1
|
Li Y, Wang Y, Luo YL, Bai DQ, Zhang G, Wang JR, Wei H, Li S. Epinecidin-1 and lactic acid synergistically inhibit Aeromonas hydrophila through membrane disruption. Microb Pathog 2024; 196:106879. [PMID: 39218372 DOI: 10.1016/j.micpath.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Epinecidin-1 (Epi-1) is an antimicrobial peptide originated from fish with various pharmacological activities but carries the risk of acquiring resistance with long-term use. In the present study, we use L-lactic acid to enhance the antibacterial activity of synthesized Epi-1 against the aquaculture and food pathogen Aeromonas hydrophila. The results showed that 5.5 mmol/L lactic acid increased the inhibitory and bactericidal activity of 25 μmol/L Epi-1 against two strains of A. hydrophila. The laser confocal images proved that lactic acid pre-treatment improved the attachment efficiency of Epi-1 in A.hydrophila cells. In addition, lactic acid enhanced the damaging effect of Epi-1 on the cell membrane of A. hydrophila, evidenced by releasing more nucleic acids, proteins, and transmembrane pH ingredients decrease and electromotive force dissipation. SEM images showed that compared with the single Epi-1 treatment, the co-treatment of Epi-1 and lactic acid caused more outer membrane vesicles (OMVs) and more severe cell deformation. These findings proved that lactic acid could enhance the efficiency of Epi-1 against A. hydrophila and shed light on new aspects to avoid resistance of pathogens against Epi-1.
Collapse
Affiliation(s)
- Yanzi Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Yang Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Yun-Long Luo
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Dong-Qing Bai
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Guangchen Zhang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Jing-Ru Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China
| | - Hongshuo Wei
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Shufang Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| |
Collapse
|
2
|
Davoudi M, Gavlighi HA, Javanmardi F, Benjakul S, Nikoo M. Antimicrobial peptides derived from food byproducts: Sources, production, purification, applications, and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13422. [PMID: 39245910 DOI: 10.1111/1541-4337.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Food wastes can be a valuable reservoir of bioactive substances that can serve as natural preservatives in foods or as functional ingredients with potential health benefits. The antimicrobial properties of protein hydrolysates, especially antimicrobial peptides (AMPs) derived from food byproducts (FBs), have been extensively explored. These protein fragments are defined by their short length, low molecular weight, substantial content of hydrophobic and basic amino acids, and positive net charge. The intricate mechanisms by which these peptides exert their antimicrobial effects on microorganisms and pathogens have been elaborately described. This review also focuses on techniques for producing and purifying AMPs from diverse FBs, including seafood, livestock, poultry, plants, and dairy wastes. According to investigations, incorporating AMPs as additives and alternatives to chemical preservatives in food formulations and packaging materials has been pursued to enhance both consumer health and the shelf life of foods and their products. However, challenges associated with the utilization of AMPs derived from food waste depend on their interaction with the food matrix, acceptability, and commercial viability. Overall, AMPs can serve as alternative safe additives, thereby ensuring the safety and prolonging the storage duration of food products based on specific regulatory approvals as recommended by the respective safety authorities.
Collapse
Affiliation(s)
- Mahshad Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Sheoran P, Yadav MK, Kumari I, Tiwari SK. Enterocin LD3 from Enterococcus hirae LD3 Inhibits the Growth of Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311 in Fruit Juice. Probiotics Antimicrob Proteins 2024; 16:1205-1213. [PMID: 37330452 DOI: 10.1007/s12602-023-10108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
In order to prevent the growth of pathogens in food, bacteriocins produced by various probiotic lactic acid bacteria have been recognized as potential substitutes of chemical preservatives. In this study, enterocin LD3 was purified from the cell-free supernatant of a food isolate, Enterococcus hirae LD3 using multistep chromatography. In the fruit juice, lethal concentration (LC50) of enterocin LD3 was found to be 260 µg/mL against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The cells treated with enterocin LD3 were red colour indicating dead cells after propidium iodide staining, while untreated cells were found blue after staining with 4', 6-diamidino-2-phenylindole. The mechanism of cell killing was analyzed using infrared spectrum of cells treated with enterocin LD3 which was found altered in the range of 1,094.30 and 1,451.82 cm-1 corresponding to nucleic acids and phospholipids, respectively. The morphology of target cells were severely ruptured and lysed as observed under electron microscopy. Thus, the present study suggested that enterocin LD3 showed bactericidal activity against Salm. enterica subsp. enterica serovar Typhimurium ATCC 13311 and may be applied as a bio-preservative for the safety of fruit juices.
Collapse
Affiliation(s)
- Poonam Sheoran
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Manoj Kumar Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Indu Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
4
|
Gibisch M, Müller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G. A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 2024; 23:166. [PMID: 38840157 PMCID: PMC11155123 DOI: 10.1186/s12934-024-02446-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.
Collapse
Affiliation(s)
- Martin Gibisch
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Matthias Müller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
5
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Zhang ZL, Meng YQ, Li JJ, Zhang XX, Li JT, Xu JR, Zheng PH, Xian JA, Lu YP. Effects of antimicrobial peptides from dietary Hermetia illucens larvae on the growth, immunity, gene expression, intestinal microbiota and resistance to Aeromonas hydrophila of juvenile red claw crayfish (Cherax quadricarinatus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109437. [PMID: 38360192 DOI: 10.1016/j.fsi.2024.109437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.
Collapse
Affiliation(s)
- Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Yong-Qi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
7
|
León Madrazo A, Segura Campos MR. Antibacterial properties of peptides from chia (Salvia hispanica L.) applied to pork meat preservation. J Food Sci 2023; 88:4194-4217. [PMID: 37655475 DOI: 10.1111/1750-3841.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Chia-derived peptides might represent a novel alternative to conventional preservatives in food. Despite the antibacterial potential of these molecules, their food application is still limited. This study aimed to evaluate chia-derived peptides' antibacterial and antibiofilm potential in food preservation. The peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were synthesized, and their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella Enteritidis was evaluated through microdilution tests. A bacterial killing kinetic assay determined bacterial growth over time. The ability to prevent and eradicate S. aureus biofilm was assessed by crystal violet staining. The hemolytic and cytotoxic activities were determined in human red blood cells and fibroblasts using free hemoglobin detection and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays, respectively. Finally, a microbial challenge was performed on meat samples inoculated with L. monocytogenes and S. Enteritidis to determine their inhibitory effects on pork meat. Results showed the potential antibacterial activity of these peptides, with minimum inhibitory concentrations ranging from 0.23 to 5.58 mg/mL. Biofilm inhibition percentages were above 40%, and eradication percentages were lower than 20%. In vitro assays in human red blood cells and fibroblasts demonstrated that peptides are not hemolytic or cytotoxic agents. In microbiological challenge testing, KKLLKI showed the most promising antibacterial effects against S. Enteritidis on refrigerated pork meat samples. These findings suggest that chia-derived peptides have the potential as natural food preservatives due to their antibacterial and antibiofilm properties. Notably, KKLLKI demonstrated promising antibacterial effects against Salmonella spp. on a complex food matrix, such as pork meat. PRACTICAL APPLICATION: Chia-derived peptides can be a safer alternative to synthetic preservatives in the food industry because the latter may be detrimental to human health. Salmonella spp. growth on chilled pork meat was shown to be inhibited by the peptide KKLLKI, indicating that the use of these peptides may offer a more secure and natural alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Anaí León Madrazo
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Merida, Mexico
| | | |
Collapse
|
8
|
Cashman-Kadri S, Lagüe P, Fliss I, Beaulieu L. Assessing the Activity under Different Physico-Chemical Conditions, Digestibility, and Innocuity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof. Antibiotics (Basel) 2023; 12:1410. [PMID: 37760707 PMCID: PMC10525732 DOI: 10.3390/antibiotics12091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial activity of SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four chemical analogs thereof was determined under different physicochemical conditions, including different pH values, the presence of monovalent and divalent cations, and after a heating treatment. The toxicity of these five peptides was also studied with hemolytic activity assays, while their stability under human gastrointestinal conditions was evaluated using a dynamic in vitro digestion model and chromatographic and mass spectrometric analyses. The antibacterial activity of all analogs was found to be inhibited by the presence of divalent cations, while monovalent cations had a much less pronounced impact, even promoting the activity of the native SJGAP. The peptides were also more active at acidic pH values, but they did not all show the same stability following a heat treatment. SJGAP and its analogs did not show significant hemolytic activity (except for one of the analogs at a concentration equivalent to 64 times that of its minimum inhibitory concentration), and the two analogs whose digestibility was studied degraded very rapidly once they entered the stomach compartment of the digestion model. This study highlights for the first time the characteristics of antimicrobial peptides from Scombridae or homologous to GAPDH that are directly related to their potential clinical or food applications.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC G1V 0A6, Canada;
- Institute for Integrative Systems Biology, Department of Biochemistry, Microbiology and Bio-Informatics, Pavillon, Alexandre-Vachon, Université Laval, 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Branco P, Maurício EM, Costa A, Ventura D, Roma-Rodrigues C, Duarte MP, Fernandes AR, Prista C. Exploring the Multifaceted Potential of a Peptide Fraction Derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, Antioxidant, Antidiabetic, and Anti-Inflammatory Properties. Antibiotics (Basel) 2023; 12:1332. [PMID: 37627752 PMCID: PMC10451726 DOI: 10.3390/antibiotics12081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through α-amylase and α-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 ± 32.5 µM TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNFα gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes α-amylase (IC50 of 199.3 ± 0.9 µg/mL) and α-glucosidase (IC20 of 270.6 ± 6.0 µg/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.
Collapse
Affiliation(s)
- Patrícia Branco
- School of Engineering, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Elisabete Muchagato Maurício
- School of Engineering, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Elisa Câmara, Lda, Dermocosmética, Centro Empresarial de Talaíde, n°7 e 8, 2785-723 São Domingos de Rana, Portugal
| | - Ana Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Diogo Ventura
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO—Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Paula Duarte
- MEtRICs, Departamento de Química, NOVA School of Science and Technology|FCTNOVA, Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO—Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
10
|
Sadeghi A, Katouzian I, Ebrahimi M, Assadpour E, Tan C, Jafari SM. Bacteriocin-like inhibitory substances as green bio-preservatives; nanoliposomal encapsulation and evaluation of their in vitro/in situ anti-Listerial activity. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
13
|
Antibacterial Peptide NP-6 Affects Staphylococcus aureus by Multiple Modes of Action. Int J Mol Sci 2022; 23:ijms23147812. [PMID: 35887160 PMCID: PMC9319634 DOI: 10.3390/ijms23147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular β-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.
Collapse
|
14
|
Rahman MRT, Fliss I, Biron E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics (Basel) 2022; 11:766. [PMID: 35740172 PMCID: PMC9219610 DOI: 10.3390/antibiotics11060766] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The overuse and misuse of antibiotics has contributed to the rise and spread of multidrug-resistant bacteria. To address this global public health threat, many countries have restricted the use of antibiotics as growth promoters and promoted the development of alternatives to antibiotics in human and veterinary medicine and animal farming. In food-animal production, acidifiers, bacteriophages, enzymes, phytochemicals, probiotics, prebiotics, and antimicrobial peptides have shown hallmarks as alternatives to antibiotics. This review reports the current state of these alternatives as growth-promoting factors for poultry and swine production and describes their mode of action. Recent findings on their usefulness and the factors that presently hinder their broader use in animal food production are identified by SWOT (strength, weakness, opportunity, and threat) analysis. The potential for resistance development as well as co- and cross-resistance with currently used antibiotics is also discussed. Using predetermined keywords, we searched specialized databases including Scopus, Web of Science, and Google Scholar. Antibiotic resistance cannot be stopped, but its spreading can certainly be hindered or delayed with the development of more alternatives with innovative modes of action and a wise and careful use of antimicrobials in a One Health approach.
Collapse
Affiliation(s)
- Md Ramim Tanver Rahman
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Eric Biron
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Québec, QC G1V 4G2, Canada
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
15
|
León Madrazo A, Segura Campos MR. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Comput Biol Chem 2022; 98:107695. [DOI: 10.1016/j.compbiolchem.2022.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
16
|
Hwang D, Lee SH, Goo TW, Yun EY. Potential of Antimicrobial Peptide-Overexpressed Tenebrio molitor Larvae Extract as a Natural Preservative for Korean Traditional Sauces. INSECTS 2022; 13:381. [PMID: 35447823 PMCID: PMC9027733 DOI: 10.3390/insects13040381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Here, we aimed to produce a natural food preservative using a crude extract from edible, immunized Tenebrio molitor larvae (iTME), injected with edible bacteria using an edible solvent. Results showed that iTME had concentration-dependent inhibitory activity against food-poisoning bacteria Escherichia coli, Bacillus cereus, and Staphylococcus aureus, as well as against harmful fungi Aspergillus flavus, Aspergillus parasiticus, and Pichia anomala. Moreover, iTME showed antimicrobial activity against beneficial microorganisms Bacillus subtilis and Aspergillus oryzae, but not Lactobacillus acidophilus. Furthermore, the minimum inhibitory concentration of iTME against E. coli, B. cereus, and S. aureus was 1 mg/mL, and iTME did not lose its inhibitory activity when treated at varying temperature, pH, and salinity. In addition, the antibacterial activity was lost after reacting the iTME with trypsin and chymotrypsin. The addition of iTME to Ganjang inoculated with harmful bacteria inhibited bacterial growth. Therefore, we propose that iTME can be used as a safe natural preservative to prolong food shelf life by inhibiting the growth of food-poisoning bacteria in a variety of foods, including traditional sauces.
Collapse
Affiliation(s)
- Dooseon Hwang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (S.H.L.)
| | - Seung Hun Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (S.H.L.)
| | - Tae-Won Goo
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38766, Korea;
| | - Eun-Young Yun
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (S.H.L.)
| |
Collapse
|
17
|
Chen H, Cai X, Cheng J, Wang S. Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Jongman M, Carmichael P, Loeto D, Gomba A. Advances in the use of biocontrol applications in preharvest and postharvest environments: A food safety milestone. J Food Saf 2021. [DOI: 10.1111/jfs.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Patricia Carmichael
- Department of Agricultural Research and Specialists Services Malkerns Eswatini
| | - Daniel Loeto
- Department of Biological Sciences University of Botswana Gaborone Botswana
| | - Annancietar Gomba
- National Institute for Occupational Health National Health Laboratory Service Johannesburg South Africa
| |
Collapse
|
19
|
Roupie C, Labat B, Morin-Grognet S, Echalard A, Ladam G, Thébault P. Dual-functional antibacterial and osteogenic nisin-based layer-by-layer coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112479. [PMID: 34857265 DOI: 10.1016/j.msec.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Implanted biomaterials can be regarded in a cornerstone in the domain of bone surgery. Their surfaces are expected to fulfil two particular requirements: preventing the settlement and the development of bacteria, and stimulating bone cells in view to foster osseointegration. Therefore, a modern approach consists in the design of dual functional coatings with both antibacterial and osteogenic features. To this end, we developed ultrathin Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes, and to confer them adequate mechanical properties with regards to bone cell behaviors. Antibacterial activity was obtained with nisin Z, an antimicrobial peptide (AMP), which is active against gram-positive bacteria. The coatings had a significant bactericidal impact upon Staphylococcus aureus, with fully maintained bone cell adhesion, proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Charlotte Roupie
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Béatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Aline Echalard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France.
| |
Collapse
|
20
|
Roupie C, Labat B, Morin-Grognet S, Thébault P, Ladam G. Nisin-based antibacterial and antiadhesive layer-by-layer coatings. Colloids Surf B Biointerfaces 2021; 208:112121. [PMID: 34600362 DOI: 10.1016/j.colsurfb.2021.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Some removable medical devices such as catheters and cardiovascular biomaterials require antiadhesive properties towards both prokaryotic and eukaryotic cells in order to prevent the tissues from infections upon implantation and, from alteration upon removal. In order to inhibit cell adhesion, we developed ultrathin hydrated Layer-by-Layer (LbL) coatings composed of biocompatible polyelectrolytes, namely chondroitin sulfate A (CSA) and poly-l-lysine (PLL). The coatings were crosslinked with genipin (GnP), a natural and biocompatible crosslinking agent, to increase their resistance against environmental changes. In order to confer antibacterial activity to the coatings, we proceeded to the electrostatically-driven immobilization of nisin Z, an antimicrobial peptide (AMP) active against gram-positive bacteria. The nisin-enriched coatings had a significantly increased anti-proliferative impact on fibroblasts, as well as a strong contact-killing activity against Staphylococcus aureus in the short and long term.
Collapse
Affiliation(s)
- Charlotte Roupie
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France; Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Béatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, Bd Maurice de Broglie, 76821 Mont Saint Aignan Cedex, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 55 rue Saint-Germain, 27000 Évreux, France.
| |
Collapse
|
21
|
Hwang D, Lim CH, Lee SH, Goo TW, Yun EY. Effect of Feed Containing Hermetia illucens Larvae Immunized by Lactobacillus plantarum Injection on the Growth and Immunity of Rainbow Trout ( Oncorhynchus mykiss). INSECTS 2021; 12:insects12090801. [PMID: 34564241 PMCID: PMC8467036 DOI: 10.3390/insects12090801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
Simple Summary In this study, we evaluated the effect on the growth and immunity of rainbow trout of a feed formulated using Hermetia illucens with increased antimicrobial peptides expression by Lactobacillus plantarum infection (ImHIL). As a result, growth and immunological indicators improved, and therefore, ImHIL is expected to become a good feed source for rainbow trout aquaculture. Abstract We investigated the effects of a feed containing Hermetia illucens larvae injected with bacteria on the growth and immunity of Oncorhynchus mykiss. The feed was prepared by replacing fishmeal in feed with 25 and 50% nonimmunized (HIL25, HIL50) or immunized HIL (ImHIL25, ImHIL50), and its protein:fat:carbohydrate ratio was 45:15:18. ImHIL extracts showed inhibitory activity against fish pathogenic bacteria. Both red blood cell count and insulin-like growth factor-1 as the growth indicator were the highest among the groups at week 6 after feeding in the ImHIL50 group. As immune indicators, blood aspartate aminotransferase levels were lower in the ImHIL25 and ImHIL50 groups than in that of other groups at week 6 after feeding, and lysozyme content was significantly higher in ImHIL25 and ImHIL50. The above results demonstrate that ImHIL has a beneficial effect on the improvement of growth and immunity. Accordingly, we suggest that ImHIL has the potential to be a good feed source in aquaculture.
Collapse
Affiliation(s)
- Dooseon Hwang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (C.-H.L.); (S.H.L.)
| | - Chae-Hwan Lim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (C.-H.L.); (S.H.L.)
| | - Seung Hun Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (C.-H.L.); (S.H.L.)
| | - Tae-Won Goo
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Eun-Young Yun
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Korea; (D.H.); (C.-H.L.); (S.H.L.)
- Correspondence: ; Tel.: +82-2-6935-2523
| |
Collapse
|
22
|
Gumienna M, Górna B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021; 26:3735. [PMID: 34207426 PMCID: PMC8234186 DOI: 10.3390/molecules26123735] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | | |
Collapse
|