1
|
Ren M, Xia Y, Pan H, Zhou X, Yu M, Ji F. Duodenal-jejunal bypass ameliorates MASLD in rats by regulating gut microbiota and bile acid metabolism through FXR pathways. Hepatol Commun 2025; 9:e0615. [PMID: 39813598 PMCID: PMC11737483 DOI: 10.1097/hc9.0000000000000615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD. METHODS Rats with MASLD were randomly assigned to undergo DJB or sham surgery. Rats were orally administered a broad-spectrum antibiotic cocktail (Abx) or underwent fecal microbiota transplantation to assess the role of gut microbiota in DJB-induced improvement of MASLD. Gut microbiota were profiled by 16S rRNA gene sequencing and metagenomic sequencing, and bile acids (BAs) were analyzed by BA-targeted metabolomics. RESULTS DJB alleviated hepatic steatosis and insulin resistance in rats with diet-induced MASLD. Abx depletion of bacteria abrogated the ameliorating effects of DJB on MASLD. Fecal microbiota transplantation from rats that underwent DJB improved MASLD in high-fat diet-fed recipients by reshaping the gut microbiota, especially by significantly reducing the abundance of Clostridium. This, in turn, suppressed secondary BA biosynthesis and activated the hepatic BA receptor, farnesoid X receptor. Inhibition of farnesoid X receptor attenuated the ameliorative effects of post-DJB microbiota on MASLD. CONCLUSIONS DJB ameliorates MASLD by regulating gut microbiota and BA metabolism through hepatic farnesoid X receptor pathways.
Collapse
Affiliation(s)
- Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hanghai Pan
- Department of Gastroenterology, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mosang Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Kashihara H, Okikawa S, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, Takasu C, Nishiyama M, Zushi M, Shimada M. Impact of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:210-218. [PMID: 39462554 DOI: 10.2152/jmi.71.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION We investigated the effect of Daikenchuto (TU-100) on the early postoperative period in duodenal-jejunal bypass (DJB). METHODS Study 1:The effect of TU-100 on diabetic rats was investigated. Rats were sacrificed after receiving TU-100 for one week. Study 2:The effect of TU-100 on DJB was investigated. Rats in the DJB and TU-100 treated DJB groups were sacrificed 24 hours postoperation to evaluate blood glucose, cytokine expression, and gut microbiome. RESULTS Study 1:TU-100 did not affect glucose or body weight. TU-100 suppressed intestinal inflammation and modified the gut microbiome. Specifically, Bifidobacterium and Blautia were increased, and Turicibacter were decreased in this group. Study 2:Both DJB and TU-100 treated DJB rats showed lower blood glucose at 24 hours postoperation than at preoperation. Cytokine expression in the liver and small intestine of the TU-100 treated DJB group was significantly lower than that of the DJB group. The gut microbiome composition in TU-100 treated DJB rats was altered. In particular, Bifidobacterium and Blautia were increased in this group. CONCLUSION DJB suppressed blood glucose during the early postoperative period. TU-100 may enhance the anti-diabetic effect of metabolic surgery by changing the gut microbiome and suppressing inflammation in the early postoperative period. J. Med. Invest. 71 : 210-218, August, 2024.
Collapse
Affiliation(s)
| | - Shohei Okikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsue Nishiyama
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Makoto Zushi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu C, Li B, Dong S, Li L, Zhu J, Zhong M, Zhang G. Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis. Front Pharmacol 2022; 13:1016635. [PMID: 36339532 PMCID: PMC9634081 DOI: 10.3389/fphar.2022.1016635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 07/29/2024] Open
Abstract
Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.
Collapse
Affiliation(s)
- Huanxin Ding
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Chuxuan Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Yang X, Jiang W, Cheng J, Hao J, Han F, Zhang Y, Xu J, Shan C, Wang J, Yang Y, Yang J, Chang B. Reductions in Intestinal Taurine-Conjugated Bile Acids and Short-Chain Fatty Acid-Producing Bacteria Might be Novel Mechanisms of Type 2 Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats. Exp Clin Endocrinol Diabetes 2021; 130:237-247. [PMID: 34929746 DOI: 10.1055/a-1643-1689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The pathogenesis of spontaneously diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, among the best models for human type 2 diabetes mellitus (T2DM), remains poorly defined. Therefore, we investigated the dynamic changes in taurine-conjugated bile acids (T-BAs) and intestinal microbiota during T2DM development in OLETF rats. METHODS OLETF rats and corresponding diabetes-resistant Long Evans Tokushima Otsuka (LETO) rats were fed a normal baseline diet. The progress of T2DM was divided into four phases, including normal glycemia-normal insulinemia (baseline), normal glycemia-hyperinsulinemia, impaired glucose tolerance, and DM. Body weight, liver function, blood lipids, fasting plasma glucose, fasting plasma insulin, fasting plasma glucagon-like peptide (GLP)-1 and GLP-2, serum and fecal T-BAs, and gut microbiota were analyzed during the entire course of T2DM development. RESULTS There were reductions in fecal T-BAs and short-chain fatty acids (SCFAs)-producing bacteria including Phascolarctobacterium and Lactobacillus in OLETF rats compared with those in LETO rats at baseline, and low levels of fecal T-BAs and SCFAs-producing bacteria were maintained throughout the whole course of the development of T2DM among OLETF rats compared with those in corresponding age-matched LETO rats. Fecal taurine-conjugated chenodeoxycholic acid correlated positively with Phascolarctobacterium. Fecal taurine-conjugated deoxycholic acid correlated positively with Lactobacillus and fasting plasma GLP-1 and inversely with fasting plasma glucose. CONCLUSION The fecal BAs profiles and microbiota structure among OLETF rats were different from those of LETO rats during the entire course of T2DM development, indicating that reductions in intestinal T-BAs and specific SCFA-producing bacteria may be potential mechanisms of T2DM in OLETF rats.
Collapse
Affiliation(s)
- Xiaoyun Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Jiang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.,Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine of Hebei Province, Hebei Province, China
| | - Jingli Cheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jintong Hao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Ruze R, Xu Q, Liu G, Li Y, Chen W, Cheng Z, Xiong Y, Liu S, Zhang G, Hu S, Yan Z. Central GLP-1 contributes to improved cognitive function and brain glucose uptake after duodenum-jejunum bypass on obese and diabetic rats. Am J Physiol Endocrinol Metab 2021; 321:E392-E409. [PMID: 34370593 DOI: 10.1152/ajpendo.00126.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
The improvement of cognitive function following bariatric surgery has been highlighted, yet its underlying mechanisms remain elusive. Finding the improved brain glucose uptake of patients after Roux-en-Y gastric bypass (RYGB), duodenum-jejunum bypass (DJB), and sham surgery (Sham) were performed on obese and diabetic Wistar rats, and intracerebroventricular (ICV) injection of glucagon-like peptide-1 (GLP-1) analog liraglutide (Lira), antagonist exendin-(9-39) (Exe-9), and the viral-mediated GLP-1 receptor (Glp-1r) knockdown (KD) were applied on both groups to elucidate the role of GLP-1 in mediating cognitive function and brain glucose uptake assessed with the Morris water maze (MWM) and positron emission tomography (PET). Insulin and GLP-1 in serum and cerebral spinal fluid (CSF) were measured, and the expression of glucose uptake-related proteins including glucose transporter 1 (GLUT-1), GLUT-4, phospho-Akt substrate of 160kDa (pAS160), AS160, Rab10, Myosin-Va as well as the c-fos marker in the brain were examined. Along with augmented glucose homeostasis following DJB, central GLP-1 was correlated with the improved cognitive function and ameliorated brain glucose uptake, which was further confirmed by the enhancive role of Lira on both groups whereas the Exe-9 and Glp-1r KD were opposite. Known to activate insulin-signaling pathways, central GLP-1 contributes to improved cognitive function and brain glucose uptake after DJB.NEW & NOTEWORTHY The improvement of cognitive function following bariatric surgery has been highlighted while its mechanisms remain elusive. The brain glucose uptake of patients was improved after RYGB, and the DJB and sham surgery performed on obese and diabetic Wistar rats revealed that the elevated central GLP-1 contributes to the dramatic improvement of cognitive function, brain glucose uptake, transport, glucose sensing, and neuronal activation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Guoqin Liu
- Department of General Surgery, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuekai Li
- Department of Nuclear Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Cheng
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yacheng Xiong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Shaozhuang Liu
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Zhibo Yan
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
7
|
Abstract
BACKGROUND The aim of this study was to investigate gut inflammation and permeability in rats after duodenal-jejunal bypass (DJB) and in rats injected with a glucagon-like peptide-1 (GLP-1) receptor analog. METHODS Twelve male 16-week-old obese diabetic rats were divided into three groups: the DJB group, the sham group, and the group injected daily with a GLP-1 receptor agonist (liraglutide). Gut inflammation and the expression of tight junction protein (claudin-1) were analyzed in the three groups at 8 weeks after surgery. RESULTS The DJB group showed significantly lower levels of gut inflammatory cytokines than the liraglutide group. Claudin-1 showed stronger intensity on immunofluorescent staining in the DJB group than that in the liraglutide group. CONCLUSIONS In summary, DJB surgery might maintain gut permeability via suppression of gut inflammation.
Collapse
|
8
|
Kashihara H, Shimada M, Yoshikawa K, Higashijima J, Miyatani T, Tokunaga T, Nishi M, Takasu C, Hamada Y. The Effect of Laparoscopic Sleeve Gastrectomy on Obesity and Obesity-related Disease : the Results of 10 Initial Cases. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:289-292. [PMID: 31656291 DOI: 10.2152/jmi.66.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Introduction : The number of patients who undergo laparoscopic sleeve gastrectomy (LSG) has been increasing. Department of Surgery, Tokushima University performed the first LSG in 2013. The aim of this study was to report the results of the initial ten cases who underwent a LSG. Patients and methods : Ten obese patients : five males and five females ; age range from thirty-three years to fifty-six years (mean age 42.2 years) ; mean body mass index (BMI) 50.3 ; five with diabetes ; nine with hypertension (HT) ; four with hyperlipidemia (HL) ; eight with sleep apnea syndrome (SAS) who underwent LSG were enrolled in this study. The data was analyzed retrospectively and included short- and long-term outcomes. Results : There were no post-operative complications in this study. The %EWL at three and six months and one year post-operative were 44.2%, 50.2% and 48.6% respectively. In three months post-operative the non-alcoholic fatty liver (NAFLD) and non-alcoholic steatohepatitis (NASH) had improved transaminase (AST/ALT), liver to spleen ratio in plain CT value. Improvements were also evident in the obesity-related diseases : diabetes 80% (4/5) ; HT 67% (6/9) ; HL 75% (3/4) ; and SAS 88% (7/8). Conclusion : LSG is a promising option for the treatment of morbid obesity and obesity-related diseases. J. Med. Invest. 66 : 289-292, August, 2019.
Collapse
Affiliation(s)
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Jun Higashijima
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yasuhiro Hamada
- Department of Therapeutic nutrition, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Prada-Oliveira JA, Camacho-Ramirez A, Salas-Alvarez J, Campos-Martinez FJ, Lechuga-Sancho AM, Almorza-Gomar D, Blandino-Rosano M, Perez-Arana GM. GLP-1 mediated improvement of the glucose tolerance in the T2DM GK rat model after massive jejunal resection. Ann Anat 2019; 223:1-7. [DOI: 10.1016/j.aanat.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
|
10
|
Akalestou E, Genser L, Villa F, Christakis I, Chokshi S, Williams R, Rubino F. Establishing a successful rat model of duodenal- jejunal bypass: A detailed guide. Lab Anim 2018; 53:362-371. [PMID: 30227760 DOI: 10.1177/0023677218797370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gastric bypass surgery, an operation that restricts the stomach and bypasses the duodenum and part of the jejunum, results in major improvement or remission of type 2 diabetes. Duodenual-jejunal bypass was developed by one of the authors (FR) as an experimental, stomach-sparing variant of gastric bypass surgery to investigate weight-independent mechanisms of surgical control of diabetes. Duodenual-jejunal bypass has been shown to improve various aspects of glucose homeostasis in rodents and in humans, thus providing an experimental model for investigating mechanisms of action of surgery and elusive aspects of gastrointestinal physiology. Performing duodenual-jejunal bypass in rodents, however, is associated with a steep learning curve. Here we report our experience with duodenual-jejunal bypass and provide practical tips for successful surgery in rats. Duodenual-jejunal bypass was performed on 50 lean rats as part of a study aimed at investigating the effect of the procedure on the physiologic mechanisms of glucose homeostasis. During the study, we have progressively refined details of anatomic exposure, technical aspects of duodeno-jejunostomy and peri-operative care. We analysed the role of such refinements in improving operative time and post-operative mortality. We found that refinement of exposure methods of the gastro-duodenal junction aimed at minimizing tension on small visceral vasculature, technical aspects of duodeno-jejunal anastomosis and peri-operative management played a major role in improving the survival rate and operative time. Overall, an experimental model of duodenual-jejunal bypass was successfully reproduced. Based on this experience, we describe here what we believe are the most important technical tips to reduce the learning curve for the procedure.
Collapse
Affiliation(s)
- Elina Akalestou
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Laurent Genser
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Francesco Villa
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ioannis Christakis
- 4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Shilpa Chokshi
- 2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Roger Williams
- 2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Francesco Rubino
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Garruti G, Di Ciaula A, Wang HH, Wang DQH, Portincasa P. Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Ann Hepatol 2017; 16:s68-s82. [PMID: 29080342 DOI: 10.5604/01.3001.0010.5499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Obesity is rapidly increasing and has reached epidemic features worldwide. It´s linked to insulin resistance, systemic low-grade inflammation and common pathogenic pathways with a number of comorbidities (including cancer), leading to high mortality rates. Besides change of lifestyles (diet and physical exercise) and pharmacological therapy, bariatric surgery is able to rapidly improve several metabolic and morphologic features associated with excessive fat storage, and currently represents an in vivo model to study the pathogenic mechanisms underlying obesity and obesity-related complications. Studies on obese subjects undergoing bariatric surgery find that the effects of surgery are not simply secondary to gastric mechanical restriction and malabsorption which induce body weight loss. In fact, some surgical procedures positively modify key pathways involving the intestine, bile acids, receptor signaling, gut microbiota, hormones and thermogenesis, leading to systemic metabolic changes. Furthermore, bariatric surgery represents a suitable model to evaluate the gene-environment interaction and some epigenetic mechanisms linking obesity and insulin resistance to metabolic diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | | | - Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Lei S, Huang F, Zhao A, Chen T, Chen W, Xie G, Zheng X, Zhang Y, Yu H, Zhang P, Rajani C, Bao Y, Jia W, Jia W. The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity. FASEB J 2017; 31:3904-3912. [PMID: 28490483 PMCID: PMC6191069 DOI: 10.1096/fj.201700055r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023]
Abstract
Bile acid (BA) signaling regulates fatty acid metabolism. BA dysregulation plays an important role in the development of metabolic disease. However, BAs in relation to fatty acids have not been fully investigated in obesity-related metabolic disorders. A targeted metabolomic measurement of serum BA and free fatty acid profiles was applied to sera of 381 individuals in 2 independent studies. The results showed that the ratio of dihomo-γ-linolenic acid (DGLA) to deoxycholic acid (DCA) species (DCAS) was significantly increased in obese individuals with type 2 diabetes (T2DM) from a case-control study and decreased in the remission group of obese subjects with T2DM after metabolic surgery. The changes were closely associated with their metabolic status. These results were consistently confirmed in both serum and liver of mice with diet-induced obesity, implying that such a metabolic alteration in circulation reflects changes occurring in the liver. In vitro studies of human liver L-02 cell lines under BA treatment revealed that DCA and its conjugated form, TDCA, significantly inhibited mRNA expression of fatty acid transport protein 5 in the presence of DGLA, which was involved in hepatocyte DGLA uptake. Thus, the DGLA:DCAS ratio may be a promising biomarker for metabolic abnormalities in obesity.-Lei, S., Huang, F., Zhao, A., Chen, T., Chen, W., Xie, G., Zheng, X., Zhang, Y., Yu, H., Zhang, P., Rajani, C., Bao, Y., Jia, W., Jia, W. The ratio of dihomo-γ-linolenic acid to deoxycholic acid species is a potential biomarker for the metabolic abnormalities in obesity.
Collapse
Affiliation(s)
- Sha Lei
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenlian Chen
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yunjing Zhang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pin Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China;
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
13
|
Soares GM, Cantelli KR, Balbo SL, Ribeiro RA, Alegre-Maller ACP, Barbosa-Sampaio HC, Boschero AC, Araújo ACF, Bonfleur ML. Liver steatosis in hypothalamic obese rats improves after duodeno-jejunal bypass by reduction in de novo lipogenesis pathway. Life Sci 2017; 188:68-75. [PMID: 28866102 DOI: 10.1016/j.lfs.2017.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
AIMS Hypothalamic obesity is a severe condition without any effective therapy. Bariatric operations appear as an alternative treatment, but the effects of this procedure are controversial. We, herein, investigated the effects of duodeno-jejunal bypass (DJB) surgery upon the lipid profile and expression of genes and proteins, involved in the regulation of hepatic lipid metabolism, in hypothalamic obese (HyO) rats. METHODS During the first 5days of life, male newborn Wistar rats received subcutaneous injections of monosodium glutamate [4g/kg body weight, HyO group] or saline (control, CTL group). At 90days of life, HyO rats were randomly submitted to DJB (HyO DJB) or Sham-operations (HyO Sham group). Six months after DJB, adiposity, hepatic steatosis and lipid metabolism were verified. KEY FINDINGS HyO Sham rats were obese, hyperinsulinemic, insulin resistant and dyslipidemic. These rats had higher liver contents of trygliceride (TG) and presented disorganization of the hepatocyte structures, in association with higher hepatic contents of acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-CoA desaturase-1 mRNAs and protein. DJB surgery normalized insulinemia, insulin resistance, and dyslipidemia in HyO rats. TG content in the liver and the hepatic microscopic structures were also normalized in HyO DJB rats, while the expressions of ACC and FASN proteins were decreased in the liver of these rodents. SIGNIFICANCE The DJB-induced amelioration in hepatic steatosis manifested as a late effect in HyO rats, and was partly associated with a downregulation in hepatic de novo lipogenesis processes, indicating that DJB protects against liver steatosis in hypothalamic obesity.
Collapse
Affiliation(s)
- Gabriela Moreira Soares
- Laboratório de Fisiologia Endócrina e Metabolismo (LAFEM), Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Kathia Regina Cantelli
- Laboratório de Fisiologia Endócrina e Metabolismo (LAFEM), Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratório de Fisiologia Endócrina e Metabolismo (LAFEM), Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | | | - Ana Claudia Paiva Alegre-Maller
- Laboratório de Fisiologia Endócrina e Metabolismo (LAFEM), Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Helena Cristina Barbosa-Sampaio
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Maria Lúcia Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo (LAFEM), Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil.
| |
Collapse
|
14
|
Duodenal-jejunal bypass changes the composition of the gut microbiota. Surg Today 2016; 47:137-140. [PMID: 27412617 DOI: 10.1007/s00595-016-1373-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
|
15
|
Compared to Sleeve Gastrectomy, Duodenal–Jejunal Bypass with Sleeve Gastrectomy Gives Better Glycemic Control in T2DM Patients, with a Lower β-Cell Response and Similar Appetite Sensations: Mixed-Meal Study. Obes Surg 2016; 26:2862-2872. [DOI: 10.1007/s11695-016-2205-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Wang Y, Zhang X, Liu T, Zhong M, Wan H, Liu S, Zhang G, Kassab GS, Hu S. Jejunum-ileum circuit procedure improves glucose metabolism in diabetic rats independent of weight loss. Obesity (Silver Spring) 2016; 24:342-51. [PMID: 26709012 DOI: 10.1002/oby.21339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/15/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To introduce a lower-risk novel surgical procedure to achieve diabetes reversal along with associated hormonal changes. METHODS Diabetic rats were randomly assigned to jejunum-ileum circuit (JIC), sham-JIC, ileal interposition (IT), and sham-IT groups. The JIC group included two subgroups: short (JIC-S) and long (JIC-L), based on the length between anastomosis and Treitz ligament (LAT ). The body weight, food intake, blood glucose, glucose and insulin tolerance, and gut hormones were measured. The liver gene expression of glucose transporter 2 (GLUT2) and protein expression of glucose-6-phosphatase (G6P) and phosphoenolpyruvate carboxykinase (PKC) were also measured. Following a dye infusion, nutrient delivery was measured at termination day. RESULTS Compared to sham-JIC group, JIC-S group did not reduce body weight or food intake but significantly improved glucose tolerance and insulin resistance. With fast chyme transit, JIC-S not only promoted the secretion of insulin, glucagon-like peptide 1, and peptide YY and decreased leptin, but also upregulated hepatic GLUT2 and downregulated hepatic G6P and PKC. JIC-L group, however, failed to achieve remission of diabetes. CONCLUSION JIC-S relieves diabetes independent of weight loss, as it promotes the secretion of anti-diabetic hormones and inhibits hepatic glucose production. The prolonging of LAT , however, diminishes the hypoglycemic effect.
Collapse
Affiliation(s)
- Yanmin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Houmin Wan
- Department of General Surgery, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| | - Ghassan S Kassab
- Department of Bioengineering, California Medical Innovations Institute, San Diego, California, USA
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China. Correspondence: Sanyuan Hu
| |
Collapse
|
17
|
Wang Y, Zhang X, Zhong M, Liu T, Zhang G, Liu S, Guo W, Wei M, He Q, Sun D, Hu S. Improvements of Glucose and Lipid Metabolism After Jejuno-ileal Circuit Procedure in a Non-obese Diabetic Rat Model. Obes Surg 2015; 26:1768-76. [PMID: 26660687 DOI: 10.1007/s11695-015-1997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In a recent study, we showed a jejuno-ileal circuit (JIC) procedure that effectively improved glucose homeostasis, but the intrinsic mechanism requires further studies. Furthermore, the role of JIC in lipid metabolism is also unknown. Given that adiposity aggravates insulin sensitivity, we hypothesize that the JIC procedure improves fat metabolism and thus further contributes to diabetic remission. The aim of this study was to investigate the effects of JIC surgery on lipid metabolism and glucose homeostasis in a non-obese diabetic rat model. METHODS Fourteen high-fat diet and low-dose streptozotocin-induced diabetic rats were randomly divided into JIC and sham-JIC groups. Body weight, food intake, glucose tolerance, insulin resistance, serum lipid parameters, glucagon-like peptide 1 (GLP-1), and adipose-derived hormones were measured. At 12 weeks postoperatively, the expressions of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured by Western blot. The lipid content of liver was assessed by hematoxylin-eosin staining and Oil Red O staining. The enteroendocrine cells in the distal ileum were examined by immunohistochemical staining. RESULTS Relative to the sham group, the JIC rats exhibited significant improvements in glucose tolerance, insulin resistance, and dyslipidemia without weight loss, showing increased GLP-1 and adiponectin and decreased leptin. JIC also reduced the expression of FAS and ACC in the liver, exhibited improved hepatic fat content, and raised the levels of GLP-1 and chromogranin A in the distal gut. CONCLUSIONS JIC alleviated lipometabolic disorders in hyperglycemic rats, which may contribute to the amelioration of insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Yanmin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Wei Guo
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|