science and Engineering, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jiai Yan
- Affiliated hospital of Jiangnan University, Wuxi, China
| | - Yina Wu
- Go Believe Food Co. Ltd, Tianjin, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- College of Food Science, Shihezi University, Shihezi, China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
5
|
Li B, Yang Y, Kou X, Yang M, Normakhamatov N, Alasmari AF, Xin B, Tan Y. Water-soluble polysaccharides extracted from Enteromorpha prolifera/PVA composite film functionalized as ε-polylysine with improved mechanical and antibacterial properties. Int J Biol Macromol 2024; 282:136697. [PMID: 39427792 DOI: 10.1016/j.ijbiomac.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The issue of environmental protection has received sustained and widespread attention. In order to reduce environmental pollution related to traditional plastics, it is an incessant demand to design novel environment-friendly food packaging materials with excellent performance. Sulfated polysaccharide extracted from the "green tide" marine pollution Enteromorpha prolifera (SPE) has been innovatively transformed into a film-forming material for better utilization. The insufficient mechanical properties and limited functionalities, however, hinder its wide application. In this study, polyvinyl alcohol (PVA) was blended to enhance its mechanical properties and ε-polylysine (ε-PL) was incorporated to endow it with antimicrobial performance. A novel and biodegradable film composed of SPE, PVA, and ε-PL was fabricated by casting method. We further determined the physicochemical properties of composited films. Mechanical performance test revealed the tensile strength of SPE-PVA-PL films increased from 5.56 MPa to 6.65 MPa and the E% increased from 128.8 % to 246.9 % compared with that of SPE-PVA films. Antimicrobial tests showed the excellent antibacterial activity of SPE-PVA-PL films against representative microbial species, Staphylococcus aureus and Escherichia coli. The results of this study suggested that the SPE-based composite film has the potential to be used as a potential food packaging and wound dressing materials.
Collapse
Affiliation(s)
- Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingying Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Xinhua Kou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Manli Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek str, 45, Tashkent 100015, Uzbekistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
6
|
Jia H, Cai R, Yue T, Xie Y. Transcriptomic analysis of the antibacterial mechanism of ε-polylysine-functionalized magnetic composites against Alicyclobacillus acidoterrestris and its application in apple juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8734-8747. [PMID: 38979962 DOI: 10.1002/jsfa.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Rui Cai
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
7
|
Li N, Lu Y, Sheng X, Cao Y, Liu W, Zhou Z, Jiang L. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Appl Biochem Biotechnol 2024; 196:6802-6816. [PMID: 38411934 DOI: 10.1007/s12010-024-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Chitosan oligosaccharides (COS), derived from chitin, have garnered considerable attention owing to their diverse biological activities and potential applications. Previous investigations into the bioactivity of COS often encountered challenges, primarily stemming from the use of COS mixtures, making it difficult to discern specific effects linked to distinct degrees of polymerization (DP). Recent progress underscores the significant variation in the biological activities of COS corresponding to different DPs, prompting dedicated research towards synthesizing COS with well-defined polymerization. Among the available methods, enzymatic preparation stands out as a viable and environmentally friendly approach for COS synthesis. This article provides a comprehensive overview of emerging strategies for the enzymatic preparation of single COS, encompassing protein engineering, enzymatic membrane bioreactors, and transglycosylation reactions. Furthermore, the bioactivities of single COS, including anti-tumor, antioxidant, antibacterial, anti-inflammatory, and plant defense inducer properties, exhibit close associations with DP values. The potential applications of single COS, such as in functional food, food preservation, and crop planting, are also elucidated.
Collapse
Affiliation(s)
- Na Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuting Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xian Sheng
- Yixing Hospital of Traditional Chinese Medicine, Yixing, 214299, Jiangsu, China
| | - Yi Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Zhi Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
8
|
Fang J, Yin Z, Zhang T, Yang W, Fang T, Wang Y, Guo N. Preparation and characterization of carvacrol/ε-polylysine loaded antimicrobial nanobilayer emulsion and its application in mango preservation. Food Chem 2024; 446:138831. [PMID: 38402759 DOI: 10.1016/j.foodchem.2024.138831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Carvacrol is well-known natural antimicrobial compounds. However, its usage in fruit preservation is restricted owing to poor water solubility. Our study aims to address this limitation by combining carvacrol with whey protein isolate (WPI) to form nanoemulsion and enhancing antimicrobial properties and stability of nanoemulsion through ε-polylysine addition, thereby improving their application in fruit preservation. The results indicated that the nanoemulsion exhibited a double-layer structure. The physicochemical properties and storage stability were found to be favorable under the conditions of WPI (0.3 wt% v/v), Carvacrol (0.5 % v/v), and ε-polylysine (0.3 wt% v/v). In addition, the nanoemulsion had inhibitory effects on Staphylococcus aureus, Escherichia coli, and Aspergillus niger at concentrations of minimal inhibition concentration (32, 32, and 200 μg/mL, respectively). In addition, during a 7-day storage period, the nanoemulsion effectively preserved mangoes. Therefore, nanoemulsion could serve as a candidate for control of postharvest mangoes spoilage and extend its period of storage.
Collapse
Affiliation(s)
- Jiaqi Fang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhuofan Yin
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Weicong Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tianqi Fang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Li Q, Zhou W, Yu X, Cui F, Tan X, Sun T, Li J. Preparation and characterization of zein/gelatin electrospun film loaded with ε-polylysine and gallic acid as tuna packaging system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1942-1952. [PMID: 37886811 DOI: 10.1002/jsfa.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Wenxuan Zhou
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinrui Yu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
10
|
Qiu Y, Xu D, Lei P, Li S, Xu H. Engineering functional homopolymeric amino acids: from biosynthesis to design. Trends Biotechnol 2024; 42:310-325. [PMID: 37775417 DOI: 10.1016/j.tibtech.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
Homopolymeric amino acids (HPAs) are a class of microbial polymers that can be classified into two categories: anionic and cationic HPAs. Notable examples include γ-poly-glutamic acid (γ-PGA) and ε-poly-L-lysine (ε-PL) that have wide-ranging applications in medicine, food, and agriculture. The primary method of manufacture is through microbial synthesis. In recent decades significant efforts have been made to enhance the production of HPAs, specifically focusing on γ-PGA and ε-PL. We comprehensively review current advances in understanding the synthetic mechanisms as well as metabolic engineering and fermentation process techniques to improve the production of HPAs. In addition, we discuss the major challenges and solutions associated with desired structure regulation of HPAs and the development of novel structures.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Delei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, PR China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; Nanjing Shineking Biotech Co. Ltd., Nanjing 210061, PR China.
| |
Collapse
|
11
|
Wang Y, Wang L, Hu Y, Qin J, Yu B. Design and optimization of ε-poly-l-lysine with specific functions for diverse applications. Int J Biol Macromol 2024; 262:129513. [PMID: 38262828 DOI: 10.1016/j.ijbiomac.2024.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
ε-Poly-l-lysine (ε-PL) is a natural homo-poly(amino acid) which can be produced by microorganisms. With the advantages in broad-spectrum antimicrobial activity, biodegradability, and biocompatibility, ε-PL has been widely used as a preservative in the food industry. Different molecular architectures endow ε-PL and ε-PL-based materials with versatile applications. However, the microbial synthesis of ε-PL is currently limited by low efficiencies in genetic engineering and molecular architecture modification. This review presents recent advances in ε-PL production and molecular architecture modification of microbial ε-PL, with a focus on the current challenges and solutions for the improvement of the productivity and diversity of ε-PL. In addition, we highlight recent examples where ε-PL has been applied to expand the versability of edible films and nanoparticles in various applications. Commercial production and the challenges and future research directions in ε-PL biosynthesis are also discussed. Currently, although the main use of ε-PL is as a food preservative, ε-PL and ε-PL-based polymers have shown excellent application potential in biomedical fields. With the development of synthetic biology, the design and synthesis of ε-PL with a customized molecular architecture are possible in the near future. ε-PL-based polymers with specific functions will be a new trend in biopolymer manufacturing.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yangfan Hu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Qin
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Xu Y, Guan X, Wang S. Synergistic bactericidal mechanisms of RF energy simultaneously combined with cinnamon essential oil or epsilon-polylysine against Salmonella revealed at cellular and metabolic levels. Int J Food Microbiol 2024; 408:110447. [PMID: 37907022 DOI: 10.1016/j.ijfoodmicro.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.
Collapse
Affiliation(s)
- Yuanmei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, China
| | - Xiangyu Guan
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Washington State University, Department of Biological Systems Engineering, Pullman, WA 99164-6120, USA.
| |
Collapse
|
13
|
Zou Z, Zhang Z, Ren H, Cheng X, Chen X, He C. Injectable antibacterial tissue-adhesive hydrogel based on biocompatible o-phthalaldehyde/amine crosslinking for efficient treatment of infected wounds. Biomaterials 2023; 301:122251. [PMID: 37531776 DOI: 10.1016/j.biomaterials.2023.122251] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Injectable antibacterial hydrogels have attracted considerable attention in wound management. However, the development of injectable hydrogels with excellent antibacterial activity, good biocompatibility, and strong tissue adhesion remains a challenge. In this study, an antibacterial tissue-adhesive hydrogel was developed based on a catalyst-free o-phthalaldehyde (OPA)/amine reaction by simply mixing OPA-terminated four-arm poly(ethylene glycol) (4aPEG-OPA) and ε-poly-l-lysine (ε-PLL) solutions. The hydrogel showed tunable gelation time, storage moduli, and degradation rate depending on the polymer concentration and 4aPEG-OPA/ε-PLL mass ratio. The hydrogel exhibited nearly 100% bacterial inhibition rates in-vitro against Gram-negative E. coli and Gram-positive S. aureus, while maintaining good biocompatibility. The hydrogel matched well in shape and tightly adhered to the tissue after in-situ formation at the wound sites. Following the treatment of rat models of full-thickness skin incisions and round wounds, the hydrogel effectively closed the wounds and promoted wound healing. Moreover, after administering to S. aureus infected full-thickness skin wounds, the hydrogel exhibited remarkable efficacy in inhibiting wound infection with a bacterial inhibition rate over 99.94%, achieving a significantly accelerated wound healing compared with the commercially available Prontosan® gel. Therefore, the hydrogel exhibits great potential as a wound dressing for infection prevention and promotion of healing.
Collapse
Affiliation(s)
- Zheng Zou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xueliang Cheng
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
14
|
Lang A, Lan W, Xie J. Preparation and antimicrobial mechanism of Maillard reaction products derived from ε-polylysine and chitooligosaccharides. Biochem Biophys Res Commun 2023; 650:30-38. [PMID: 36773337 DOI: 10.1016/j.bbrc.2023.01.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Chitooligosaccharides can be combined with amino acids or polypeptide to form Maillard reaction products (MRPs) with the antibacterial characteristics through Maillard reaction. This research aims to clarify the structure, antimicrobial effect and mechanism against Shewanella putrefaciens (S. putrefaciens) of ε-polylysine and chitooligosaccharides Maillard reaction products (LC-MRPs). The results of intrinsic fluorescence (IF) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, proton nuclear magnetic resonance (1H NMR) spectra and scanning electron microscope (SEM) indicated Maillard reaction occurred between ε-polylysine and chitooligosaccharides. The observation of confocal laser scanning microscopy (CLSM), SEM and growth curves of S. putrefaciens evidenced that LC-MRPs have the strongest antibacterial effects. The leakage of alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) implied that LC-MRPs sabotaged bacterial barrier (cell wall and cell membrane). The changes in content of nucleic acids, reactive oxygen species (ROS) level, lipid peroxidation content (LPO), succinate dehydrogenase (SDH) activity and adenosine triphosphate (ATP) content showed LC-MRPs will affect bacterial genetic gene transcription, material and energy metabolism. Therefore, the LC-MRPs were effective antibacterial agents to inhibit S. putrefaciens, which will help to preserve food with S. putrefaciens as the main spoilage bacteria.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
15
|
Cezard A, Fouquenet D, Vasseur V, Jeannot K, Launay F, Si-Tahar M, Hervé V. Poly-L-Lysine to Fight Antibiotic Resistances of Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:ijms24032851. [PMID: 36769174 PMCID: PMC9917869 DOI: 10.3390/ijms24032851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa is a major hospital-associated pathogen that can cause severe infections, most notably in patients with cystic fibrosis (CF) or those hospitalized in intensive care units. Given its remarkable ability to resist antibiotics, P. aeruginosa eradication has grown more challenging. Therefore, there is an urgent need to discover and develop new strategies that can counteract P. aeruginosa-resistant strains. Here, we evaluated the efficacy of poly-L-lysine (pLK) in combination with commonly used antibiotics as an alternative treatment option against P. aeruginosa. First, we demonstrated by scanning electron microscopy that pLK alters the integrity of the surface membrane of P. aeruginosa. We also showed using a fluorometry test that this results in an enhanced permeability of the bacteria membrane. Based on these data, we further evaluated the effect of the combinations of pLK with imipenem, ceftazidime, or aztreonam using the broth microdilution method in vitro. We found synergies in terms of bactericidal effects against either sensitive or resistant P. aeruginosa strains, with a reduction in bacterial growth (up to 5-log10 compared to the control). Similarly, these synergistic and bactericidal effects were confirmed ex vivo using a 3D model of human primary bronchial epithelial cells maintained in an air-liquid interface. In conclusion, pLK could be an innovative antipseudomonal molecule, opening its application as an adjuvant antibiotherapy against drug-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Adeline Cezard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
| | - Delphine Fouquenet
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
| | - Virginie Vasseur
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
| | - Katy Jeannot
- UMR 6249 Chrono-Environnement, UFR Sciences Médicales et Pharmaceutiques, Université de Bourgogne-Franche Comté, 25030 Besançon, France
- French National Reference Centre for Antibiotic Resistance, 25030 Besançon, France
- Département de Bactériologie, CHU de Besançon, 25030 Besançon, France
| | - Fabien Launay
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
- Correspondence: (M.S.-T.); (V.H.); Tel.: +33-247366045 (M.S.-T.); +33-247366237 (V.H.)
| | - Virginie Hervé
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37000 Tours, France
- Université de Tours, Faculté de Médecine, 37000 Tours, France
- Correspondence: (M.S.-T.); (V.H.); Tel.: +33-247366045 (M.S.-T.); +33-247366237 (V.H.)
| |
Collapse
|
16
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Development of active packaging films based on collagen/gallic acid-grafted chitosan incorporating with ε-polylysine for pork preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
18
|
Lang A, Lan W, Gu Y, Wang Z, Xie J. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:152-163. [PMID: 35848059 DOI: 10.1002/jsfa.12125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Maillard reaction is a promising and safe method for obtaining chitooligosaccharide conjugates with proteins or peptides as food preservatives. This study aims to investigate the moisture state, physicochemical properties, and shelf-life of sea bass fillets treated with ε-polylysine (ε-PL) and chitooligosaccharides (COS), which are Maillard reaction products (LC-MRPs), during refrigerated storage. RESULTS The results of microbiological analysis and confocal laser scanning microscope (CLSM) revealed that LC-MRPs could retard microbial growth effectively. Compared with control, other treated groups could strongly retard the increase in the thiobarbituric acid (TBA) value, the K-value and the total volatile basic nitrogen (TVB-N) value, and also inhibited the softening of texture and the accumulation of biogenic amines in fish. The results of low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) indicate that LC-MRPs could delay the water migration of fillets and increase water holding capacity (WHC). Through sensory evaluation, the application of LC-MRPs increased the shelf-life of refrigerated sea bass fillets for another 9 days. CONCLUSION Maillard reaction products derived from chitooligosaccharides and ε-polylysine have strong potential for preserving sea bass. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Yongji Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
19
|
Influence of starch content on the physicochemical and antimicrobial properties of starch/PBAT/ε-polylysine hydrochloride blown films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Influence of the combination of cinnamon essential oil nanoemulsions and epsilon-polylysine on microbial community and quality of pork during refrigerated period and radio frequency cooking. Int J Food Microbiol 2022; 381:109911. [DOI: 10.1016/j.ijfoodmicro.2022.109911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022]
|
21
|
Pandiselvam R, Prithviraj V, Manikantan MR, Beegum PPS, Ramesh SV, Kothakota A, Mathew AC, Hebbar KB, Maerescu CM, Criste FL, Socol CT. Dynamics of biochemical attributes and enzymatic activities of pasteurized and bio-preserved tender coconut water during storage. Front Nutr 2022; 9:977655. [PMID: 36211480 PMCID: PMC9539066 DOI: 10.3389/fnut.2022.977655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The potential of bio-preservatives, namely, nisin, natamycin, and polylysine, as viable alternatives to chemical preservatives for storage of tender coconut water (TCW) during refrigerated storage (5 ± 2°C) was explored. Bio-preservative treatments were carried out after optimized heat treatment (85°C for 5 min) of TCW to establish its storage characteristics. Various concentrations (up to 125 ppm) of bio-preservatives were used for the preservation, and quality parameters of resultant TCW were assessed based on physicochemical characteristics and Food and Agriculture Organization (FAO) guidelines and statistical analysis applied. Analysis of variance (ANOVA) and post-hoc test revealed that pH and overall acceptability (OA) are the major governing factors that determine spoilage of TCW (p < 0.05). Overall, the polylysine combination was found to be most effective in ensuring quality retention of TCW. It was concluded that pasteurized TCW shelf life could be extended up to 20 days using bio-preservatives.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
- *Correspondence: R. Pandiselvam
| | - V. Prithviraj
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - M. R. Manikantan
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
- M. R. Manikantan
| | - P. P. Shameena Beegum
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
| | - S. V. Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - A. C. Mathew
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
| | - K. B. Hebbar
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR—Central Plantation Crops Research Institute, Kasaragod, India
| | | | | | | |
Collapse
|
22
|
Li Q, Zhou W, Zhang J, Zhu J, Sun T, Li J, Cheng L. Synergistic effects of ε-polylysine hydrochloride and gallic acid on Shewanella putrefaciens and quality of refrigerated sea bass fillets. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Liu B, Yang H, Zhu C, Xiao J, Cao H, Simal-Gandara J, Li Y, Fan D, Deng J. A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Crit Rev Food Sci Nutr 2022; 64:760-782. [PMID: 35959724 DOI: 10.1080/10408398.2022.2108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Li S, Mao Y, Zhang L, Wang M, Meng J, Liu X, Bai Y, Guo Y. Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:65. [PMID: 35710433 PMCID: PMC9205021 DOI: 10.1186/s13068-022-02166-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The naturally occurring homo-polyamide biopolymer, ε-poly-L-lysine (ε-PL) consists of 25-35 L-lysine residues with amide linkages between α-carboxyl groups and ε-amino groups. ɛ-PL exhibits several useful properties because of its unusual structure, such as biodegradability, water solubility, no human toxicity, and broad-spectrum antibacterial activities; it is widely applied in the fields of food, medicine, clinical chemistry and electronics. However, current industrial production of ε-PL is only performed in a few countries. Based on an analysis of the physiological characteristics of ε-PL fermentation, current advances that enhance ε-PL fermentation, from strain improvement to product isolation are systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulatory mechanism of ε-PL synthesis; (2) enhancing biosynthetic performance through mutagenesis, fermentation optimization and metabolic engineering; and (3) understanding and improving the biological activity and functional properties of ε-PL. Finally, perspectives on engineering and exploiting ε-PL as a source material for the production of various advanced materials are also discussed, providing scientific guidelines for researchers to further improve the ε-PL fermentation process.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunren Mao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lifei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jinhao Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004, China.
| |
Collapse
|
25
|
Gao S, Zhai X, Wang W, Zhang R, Hou H, Lim LT. Material properties and antimicrobial activities of starch/PBAT composite films incorporated with ε-polylysine hydrochloride prepared by extrusion blowing. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Zhang H, Zheng Y, Li R. Effects of chitosan-based coatings incorporated with ɛ-polylysine and ascorbic acid on the shelf-life of pork. Food Chem 2022; 390:133206. [PMID: 35597094 DOI: 10.1016/j.foodchem.2022.133206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
Chitosan is a food thickener with film-forming ability and antibacterial activity. ɛ-Polylysine is a preservative with broad-spectrum antibacterial activity. Ascorbic acid is a food antioxidant. In this study, pork chunks were treated with four dipping solutions, i.e. purified water (control), 0.2% ascorbic acid (treatment-1), 0.02% ɛ-polylysine (treatment-2), and 0.4% chitosan + 0.02% ɛ-polylysine + 0.2% ascorbic acid (treatment-3), and stored at 3 °C for 12 days. All treatments suppressed bacterial growth, increases in pH and total volatile basic nitrogen (TVB-N) and thiobarbituric acid reactive substances and decreases in the red indices of pork chunks compared with the control during refrigeration. Based on the national standards of total bacterial number and TVB-N of pork, treatment-3 extended the shelf-life of pork chunks by six days compared with the control. The results verified that chitosan-based coatings may be a practical method for the preservation of pork chunks during refrigeration.
Collapse
Affiliation(s)
- Huanxin Zhang
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, 8 Fenghuang East Road, Taizhou 225300, China.
| | - Yi Zheng
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, 8 Fenghuang East Road, Taizhou 225300, China.
| | - Ruomin Li
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, 8 Fenghuang East Road, Taizhou 225300, China
| |
Collapse
|
27
|
Bai JL, Wang HH, Zhang JM, Wu QP, Mo SP, He YL, Weng SQ, Yang XJ, Li CZ. Postharvest quality maintenance of wax apple and guava fruits by use of a fermented broth of an ε-poly-l-lysine-producing Streptomyces strain. PLoS One 2022; 17:e0265457. [PMID: 35294498 PMCID: PMC8926194 DOI: 10.1371/journal.pone.0265457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
ε-Poly-l-lysine (ε-PL) is a natural antimicrobial polymer with significant inhibitory activity against a broad spectrum of microorganisms, and nowadays used widely as a preservative in the food industry. In the present study, ε-PL broth was obtained from Streptomyces ahygroscopicus GIM8 fermentation in a nutrient-limited liquid medium. The in vitro antifungal activity of the broth against fruit pathogens Penicillium expansum and Colletotrichum gloeosporioides was investigated, and its usage for postharvest storage of two highly perishable fruits wax apple and guava was evaluated. Results showed that ε-PL concentration in the broth reached 0.61 g/L, and the nutrition level of the broth was low. The antifungal activity of ε-PL broth was comparable to that of the aqueous solution of ε-PL under the same concentration. Immersion with the diluted broth (200 mg/L ε-PL) markedly delayed the decline in the quality of postharvest wax apple and guava fruits during storage, and the decay incidences were also greatly decreased as compared to their respective controls (distilled water immersion). A further investigation demonstrated that the ε-PL broth immersion induced an increase in the activity of defense-related enzymes peroxidase and polyphenol oxidase in the two fruits during storage. The present study proved that the fermentation broth of ε-PL could be used as a promising alternative to high purity ε-PL and synthetic fungicides for preserving fruits at postharvest stage.
Collapse
Affiliation(s)
- Jian-Ling Bai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui-Hui Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ju-Mei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing-Ping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shu-Ping Mo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying-Long He
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shao-Quan Weng
- Guangzhou Wanglaoji Great Health Industry Co. Ltd., Guangzhou, China
| | - Xiao-Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ci-Zhou Li
- Guangzhou Wanglaoji Great Health Industry Co. Ltd., Guangzhou, China
| |
Collapse
|
28
|
Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. J Colloid Interface Sci 2022; 608:1813-1826. [PMID: 34742090 DOI: 10.1016/j.jcis.2021.10.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility. CNGs possess superior bacteriostatic effects against drug-resistant bacteria compared to some commonly explored antibacterial nanomaterials (silver, copper oxide, and zinc oxide nanoparticles, and graphene oxide) through multiple antimicrobial mechanisms, including reactive oxygen species generation, membrane potential dissipation, and membrane function disruption, due to the positive charge and flexible colloidal structures resulting strong interaction with bacterial membrane. The minimum inhibitory concentration (MIC) values of the CNGs (0.6 µg mL-1 against E. coli and S. aureus) remained almost the same against the bacteria after 20 passages; however, the MIC values increased significantly after treatment with silver nanoparticles, antibiotics, the bacteriostatic chlorhexidine, and especially gentamicin (approximately 140-fold). Additionally, the CNGs showed a negligible MIC value difference against the obtained resistant bacteria after acclimation to the abovementioned antimicrobial agents. The findings of this study unveil the development of antimicrobial CNGs as a sustainable solution to combat multidrug-resistant bacteria.
Collapse
|
29
|
Feng K, Xie X, Yuan J, Gong L, Zhu Z, Zhang J, Li H, Yang Y, Wang Y. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment. J Extracell Vesicles 2021; 10:e12160. [PMID: 34724347 PMCID: PMC8559985 DOI: 10.1002/jev2.12160] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) possess a great therapeutical potential for osteoarthritis (OA) treatment. However, the steric and electrostatic hindrance of cartilage matrix leads to very limited distribution of MSC-sEVs in cartilage and low bioavailability of MSC-sEVs after intra-articular injection. To overcome this, a strategy to reverse the surface charge of MSC-sEVs by modifying the MSC-sEVs with a novel cationic amphiphilic macromolecule namely ε-polylysine-polyethylene-distearyl phosphatidylethanolamine (PPD) was developed in this study. Through incubation with 100 μg/ml PPD, positively charged MSC-sEVs (PPD-sEVs) were obtained, and the modification process showed nearly no disturbance to the integrity and contents of sEVs and exhibited good stability under the interference of anionic macromolecules. A more effective cellular uptake and homeostasis modulation ability of PPD-sEVs than unmodified MSC-sEVs to chondrocytes was demonstrated. More importantly, PPD-sEVs demonstrated significantly enhanced cartilage uptake, cartilage penetration, and joint retention capacity as compared to MSC-sEVs. Intra-articular injection of PPD-sEVs into a mouse OA model showed significantly improved bioavailability than MSC-sEVs, which resulted in enhanced therapeutic efficacy with reduced injection frequency. In general, this study provides a facile and effective strategy to improve the intra-articular bioavailability of MSC-sEVs and has a great potential to accelerate the clinical practice of MSC-sEVs based OA therapy.
Collapse
Affiliation(s)
- Kai Feng
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xuetao Xie
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ji Yuan
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Liangzhi Gong
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhaochen Zhu
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Juntao Zhang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haiyan Li
- Chemical and Environmental EngineeringSchool of EngineeringRMIT UniversityMelbourneAustralia
| | - Yunlong Yang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
30
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
31
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Chang SL, Li H, Liu JN, Zhao MX, Tan MH, Xu PW, Wang XD, Wang LW, Yuan XF, Zhao QS, Zhao B. Effect of hydrogen peroxide treatment on the quality of epsilon-poly-L-lysine products. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Li W, Lv J, Dong T, Li X, Li X, Tan Z, Jia S. Effects of Amino Acids and Overexpression of dapA Gene on the Production of ε-Poly-L-lysine by Streptomyces diastatochromogenes Strains. Curr Microbiol 2021; 78:2640-2647. [PMID: 33991200 DOI: 10.1007/s00284-021-02510-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
In this study, the strain Streptomyces diastatochromogenes 6#-7, which efficiently synthesizes ε-Poly-L-lysine, was studied and the effects of 18 amino acids and overexpression of dapA gene on the fermentation efficiency of ε-PL by S. diastatochromogenes were investigated. It was shown that L-proline, L-lysine, L-isoleucine, and L-threonine could promote the production of ε-PL. Moreover, the overexpression of the dihydrodipicolinate synthase gene (dapA) helped improve the fermentation performance of S. diastatochromogenes. The maximum ε-PL yield of the overexpressing strain (S. diastatochromogenes 12#-2) increased by 17.5% compared with the original strain in 500 mL shake flask. When the fermentation was conducted in a 5-L fermenter, the fermentation duration was extended by 48 h, and ε-PL yield reached 30.54 g/L, which was a 19.8% increase compared to the original strain. The results of this study offered a promising approach to augment the production of ε-PL from Streptomyces, thus paving the way to reduce the cost of product ε-PL and enhance the fermentation efficiency of ε-PL production.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Junge Lv
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tianyu Dong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xinying Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaona Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
34
|
Qian YF, Cheng Y, Ye JX, Zhao Y, Xie J, Yang SP. Targeting shrimp spoiler Shewanella putrefaciens: Application of ε-polylysine and oregano essential oil in Pacific white shrimp preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Chen S, Huang S, Li Y, Zhou C. Recent Advances in Epsilon-Poly-L-Lysine and L-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications. Front Chem 2021; 9:659304. [PMID: 33869146 PMCID: PMC8044885 DOI: 10.3389/fchem.2021.659304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
With the advantages in biocompatibility, antimicrobial ability, and comparative facile synthesis technology, poly-L-lysine (PLL) has received considerable attention in recent years. Different arrangement forms and structures of the backbone endow lysine-based polymers with versatile applications, especially for ε-poly-L-lysine (EPL) and lysine-based dendrimer (LBD) compounds. This review summarized the advanced development of the synthesis and modification strategies of EPL and LBD, focus on the modification of bio-synthesis and artificial synthesis, respectively. Meanwhile, biomedical fields, where EPL and LBD are mainly utilized, such as agents, adjuvants, or carriers to anti-pathogen or used in tumor or gene therapies, are also introduced. With the deeper of knowledge of pharmacodynamics and pharmacokinetics of the drug system, the design and synthesis of these drugs can be further optimized. Furthermore, the performances of combination with other advanced methodologies and technologies demonstrated that challenges, such as scale production and high expenses, will not hinder the prospective future of lysine-based polymers.
Collapse
Affiliation(s)
| | | | - Yan Li
- School of Material Science and Engineering, Tongji University, Shanghai, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Tuersuntuoheti T, Wang Z, Zhang M, Li M, Wang K, Liang S, Wang Z, Ren X, Sohail A. Combination use of the microwave irradiation and preservatives effect on the shelf life and quality of Qingke barley fresh noodles stored at low temperature. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuohetisayipu Tuersuntuoheti
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Zhenhua Wang
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Min Zhang
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Meng Li
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Kaiyun Wang
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Shan Liang
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Ziyuan Wang
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xin Ren
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Amjad Sohail
- School of Food and Health Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
37
|
Martínez-Ramos AR, Ibarra-Sánchez LA, Amaya-Llano SL, Miller MJ. Evaluation of combinations of nisin, lauric arginate, and ε-polylysine to control Listeria monocytogenes in queso fresco. J Dairy Sci 2020; 103:11152-11162. [DOI: 10.3168/jds.2020-19001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022]
|
38
|
Effects of chitosan and sodium alginate active coatings containing ε-polysine on qualities of cultured pufferfish (Takifugu obscurus) during cold storage. Int J Biol Macromol 2020; 160:418-428. [DOI: 10.1016/j.ijbiomac.2020.05.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
|
39
|
Tuersuntuoheti T, Wang Z, Wang Z, Duan M, Zheng Y, Wu Y, Liang S, Li X, Zhang M. Microbes, bioactive compounds, quality characteristics, and structural changes during the storage of Qingke barley fresh noodles. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Zhenhua Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Ziyuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Mengjie Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Yanyan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Yan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xinping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|