1
|
Choochuay K, Kunhapan P, Puangpetch A, Tongsima S, Srisawasdi P, Sobhonslidsuk A, Sungkanuparph S, Biswas M, Sukasem C. Associations of PNPLA3 and LEP genetic polymorphisms with metabolic-associated fatty liver disease in Thai people living with human immunodeficiency virus. World J Hepatol 2024; 16:366-378. [PMID: 38577531 PMCID: PMC10989307 DOI: 10.4254/wjh.v16.i3.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The prevalence of metabolic-associated fatty liver disease (MAFLD) is a growing public health issue in people living with human immunodeficiency virus (PLWH). However, the pathophysiology of MAFLD is still unknown, and the role of genetic variables is only now becoming evident. AIM To evaluate the associations of gene-polymorphism-related MAFLD in PLWH. METHODS The study employed transient elastography with a controlled attenuation parameter ≥ 248 dB/m to identify MAFLD in patients from a Super Tertiary Hospital in central Thailand. Candidate single-nucleotide polymorphisms (SNPs) were genotyped using TaqMan® MGB probe 5' nuclease assays for seven MAFLD-related genes. Statistical analyses included SNP frequency analysis, Fisher's Exact and Chi-square tests, odds ratio calculations, and multivariable logistic regression. RESULTS The G-allele carriers of PNPLA3 (rs738409) exhibited a two-fold rise in MAFLD, increasing by 2.5 times in MAFLD with human immunodeficiency virus infection. The clinical features and genetic patterns imply that LEP rs7799039 A-allele carriers had a nine times (P = 0.001) more significant chance of developing aberrant triglyceride among PLWH. CONCLUSION The current study shows an association between PNPLA3 rs738409 and LEP rs7799039 with MAFLD in PLWH.
Collapse
Affiliation(s)
- Kanuengnit Choochuay
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Punna Kunhapan
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Apichaya Puangpetch
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somnuek Sungkanuparph
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Pharmacogenomics Clinic, Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
2
|
Liu C, Fang Z, Yang K, Ji Y, Yu X, Guo Z, Dong Z, Zhu T, Liu C. Identification and validation of cuproptosis-related molecular clusters in non-alcoholic fatty liver disease. J Cell Mol Med 2024; 28:e18091. [PMID: 38169083 PMCID: PMC10844703 DOI: 10.1111/jcmm.18091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.
Collapse
Affiliation(s)
- Changxu Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhihao Fang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Kai Yang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yanchao Ji
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoxiao Yu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - ZiHao Guo
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhichao Dong
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tong Zhu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Beijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Chang Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
3
|
Yamamoto R, Takeshita Y, Tsujiguchi H, Kannon T, Sato T, Hosomichi K, Suzuki K, Kita Y, Tanaka T, Goto H, Nakano Y, Yamashita T, Kaneko S, Tajima A, Nakamura H, Takamura T. Nutrigenetic interaction between apolipoprotein C3 polymorphism and fat intake in people with non-alcoholic fatty liver disease. Curr Dev Nutr 2023. [DOI: 10.1016/j.cdnut.2023.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
4
|
Manco M, Crudele A, Mosca A, Caccamo R, Braghini MR, De Vito R, Alterio A, Pizzolante F, De Peppo F, Alisi A. LncOb rs10487505 variant is associated with leptin levels in pediatric non-alcoholic fatty liver disease. Pediatr Res 2022; 92:1737-1743. [PMID: 35354928 DOI: 10.1038/s41390-022-02032-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low and high leptin levels are associated with non-alcoholic fatty liver disease (NAFLD). The LncOb rs10487505 variant has been associated with body mass index (BMI), and the C allele was reported as leptin-lowering. We evaluated the association of rs10487505 with leptin levels, liver histology, and surgery-induced weight loss in youths with NAFLD. METHODS One-hundred five obese youths with NAFLD, of whom 19 undergoing laparoscopic sleeve gastrectomy (LSG), were analyzed for rs10487505 and leptin circulating levels. RESULTS The G allele frequency was lower in youths with NAFLD than in controls (p = 0.049). No difference was found in anthropometrics, biochemistry and histology between G allele carriers and CC homozygotes, except for leptin levels (p = 0.016). Leptin correlated with body weight, BMI, BMI-z score, waist circumference, insulin resistance/sensitivity, and triglycerides (p ≤ 0.01). A multivariable regression model including body weight and homeostasis model assessment of insulin resistance was a good predictor of plasma leptin (R2 = 0.45), and the addition of genotype to the model increased the R2 to 0.50. Following LSG, leptin levels and body weight were more reduced in G allele carriers (p < 0.05). CONCLUSIONS LncOb rs10487505 variant was associated with pediatric NAFLD and high leptin levels, and with weight and leptin reduction after LSG in youths. IMPACT The interplay of environment, genetics and epigenetics is crucial inflating the risk of non-alcoholic fatty liver disease (NAFLD). Several long non-coding RNA (LncRNAs) are found associated with NAFLD pathogenesis. Here, we evaluated the impact of the genetic variant rs10487505 in LncOb which is involved in the regulation of leptin gene expression. The LncOb rs10487505 is associated with increased levels of leptin, but not with liver histology, in youths with NAFLD. The LncOb rs10487505 was also associated with the significant decrease of leptin and body weight after bariatric surgery.
Collapse
Affiliation(s)
- Melania Manco
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Annalisa Crudele
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Mosca
- Hepatology, Gastroenterology and Nutrition Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romina Caccamo
- Pediatric Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Rita Braghini
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita De Vito
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Alterio
- Hepatology, Gastroenterology and Nutrition Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabrizio Pizzolante
- U.O.C. Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Francesco De Peppo
- Pediatric Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Han D, Zhang H, Liu S, Zhuang L, Zhao Z, Ding H, Xin Y. Association between the LRP5 rs556442 gene polymorphism and the risks of NAFLD and CHD in a Chinese Han population. BMC Gastroenterol 2022; 22:305. [PMID: 35733105 PMCID: PMC9219200 DOI: 10.1186/s12876-022-02385-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Background Multiple studies have demonstrated the involvement of low-density lipoprotein receptor-related protein 5 (LRP5) in metabolism-related diseases. This study explored the relationship between the LRP5 rs556442 gene polymorphism and the risks of non-alcoholic fatty liver disease (NAFLD) and coronary heart disease (CHD) in a Chinese Han population. Methods This retrospective case–control study included 247 patients with NAFLD, 200 patients with CHD, 118 patients with both NAFLD and CHD, and 339 healthy controls from June 2018 to June 2019 at Qingdao Municipal Hospital. Basic information and clinical characteristics were collected for all subjects. The genotype and allele frequency of LRP5 rs556442 were determined. Results The genotype distributions of LRP5 rs556442 differed significantly between the CHD and NAFLD + CHD groups (P < 0.05). The LRP5 rs556442 GG genotype markedly promoted the risk of NAFLD in CHD patients [odds ratio (OR) = 2.857, 95% confidence interval (CI): 1.196–6.824, P = 0.018). After adjustment for sex, age, and body mass index (BMI), this association remained significant (OR = 3.252, 95% CI: 1.306–8.102, P = 0.011). In addition, the LRP5 rs556442 AA + AG genotype was associated with an increased BMI in obese NAFLD patients (OR = 1.526, 95% CI: 1.004–2.319, P = 0.048). However, after adjustment for sex and age, this association was no longer significant (OR = 1.504, 95% CI: 0.991–2.282, P = 0.055). Conclusions This study found that the LRP5 rs556442 GG genotype increased the risk of NAFLD in CHD patients and AA + AG genotype may be associated with an increased BMI in obese NAFLD patients among a Chinese Han population. Trial registration ChiCTR, ChiCTR1800015426. Registered 28 March 2018—Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=26239.
Collapse
Affiliation(s)
- Dongli Han
- Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China.,Department of Gastroenterology, Zhumadian Central Hospital, Zhumadian, China
| | - Haiying Zhang
- Health Management Center, Qingdao Central Hospital, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Likun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Zhenzhen Zhao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Hongguang Ding
- Second Department of General Surgery, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China.
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266011, Shandong Province, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, China.
| |
Collapse
|
6
|
Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort ☆. J Hepatol 2020; 73:505-515. [PMID: 32298765 DOI: 10.1016/j.jhep.2020.04.003] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most genome-wide association studies (GWASs) have adopted radiologically assessed hepatic triglyceride content as the reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a GWAS encompassing the full spectrum of histologically characterised NAFLD. METHODS The GWAS involved 1,483 European NAFLD cases and 17,781 genetically matched controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance. RESULTS Case-control analysis identified signals showing p values ≤5 × 10-8 at 4 locations (chromosome [chr] 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with 2 other signals with p <1 × 10-7 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits showed that the PNPLA3 signal (rs738409) had genome-wide significance for steatosis, fibrosis and NAFLD activity score and a new signal (PYGO1 rs62021874) had close to genome-wide significance for steatosis (p = 8.2 × 10-8). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR single nucleotide polymorphism also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chr2, chr19 and chr22 maintained their genome-wide significance. Except for GCKR/C2ORF16, the genome-wide significance signals were replicated. CONCLUSIONS This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting that Wnt signalling pathways may be relevant in NAFLD pathogenesis. LAY SUMMARY Non-alcoholic fatty liver disease is a common disease where excessive fat accumulates in the liver and may result in cirrhosis. To understand who is at risk of developing this disease and suffering liver damage, we undertook a genetic study to compare the genetic profiles of people suffering from fatty liver disease with genetic profiles seen in the general population. We found that particular sequences in 4 different areas of the human genome were seen at different frequencies in the fatty liver disease cases. These sequences may help predict an individual's risk of developing advanced disease. Some genes where these sequences are located may also be good targets for future drug treatments.
Collapse
|
7
|
Saki S, Saki N, Poustchi H, Malekzadeh R. Assessment of Genetic Aspects of Non-alcoholic Fatty Liver and Premature Cardiovascular Events. Middle East J Dig Dis 2020; 12:65-88. [PMID: 32626560 PMCID: PMC7320986 DOI: 10.34172/mejdd.2020.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has demonstrated a strong interplay and multifaceted relationship between non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). CVD is the major cause of death in patients with NAFLD. NAFLD also has strong associations with diabetes and metabolic syndrome. In this comprehensive review, we aimed to overview the primary environmental and genetic risk factors of NAFLD, and CVD and also focus on the genetic aspects of these two disorders. NAFLD and CVD are both heterogeneous diseases with common genetic and molecular pathways. We have searched for the latest published articles regarding this matter and tried to provide an overview of recent insights into the genetic aspects of NAFLD and CVD. The common genetic and molecular pathways involved in NAFLD and CVD are insulin resistance (IR), subclinical inflammation, oxidative stress, and atherogenic dyslipidemia. According to an investigation, the exact associations between genomic characteristics of NAFLD and CVD and casual relationships are not fully determined. Different gene polymorphisms have been identified as the genetic components of the NAFLDCVD association. Some of the most documented ones of these gene polymorphisms are patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), adiponectin-encoding gene (ADIPOQ), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), leptin receptor (LEPR), sterol regulatory element-binding proteins (SREBP), tumor necrosis factor-alpha (TNF-α), microsomal triglyceride transfer protein (MTTP), manganese superoxide dismutase (MnSOD), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), and mutation in DYRK1B that substitutes cysteine for arginine at position 102 in kinase-like domain. Further cohort studies with a significant sample size using advanced genomic assessments and next-generation sequencing techniques are needed to shed more light on genetic associations between NAFLD and CVD.
Collapse
Affiliation(s)
- Sara Saki
- Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saki
- Hoveizeh Cohort Study, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.
Collapse
|
9
|
Zhao Z, Peng W, Zhou J, Zhou Y, Liu T, Bai H, Wu Q, Song J, Wu L, Song X, Ying B. Association of LEPR polymorphisms with predisposition and inflammatory response in anti-tuberculosis drug-induced liver injury: A pilot prospective investigation in Western Chinese Han population. INFECTION GENETICS AND EVOLUTION 2019; 75:103970. [DOI: 10.1016/j.meegid.2019.103970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
|
10
|
Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173104. [PMID: 31455011 PMCID: PMC6747357 DOI: 10.3390/ijerph16173104] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
New evidence suggests that non-alcoholic fatty liver disease (NAFLD) has a strong multifaceted relationship with diabetes and metabolic syndrome, and is associated with increased risk of cardiovascular events, regardless of traditional risk factors, such as hypertension, diabetes, dyslipidemia, and obesity. Given the pandemic-level rise of NAFLD—in parallel with the increasing prevalence of obesity and other components of the metabolic syndrome—and its association with poor cardiovascular outcomes, the question of how to manage NAFLD properly, in order to reduce the burden of associated incident cardiovascular events, is both timely and highly relevant. This review aims to summarize the current knowledge of the association between NAFLD and cardiovascular disease, and also to discuss possible clinical strategies for cardiovascular risk assessment, as well as the spectrum of available therapeutic strategies for the prevention and treatment of NAFLD and its downstream events.
Collapse
|
11
|
Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2018; 8:390-402. [PMID: 30564000 PMCID: PMC6286466 DOI: 10.1016/j.jceh.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) constitutes a wide spectrum of liver pathology with hepatic steatosis at the core of this pathogenesis. Variations of certain genetic components have demonstrated increased susceptibility for hepatic steatosis. Therefore, these inciting variants must be further characterized in order to ultimately provide effective, targeted therapies for NAFLD and will be the focus of this review. Several genetic variants revealed an association with NAFLD through Genome-wide Association Study, meta-analyses, and retrospective case-control studies. PNPLA3 rs738409 and TM6SF2 rs58542926 are the two genetic variants providing the strongest evidence for association with NAFLD. However, it remains to be determined if these genetic variants serve as the primary culprit which induces the pathogenesis of NAFLD. Prospective and intervention studies are urgently needed to firmly establish a cause-and-effect relationship between the presence of certain genetic variants and risk of NAFLD development and progression.
Collapse
Key Words
- 1H-MRS, Proton Magnetic Resonance Spectroscopy
- ACC2, Acetyl-CoA Carboxylase 2
- ACLY, ATP Citrate Lyase
- BMI, Body Mass Index
- CK-18, Cytokeratin 18
- CT, Computed Tomography
- FASN, Fatty Acid Synthase
- GWAS, Genome-wide Association Study
- HCC, Hepatocellular Carcinoma
- LT, Liver Transplantation
- NAFLD, Nonalcoholic Fatty Liver Disease
- NASH, Nonalcoholic Steatohepatitis
- SCD1, Stearoyl-CoA Desaturase 1
- SNP, Single Nucleotide Polymorphism
- US, Ultrasonography
- epigenetics
- genetic polymorphisms
- genetic variants
- miRNA, MicroRNA
- nonalcoholic fatty liver disease
- single nucleotide polymorphisms
Collapse
Affiliation(s)
- Alexander J. Kovalic
- Wake Forest Baptist Medical Center, Department of Internal Medicine, Winston-Salem, NC, United States
| | - Pratik Banerjee
- University of Memphis, School of Public Health, Division of Epidemiology, Biostatistics, and Environmental Health, Memphis, TN, United States
| | - Quynh T. Tran
- University of Tennessee Health Science Center, Department of Preventive Medicine, Memphis, TN, United States
| | - Ashwani K. Singal
- University of Alabama at Birmingham, Department of Medicine, Division of Gastroenterology and Hepatology, Birmingham, AL, United States
| | - Sanjaya K. Satapathy
- University of Tennessee Health Science Center, Methodist University Hospital Transplant Institute, Memphis, TN, United States
| |
Collapse
|
12
|
Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PLoS One 2018; 13:e0192606. [PMID: 29447215 PMCID: PMC5813940 DOI: 10.1371/journal.pone.0192606] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.
Collapse
|
13
|
Metwally M, Eslam M, George J. Genetic and Epigenetic Associations of NAFLD: Focus on Clinical Decision Making. CURRENT HEPATOLOGY REPORTS 2017; 16:335-345. [DOI: 10.1007/s11901-017-0372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
14
|
Saroha V, Dellschaft NS, Keisler DH, Gardner DS, Budge H, Sebert SP, Symonds ME. Tissue cell stress response to obesity and its interaction with late gestation diet. Reprod Fertil Dev 2017; 30:430-441. [PMID: 28768569 DOI: 10.1071/rd16494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/08/2017] [Indexed: 12/31/2022] Open
Abstract
Intrauterine growth restriction in late pregnancy can contribute to adverse long-term metabolic health in the offspring. In the present study we used an animal (sheep) model of maternal dietary manipulation in late pregnancy, combined with exposure of the offspring to a low-activity, obesogenic environment after weaning, to characterise the effects on glucose homeostasis. Dizygotic twin-pregnant sheep were either fed to 60% of requirements (nutrient restriction (R)) or fed ad libitum (~140% of requirements (A)) from 110 days gestation until term (~147 days). After weaning (~3 months of age), the offspring were kept in either a standard (in order to remain lean) or low-activity, obesogenic environment. R mothers gained less weight and produced smaller offspring. As adults, obese offspring were heavier and fatter with reduced glucose tolerance, regardless of maternal diet. Molecular markers of stress and autophagy in liver and adipose tissue were increased with obesity, with gene expression of hepatic glucose-related protein 78 (Grp78) and omental activation transcription factor 6 (Atf6), Grp78 and ER stress degradation enhancer molecule 1 (Edem1) only being increased in R offspring. In conclusion, the adverse effect of juvenile-onset obesity on insulin-responsive tissues can be amplified by previous exposure to a suboptimal nutritional environment in utero, thereby contributing to earlier onset of insulin resistance.
Collapse
Affiliation(s)
- Vivek Saroha
- Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Neele S Dellschaft
- Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Duane H Keisler
- Department of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Nottingham LE12 5RD, UK
| | - Helen Budge
- Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sylvain P Sebert
- Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael E Symonds
- Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
15
|
New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell 2017. [PMID: 28643267 PMCID: PMC5818366 DOI: 10.1007/s13238-017-0436-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and a significant global health problem with substantial rise in prevalence over the last decades. It is becoming increasingly clear that NALFD is not only predominantly a hepatic manifestation of metabolic syndrome, but also involves extra-hepatic organs and regulatory pathways. Therapeutic options are limited for the treatment of NAFLD. Accordingly, a better understanding of the pathogenesis of NAFLD is critical for gaining new insight into the regulatory network of NAFLD and for identifying new targets for the prevention and treatment of NAFLD. In this review, we emphasize on the current understanding of the inter-organ crosstalk between the liver and peripheral organs that contributing to the pathogenesis of NAFLD.
Collapse
|
16
|
Umano GR, Martino M, Santoro N. The Association between Pediatric NAFLD and Common Genetic Variants. CHILDREN-BASEL 2017. [PMID: 28629152 PMCID: PMC5483624 DOI: 10.3390/children4060049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of obesity. Several studies have shown that genetic predisposition probably plays an important role in its pathogenesis. In fact, in the last few years a large number of genetic studies have provided compelling evidence that some gene variants, especially those in genes encoding proteins regulating lipid metabolism, are associated with intra-hepatic fat accumulation. Here we provide a comprehensive review of the gene variants that have affected the natural history of the disease.
Collapse
Affiliation(s)
- Giuseppina Rosaria Umano
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento della Donna, del Bambino, di Vhirurgia Generale e Specialistica, Universita' della Campania Luigi Vanvitelli, 80138, Napoli, Italy.
| | - Mariangela Martino
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento di Medicina V. Tiberio, Universita' del Molise, 86100, Campobasso, Italy.
| | - Nicola Santoro
- Department of Pediatrics, Yale University, 06520, New Haven, CT, USA.
- Dipartimento di Medicina V. Tiberio, Universita' del Molise, 86100, Campobasso, Italy.
| |
Collapse
|
17
|
Wang C, Gong J, Wu H. Development of gene polymorphisms in meditators of nonalcoholic fatty liver disease. Biomed Rep 2017; 7:95-104. [PMID: 28804621 DOI: 10.3892/br.2017.926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, the morbidity of which closely correlates with diversity of ethnicity, minority, family and location. Its histology spans from simple steatosis, to nonalcoholic steatohepatitis, which ultimately results in fibrosis, cirrhosis and hepatocellular carcinoma. The accelerating prevalence of NAFLD is due to an incremental incidence of metabolic syndrome that is distinguished by dyslipidemia, glucose impairment, obesity, excessive oxidative stress and adipocytokine impairment. Additionally, the pathogenesis of NAFLD is thought to be a multifactorial and complicated disease associated with lifestyle habits, nutritional factors and genetics. However, the pathogenesis and underlying mechanism in the development of NAFLD caused by genetics remains unclear. People have been increasingly emphasizing on the relationship between NAFLD and gene polymorphisms in recent years, with the aim of having a comprehensive elucidation of associated gene polymorphisms influencing the pathogenesis of the disease. In the current article, the authors attempted to critically summarize the most recently identified gene polymorphisms from the facets of glucose metabolism, fatty acid metabolism, oxidative stress and related cytokines in NAFLD that contribute to promoting the progression of the disease.
Collapse
Affiliation(s)
- Chun Wang
- Department of General Surgery, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing 402161, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
18
|
Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect nonalcoholic fatty liver disease: A systematic clinical review. World J Gastroenterol 2016; 22:6742-6756. [PMID: 27547017 PMCID: PMC4970479 DOI: 10.3748/wjg.v22.i29.6742] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate roles of genetic polymorphisms in non-alcoholic fatty liver disease (NAFLD) onset, severity, and outcome through systematic literature review.
METHODS: The authors conducted both systematic and specific searches of PubMed through December 2015 with special emphasis on more recent data (from 2012 onward) while still drawing from more historical data for background. We identified several specific genetic polymorphisms that have been most researched and, at this time, appear to have the greatest clinical significance on NAFLD and similar hepatic diseases. These were further investigated to assess their specific effects on disease onset and progression and the mechanisms by which these effects occur.
RESULTS: We focus particularly on genetic polymorphisms of the following genes: PNPLA3, particularly the p. I148M variant, TM6SF2, particularly the p. E167K variant, and on variants in FTO, LIPA, IFNλ4, and iron metabolism, specifically focusing on HFE, and HMOX-1. We discuss the effect of these genetic variations and their resultant protein variants on the onset of fatty liver disease and its severity, including the effect on likelihood of progression to cirrhosis and hepatocellular carcinoma. While our principal focus is on NAFLD, we also discuss briefly effects of some of the variants on development and severity of other hepatic diseases, including hepatitis C and alcoholic liver disease. These results are briefly discussed in terms of clinical application and future potential for personalized medicine.
CONCLUSION: Polymorphisms and genetic factors of several genes contribute to NAFLD and its end results. These genes hold keys to future improvements in diagnosis and management.
Collapse
|
19
|
Abstract
Along with the obesity epidemic, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased exponentially. The histological disease spectrum of NAFLD ranges from bland fatty liver (hepatic steatosis), to the concomitant presence of inflammation and ballooning which defines nonalcoholic steatohepatitis (NASH). The latter can progress in a subset to fibrosis, leading ultimately to cirrhosis and hepatocellular carcinoma. The past decade has seen tremendous advances in our understanding of the genetic and epigenetic bases of NAFLD, mainly through the application of high end technology platforms including genome-wide association studies (GWAS). These have helped to define common gene variants (minor allele frequency >5 %) that contribute to the NAFLD phenotype. Looking to the future, these discoveries are expected to lead to improved diagnostics, the personalization of medicine, and a better understanding of the pathophysiological underpinnings that drive the transition from NAFLD to steatohepatitis and fibrosis, leading to the identification of novel therapeutic targets. In this review, we summarize data on the current state of knowledge with regard to the genetic and epigenetic mechanisms for the development of NASH.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
- Department of Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
20
|
An BQ, Lu LL, Yuan C, Xin YN, Xuan SY. Leptin Receptor Gene Polymorphisms and the Risk of Non-Alcoholic Fatty Liver Disease and Coronary Atherosclerosis in the Chinese Han Population. HEPATITIS MONTHLY 2016; 16:e35055. [PMID: 27257426 PMCID: PMC4888499 DOI: 10.5812/hepatmon.35055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Leptin receptor (LEPR) polymorphisms have been reported to be associated with lipid metabolism and insulin resistance in various populations. However, whether LEPR polymorphisms are associated with the risks of non-alcoholic fatty liver disease (NAFLD) and coronary atherosclerosis in the Chinese Han population remains unknown. OBJECTIVES To investigate the association of LEPR polymorphisms at Q223R and K109R with the risks of NAFLD and coronary atherosclerosis in the Chinese Han population. PATIENTS AND METHODS Genotypes of LEPR Q223R and K109R were determined by polymerase chain reaction followed by sequencing in patients with NAFLD (n = 554), coronary atherosclerosis (n = 421), and healthy controls (n = 550). Serum lipid profiles were determined using biochemical methods. Pearson's χ(2) test was used to check for Hardy-Weinberg equilibrium and to analyze the distributions of genotypes' alleles between groups. Baseline characteristics were analyzed using student's t-test, paired-samples t-test, or the χ(2) test where appropriate. RESULTS The LEPR Q223R A allele significantly reduced the risks of both NAFLD and coronary atherosclerosis (OR = 0.683, 95% CI: 0.527 - 0.884, P = 0.004 and OR = 0.724, 95% CI: 0.548 - 0.955, P = 0.022, respectively). Compared to controls, no significant differences in the genotype and allele frequencies of K109R were found in the NAFLD and coronary atherosclerosis populations, respectively. However, there was a significantly increased risk of coronary atherosclerosis in NAFLD patients who carried the K109R A allele (OR = 2.283, 95% CI: 1.556 - 3.348, P < 0.001). CONCLUSIONS LEPR Q223R polymorphisms may confer a significant risk of NAFLD and coronary atherosclerosis. The A allele in the K109R polymorphism might be considered an independent risk factor for coronary atherosclerosis in NAFLD patients.
Collapse
Affiliation(s)
- Bai-Quan An
- Department of Gastroenterology, Qingdao Municipal College, Nanjing Medical University, Qingdao, Shandong Province, China
| | - Lin-Lin Lu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Chen Yuan
- Department of Gastroenterology, Qingdao Municipal College, Nanjing Medical University, Qingdao, Shandong Province, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal College, Nanjing Medical University, Qingdao, Shandong Province, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Corresponding Authors: Yong-Ning Xin, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail: ; Shi-Ying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail:
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal College, Nanjing Medical University, Qingdao, Shandong Province, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Corresponding Authors: Yong-Ning Xin, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail: ; Shi-Ying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail:
| |
Collapse
|
21
|
Li XL, Sui JQ, Lu LL, Zhang NN, Xu X, Dong QY, Xin YN, Xuan SY. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis 2016; 15:53. [PMID: 26965314 PMCID: PMC4785616 DOI: 10.1186/s12944-016-0221-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease which represents a wide spectrum of hepatic damage. Several studies have reported that NAFLD is a strong independent risk factor for coronary artery disease (CAD). And patients with NAFLD are at higher risk and suggested undergoperiodic cardiovascular risk assessment. Cardiovascular disease (CVD) is responsible for the main cause of death in patients with NAFLD, and is mostly influenced by genetic factors. Both NAFLD and CAD are heterogeneous disease. Common pathways involved in the pathogenesis of NAFLD and CAD includes insulin resistance (IR), atherogenic dyslipidemia, subclinical inflammation, oxidative stress, etc. Genomic characteristics of these two diseases have been widely studied, further research about the association of these two diseases draws attention. The gene polymorphisms of adiponectin-encoding gene (ADIPOQ), leptin receptor (LEPR), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), sterol regulatory elementbinding proteins (SREBP), transmembrane 6 superfamily member 2 (TM6SF2), microsomal triglyceride transfer protein (MTTP), tumor necrosis factors-alpha (TNF-α) and manganese superoxide dismutase (MnSOD) have been reported to be related to NAFLD and CAD. In this review, we aimed to provide an overview of recent insights into the genetic basis of NAFLD and CAD.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Jian-Qing Sui
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Lin-Lin Lu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.,Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Nan-Nan Zhang
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Xin Xu
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Quan-Yong Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China
| | - Yong-Ning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, 266011, China. .,Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266011, China. .,Digestive Disease Key Laboratory of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
22
|
Mann JP, Semple RK, Armstrong MJ. How Useful Are Monogenic Rodent Models for the Study of Human Non-Alcoholic Fatty Liver Disease? Front Endocrinol (Lausanne) 2016; 7:145. [PMID: 27899914 PMCID: PMC5110950 DOI: 10.3389/fendo.2016.00145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Improving understanding of the genetic basis of human non-alcoholic fatty liver disease (NAFLD) has the potential to facilitate risk stratification of affected patients, permit personalized treatment, and inform development of new therapeutic strategies. Animal models have been widely used to interrogate the pathophysiology of, and genetic predisposition to, NAFLD. Nevertheless, considerable interspecies differences in intermediary metabolism potentially limit the extent to which results can be extrapolated to humans. For example, human genome-wide association studies have identified polymorphisms in PNPLA3 and TM6SF2 as the two most prevalent determinants of susceptibility to NAFLD and its inflammatory component (NASH), but animal models of these mutations have had only variable success in recapitulating this link. In this review, we critically appraise selected murine monogenic models of NAFLD, NASH, and hepatocellular carcinoma (HCC) with a focus on how closely they mirror human disease.
Collapse
Affiliation(s)
- Jake P. Mann
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Robert K. Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- *Correspondence: Robert K. Semple,
| | - Matthew J. Armstrong
- Centre for Liver Research, National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 2015; 21:11088-11111. [PMID: 26494964 PMCID: PMC4607907 DOI: 10.3748/wjg.v21.i39.11088] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.
Collapse
|
24
|
Zain SM, Mohamed Z, Pirmohamed M, Tan HL, Alshawsh MA, Mahadeva S, Chan WK, Mustapha NRN, Mohamed R. Copy number variation in exportin-4 (XPO4) gene and its association with histological severity of non-alcoholic fatty liver disease. Sci Rep 2015; 5:13306. [PMID: 26293807 PMCID: PMC4543956 DOI: 10.1038/srep13306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022] Open
Abstract
A recent genome-wide copy number (CNV) scan identified a 13q12.11 duplication in the exportin-4 (XPO4) gene to be associated with non-alcoholic steatohepatitis (NASH). We sought to confirm the finding in a larger cohort and to assess the serum XPO4 pattern in a broad spectrum of non-alcoholic fatty liver disease (NAFLD) cases. We analysed 249 NAFLD patients and 232 matched controls using TaqMan assay and serum XPO4 was measured. Copy number distribution was as follows: copy number neutral (NAFLD: 53.8%, controls: 68.6%), copy number losses (NAFLD: 13.3%, controls: 12.9%), copy number gains (NAFLD: 32.9%, controls: 18.5%). CNV gain was significantly associated with a greater risk of NAFLD (adjusted OR 2.22, 95% CI 1.42–3.46, P = 0.0004) and NASH (adjusted OR 2.33, 95% CI 1.47–3.68, P = 0.0003). Interestingly, subjects carrying extra copy number showed significantly higher serum ALT and triglyceride (P < 0.05). Serum XPO4 levels progressively declined (P = 0.043) from controls (24.6 ng/mL) to simple steatosis (20.8 ng/mL) to NASH (13.8 ng/mL). In conclusion, XPO4 CNV duplication was associated with histological severity of NAFLD, and accompanied by changes in serum XPO4 levels providing insights into NAFLD pathogenesis, and has the potential for biomarker development.
Collapse
Affiliation(s)
- Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hwa Li Tan
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Sanjiv Mahadeva
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Kheong Chan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Edelman D, Kalia H, Delio M, Alani M, Krishnamurthy K, Abd M, Auton A, Wang T, Wolkoff AW, Morrow BE. Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population. Mol Genet Genomic Med 2015; 3:558-69. [PMID: 26740948 PMCID: PMC4694126 DOI: 10.1002/mgg3.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022] Open
Abstract
We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean–Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy‐proven NAFLD, 24 ethnically matched non‐NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single‐nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome‐wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean–Hispanic population is warranted.
Collapse
Affiliation(s)
- Deborah Edelman
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Harmit Kalia
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Maria Delio
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - Mustafa Alani
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Karthik Krishnamurthy
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Mortadha Abd
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
| | - Adam Auton
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
| | - Tao Wang
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew York10461
| | - Allan W. Wolkoff
- Division of Gastroenterology and Liver DiseasesMontefiore Medical Center and Albert Einstein College of MedicineBronxNew York10461
- Marion Bessin Liver Research CenterAlbert Einstein College of MedicineBronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| | - Bernice E. Morrow
- Department of GeneticsAlbert Einstein College of Medicine1301 Morris Park Ave.BronxNew York10461
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew York10461
| |
Collapse
|
26
|
Association of adiponectin gene polymorphism with nonalcoholic fatty liver disease in Taiwanese patients with type 2 diabetes. PLoS One 2015; 10:e0127521. [PMID: 26042596 PMCID: PMC4456357 DOI: 10.1371/journal.pone.0127521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022] Open
Abstract
Objective Patients with type 2 diabetes and nonalcoholic fatty liver disease (NAFLD) have a higher prevalence of cardiovascular diseases. In this study we investigated the frequency of single nucleotide polymorphisms (SNPs) of several candidate genes associated with NAFLD in Taiwanese patients with type 2 diabetes mellitus (DM) and NAFLD and in those with DM but without fatty liver disease. Methods We enrolled 350 patients with type 2 DM and NAFLD and 209 patients with DM but without NAFLD. Body mass index (BMI), % body fat (% BF), glycated hemoglobin (HbA1c), high molecular weight (HMW) isoform of adiponectin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels were measured. Thirteen SNPs in 5 genes (adiponectin, leptin, peroxisome proliferator-activated receptor alpha, adiponutrin/patatin-like phospholipase domain-containing protein 3 and peroxisome proliferator-activated receptor γ co-activator 1α ) were measured. Results Only adiponectin rs266729 polymorphism was associated with susceptibility to NAFLD (p = 0.001). Subgroup analysis revealed that the proportion of subjects with homozygous genotype GG was higher in patients with NAFLD (31%) than in controls (11%) and that the proportions of heterozygous CG and homozygous CC were higher in controls (37% and 52%, respectively) than in patients with NAFLD (33% and 36%, respectively). Patients with NAFLD carrying the GG genotype of rs266729 showed significantly lower serum HMW adiponectin levels than patients carrying the GC or CC genotype (3.75±0.37 vs. 3.99±0.66 vs. 4.79±0.58 μg/ml, p< 0.001). Body fat and serum HMW adiponectin levels were the strongest predictors of developing NAFLD (p < 0.001 and 0.004, respectively). Conclusions In patients with type 2 diabetes gene polymorphism of adiponectin rs266729 is associated with risk of NAFLD. G allele of rs266729 is associated with hypoadiponectinemia. Low serum adiponectin level may precipitate liver steatosis in patients with type 2 diabetes.
Collapse
|
27
|
Wood KL, Miller MH, Dillon JF. Systematic review of genetic association studies involving histologically confirmed non-alcoholic fatty liver disease. BMJ Open Gastroenterol 2015; 2:e000019. [PMID: 26462272 PMCID: PMC4599155 DOI: 10.1136/bmjgast-2014-000019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease has an increasing prevalence in Western countries, affecting up to 20% of the population.
Collapse
Affiliation(s)
| | - Michael H Miller
- Medical Research Institute, University of Dundee, Ninewells Hospital , Dundee , UK
| | - John F Dillon
- Medical Research Institute, University of Dundee, Ninewells Hospital , Dundee , UK
| |
Collapse
|
28
|
Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 2015; 64:60-78. [PMID: 25456097 DOI: 10.1016/j.metabol.2014.10.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
Leptin, the first described adipokine, interplays with hepatic metabolism. The aim of this review was to summarize available data on the association between leptin and nonalcoholic fatty liver disease (NAFLD). Leptin has a potential dual action on NAFLD experimental models, exerting a possible anti-steatotic, but also a proinflammatory and profibrogenic action. Observational clinical studies have shown higher or similar leptin levels between simple steatosis and nonalcoholic steatohepatitis (NASH) compared with controls. Interventional studies showed that circulating leptin diminishes together with body mass index after successful weight loss following lifestyle modifications or bariatric surgery. Studies providing evidence for the effect of other medications on leptin levels in NAFLD populations are limited and of low power. Data from small studies claim that recombinant leptin administration had a possibly beneficial effect on steatosis, but not fibrosis, in NAFLD patients with hypoleptinemia. Although the aforementioned dual leptin action has not yet been validated in humans, leptin administration in NAFLD patients with normoleptinemia or hyperleptinemia is discouraged. Further well-controlled studies in cautiously selected populations are needed to elucidate whether leptin has any prognostic and therapeutic role in NAFLD patients.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Second Medical Clinic, Department of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jannis Kountouras
- Second Medical Clinic, Department of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Lim JW, Dillon J, Miller M. Proteomic and genomic studies of non-alcoholic fatty liver disease - clues in the pathogenesis. World J Gastroenterol 2014; 20:8325-8340. [PMID: 25024592 PMCID: PMC4093687 DOI: 10.3748/wjg.v20.i26.8325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/14/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.
Collapse
|
30
|
Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol 2014; 49:1056-64. [PMID: 23800943 DOI: 10.1007/s00535-013-0850-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/09/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent genome-wide association studies demonstrated an association between single nucleotide polymorphisms (SNPs) on the glucokinase regulatory gene (GCKR) with hepatic steatosis. This study attempted to investigate the association of GCKR rs780094 and rs1260326 with susceptibility to non-alcoholic fatty liver disease (NAFLD) and its severity. METHODS The genotypes were assessed on 144 histologically confirmed NAFLD patients and 198 controls using a Sequenom MassARRAY platform. RESULTS The GCKR rs1260326 and rs780094 allele T were associated with susceptibility to NAFLD (OR 1.49, 95 % CI 1.09-2.05, p = 0.012; and OR 1.51, 95 % CI 1.09-2.09, p = 0.013, respectively), non-alcoholic steatohepatitis (NASH) (OR 1.55, 95 % CI 1.10-2.17, p = 0.013; and OR 1.56, 95 % CI 1.10-2.20, p = 0.012, respectively) and NASH with significant fibrosis (OR 1.50, 95 % CI 1.01-2.21, p = 0.044; and OR 1.52, 95 % CI 1.03-2.26, p = 0.038, respectively). Following stratification by ethnicity, significant association was seen in Indian patients between the two SNPs and susceptibility to NAFLD (OR 2.64, 95 % CI 1.28-5.43, p = 0.009; and OR 4.35, 95 % CI 1.93-9.81, p < 0.0001, respectively). The joint effect of GCKR with adiponutrin rs738409 indicated greatly increased the risk of NAFLD (OR 4.14, 95 % CI 1.41-12.18, p = 0.010). Histological data showed significant association of GCKR rs1260326 with high steatosis grade (OR 1.76, 95 % CI 1.08-2.85, p = 0.04). CONCLUSION This study suggests that risk allele T of the GCKR rs780094 and rs1260326 is associated with predisposition to NAFLD and NASH with significant fibrosis. The GCKR and PNPLA3 genes interact to result in increased susceptibility to NAFLD.
Collapse
|
31
|
Mehta R, Birerdinc A, Younossi ZM. Host genetic variants in obesity-related nonalcoholic fatty liver disease. Clin Liver Dis 2014; 18:249-67. [PMID: 24274878 DOI: 10.1016/j.cld.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex disease. The considerable variability in the natural history of the disease suggests an important role for genetic variants in the disease development and progression. There is evidence based on genome-wide association studies and/or candidate gene studies that genetic polymorphisms underlying insulin signaling, lipid metabolism, oxidative stress, fibrogenesis, and inflammation can predispose individuals to NAFLD. This review highlights some of the genetic variants in NAFLD.
Collapse
Affiliation(s)
- Rohini Mehta
- Betty and Guy Beatty Center for Integrated Research, Center for Liver Disease, Inova Health System, Claude Moore Building, 3300 Gallows Road, Falls Church, VA 22042, USA
| | | | | |
Collapse
|
32
|
Elsheikh E, Henry LL, Younossi ZM. Current management of patients with nonalcoholic fatty liver disease. Expert Rev Endocrinol Metab 2013; 8:549-558. [PMID: 30736139 DOI: 10.1586/17446651.2013.846212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH) are the most common causes of chronic liver disease in industrialized countries. NAFLD has also been strongly associated with type II diabetes and cardiovascular diseases. This study was a multipurposed review, which included discussion of recent studies investigating the cellular and genetic basis of these diseases, the pathogenesis of NAFLD and the current treatment and management of nonalcoholic steatohepatitis. Currently, maintaining a healthy weight through dietary changes and exercise, the use of insulin-modulating pharmacologic agents for diabetes control and the use of lipid-lowering, anti-oxidants have been the most widely recommended treatments. Inclusion of pathogenic mechanisms in treatment design will allow future therapies to target-specific pathways involved in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Elzafir Elsheikh
- a Department of Medicine, Inova Fairfax Hospital, Center for Liver Diseases, Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | - Linda L Henry
- a Department of Medicine, Inova Fairfax Hospital, Center for Liver Diseases, Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | | |
Collapse
|