1
|
Guzmán-Carrasco A, Mesas C, Doello K, Porres JM, García-Beltrán A, Martínez R, Bermúdez F, Peña M, Melguizo C, Prados J. The Antioxidant and Chemopreventive Activity of a Nutraceutical Derived from Brassicaceae Seed Extracts for Colorectal Cancer. Nutrients 2025; 17:1358. [PMID: 40284221 PMCID: PMC12030103 DOI: 10.3390/nu17081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background. Worldwide, colorectal cancer is the third most commonly diagnosed cancer. It is the second leading cause of cancer-related mortality. Recent studies establish a relationship between natural compounds from plants with the prevention and treatment of cancer. Specifically, glucosinolates with antitumoral capacity and polyphenols with the ability to scavenge free radicals that can cause cell damage have been identified in the Brassicaceae family. Objectives. Based on the previously mentioned factors, this study aimed to develop a nutraceutical made with extracts from different Brassicaceae seeds and study its antioxidant and antiproliferative action in vitro and in vivo using the AOM/DSS model in CC57BL6J mice. Results. Extract from the seeds of Eruca sativa and Sinapis alba showed the highest antioxidant capacity among the different species studied and were selected for nutraceutical formulation, which was potentially absorbable (73%) after an in vitro digestion process. In total, thirty compounds were identified in the nutraceutical that could be responsible for its antioxidant and tumoral prevention capacity. The intake of nutraceutical was a successful intervention to prevent the development of polyps by 31.6% and their size by 53.9%. When the nutritional intervention was used in combination with a physical exercise protocol, these parameters dropped to 52.3% and 62.6%, respectively. Conclusions. These findings suggest that the consumption of a diet rich in bioactive compounds from Brassica species, in combination with physical activity, is a valuable prevention strategy for colorectal cancer. However, more research is required to evaluate the efficacy and safety of these interventions in clinical settings.
Collapse
Affiliation(s)
- Ana Guzmán-Carrasco
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (J.M.P.); (A.G.-B.); (R.M.)
| | - Cristina Mesas
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Medical Oncology Service, Virgen de las Nieves Hospital, 18016 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jesús M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (J.M.P.); (A.G.-B.); (R.M.)
| | - Alejandro García-Beltrán
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (J.M.P.); (A.G.-B.); (R.M.)
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Sport and Health University Research Institute (IMUDS), Universidad de Granada, 18016 Granada, Spain; (J.M.P.); (A.G.-B.); (R.M.)
| | - Francisco Bermúdez
- Seed for Innovation S.L., Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 Almería, Spain;
| | - Mercedes Peña
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (A.G.-C.); (C.M.); (M.P.); (J.P.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Randisi F, Perletti G, Marras E, Gariboldi MB. Green Tea Components: In Vitro and In Vivo Evidence for Their Anticancer Potential in Colon Cancer. Cancers (Basel) 2025; 17:623. [PMID: 40002218 PMCID: PMC11853328 DOI: 10.3390/cancers17040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Green tea consumption has been implicated in various biological activities, with particular emphasis on its anticancer properties. The antineoplastic effects of green tea are primarily attributed to its rich polyphenol content, among which, epigallocatechin-3-gallate (EGCG) is recognized as the most bioactive and potent catechin, responsible for the majority of its anticancer activity. This review provides a detailed examination of the in vitro and in vivo effects of green tea components, focusing on their potential therapeutic implications in colorectal cancer. The molecular mechanisms of action and bioactive constituents of green tea are systematically discussed, alongside an evaluation of experimental evidence supporting their efficacy. Furthermore, insights into the relationship between green tea dietary intake and colorectal cancer risk are analyzed, with a particular emphasis on clinical data and findings from meta-analyses involving patients diagnosed with colon cancer. The aggregated evidence underscores the necessity for well-designed randomized controlled trials and longitudinal cohort studies to substantiate the role of green tea as a chemopreventive agent. Additionally, future investigations should prioritize determining the optimal dosages, the appropriate durations of consumption, and the potential modulatory effects of dietary or lifestyle factors on green tea's anticancer efficacy.
Collapse
Affiliation(s)
| | | | | | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (F.R.); (G.P.); (E.M.)
| |
Collapse
|
3
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
4
|
Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023; 14:1201085. [PMID: 37292151 PMCID: PMC10244546 DOI: 10.3389/fphar.2023.1201085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most notorious malignancies globally, has a high fatality and poor prognosis. Though remarkable breakthroughs have been made in the therapeutic strategies recently, the overall survival of HCC remains unsatisfactory. Consequently, the therapy of HCC remains a great challenge. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from the leaves of the tea bush, has been extensively investigated for its antitumor effects. In this review, we summarize the previous literature to elucidate the roles of EGCG in the chemoprophylaxis and therapy of HCC. Accumulating evidence has confirmed EGCG prevents and inhibits the hepatic tumorigenesis and progression through multiple biological mechanisms, mainly involving hepatitis virus infection, oxidative stress, proliferation, invasion, migration, angiogenesis, apoptosis, autophagy, and tumor metabolism. Furthermore, EGCG enhances the efficacy and sensitivity of chemotherapy, radiotherapy, and targeted therapy in HCC. In conclusion, preclinical studies have confirmed the potential of EGCG for chemoprevention and therapy of HCC under multifarious experimental models and conditions. Nevertheless, there is an urgent need to explore the safety and efficacy of EGCG in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
6
|
Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15121540. [PMID: 36558995 PMCID: PMC9787032 DOI: 10.3390/ph15121540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.
Collapse
|
7
|
Li D, Zhang Q, Zhou Y, Zhu H, Li T, Du F. A novel nitidine chloride nanoparticle overcomes the stemness of CD133 +EPCAM + Huh7 hepatocellular carcinoma cells for liver cancer therapy. BMC Pharmacol Toxicol 2022; 23:48. [PMID: 35820920 PMCID: PMC9277916 DOI: 10.1186/s40360-022-00589-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 01/15/2023] Open
Abstract
Background Stemness of CD133+EPCAM+ hepatocellular carcinoma cells ensures cancer resistance to apoptosis,which is a challenge to current liver cancer treatments. In this study, we evaluated the tumorcidal activity of a novel nanoparticle of nitidine chloride (TPGS-FA/NC, TPGS-FA: folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate, NC: nitidine chloride), against human hepatocellular carcinoma (HCC) cell line Huh7 growth in vitro and in vivo. Methods Huh7 cells were treated with TPGS-FA/NC. Cell proliferation was assessed using MTT and colony assays. The expression of cell markers and signaling proteins was detected using western blot analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Huh7 cells. TPGS-FA/NC (7.5, 15, 30, 60, 120 μg/mL) dose-dependently inhibited the proliferation of HCC cells, which associated with a reduction in AQP3 and STAT3 expression. Importantly,TPGS-FA/NC (10, 20, and 40 μg/mL) significantly reduced the EpCAM+/CD133+cell numbers, suppressed the sphere formation. The in vivo antitumor efficacy of TPGS-FA/NC was proved in Huh7 cell xenograft model in BALB/c nude mice, which were administered TPGS-FA/NC(4 mg· kg − 1· d − 1, ig) for 2 weeks. Results TPGS-FA/NC dose-dependently suppressed the AQP3/STAT3/CD133 axis in Huh7 cells. In Huh7 xenograft bearing nude mice, TPGS-FA/NC administration markedly inhibited Huh7 xenograft tumor growth . Conclusions TPGS-FA/NC inhibit HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the clinical therapy of hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00589-z.
Collapse
Affiliation(s)
- Danni Li
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China.
| | - Qiying Zhang
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| | - Yuzhu Zhou
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| | - Hua Zhu
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13 , Wu He street, Qingxiu District, Nanning, 530200, Guangxi Province, China
| | - Tong Li
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13 , Wu He street, Qingxiu District, Nanning, 530200, Guangxi Province, China
| | - Fangkai Du
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| |
Collapse
|
8
|
Khiewkamrop P, Surangkul D, Srikummool M, Richert L, Pekthong D, Parhira S, Somran J, Srisawang P. Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells. FEBS Open Bio 2022; 12:937-958. [PMID: 35243817 PMCID: PMC9063442 DOI: 10.1002/2211-5463.13391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022] Open
Abstract
The de novo lipogenesis (DNL) pathway has been identified as a regulator of cancer progression and aggressiveness. Downregulation of key lipogenesis enzymes has been shown to activate apoptosis in cancerous cells. Epigallocatechin gallate (EGCG) inhibits cancer cell proliferation without causing cytotoxicity in healthy cells. The present study aimed to investigate the effects of EGCG on the promotion of apoptosis associated with the DNL pathway inhibition in cancer cells, both in vitro and in vivo. We observed that two colorectal cancer cell lines (HCT116 and HT-29) had a higher cytotoxic response to EGCG treatment than hepatocellular carcinoma cells, including HepG2 and HuH-7. EGCG treatment decreased cell viability and increased mitochondrial damage-triggered apoptosis in both HCT116 and HT-29 cancer cells. Additionally, we treated mice transplanted with HCT116 cells with 30 or 50 mg·kg-1 EGCG for 7 days to evaluate the apoptotic effects of EGCG treatment in a xenograft mouse model of cancer. We observed a decrease in intracellular fatty acid levels, which suggested that EGCG-induced apoptosis was associated with a decrease in fatty acid levels in cancer. Suppression of ATP synthesis by EGCG indicated that cell death induction in cancer cells could be mediated by shared components of the DNL and energy metabolism pathways. In addition, EGCG-induced apoptosis suppressed the expression of the phosphorylation protein kinase B and extracellular signal-regulated kinase 1/2 signaling proteins in tumors from xenografted mice. Cytotoxic effects in unaffected organs and tissues of the mouse xenograft model were absent upon EGCG treatment.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Damratsamon Surangkul
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Metawee Srikummool
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Lysiane Richert
- KaLy‐CellPlobsheimFrance
- EA 4267 PEPITEUniversité de Bourgogne Franche‐ComtéBesançonFrance
| | - Dumrongsak Pekthong
- Department of Pharmacy PracticeFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | - Supawadee Parhira
- Department of Pharmaceutical TechnologyFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | - Julintorn Somran
- Department of PathologyFaculty of MedicineNaresuan UniversityPhitsanulokThailand
| | - Piyarat Srisawang
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
9
|
Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
11
|
Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021; 26:3483. [PMID: 34201125 PMCID: PMC8227701 DOI: 10.3390/molecules26123483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Amira Namsi
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Norbert Latruffe
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| |
Collapse
|
12
|
Lee DY, Song MY, Kim EH. Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants (Basel) 2021; 10:743. [PMID: 34067204 PMCID: PMC8151932 DOI: 10.3390/antiox10050743] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer still has a high incidence and mortality rate, according to a report from the American Cancer Society. Colorectal cancer has a high prevalence in patients with inflammatory bowel disease. Oxidative stress, including reactive oxygen species (ROS) and lipid peroxidation, has been known to cause inflammatory diseases and malignant disorders. In particular, the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-related protein 1 (KEAP1) pathway is well known to protect cells from oxidative stress and inflammation. Nrf2 was first found in the homolog of the hematopoietic transcription factor p45 NF-E2, and the transcription factor Nrf2 is a member of the Cap 'N' Collar family. KEAP1 is well known as a negative regulator that rapidly degrades Nrf2 through the proteasome system. A range of evidence has shown that consumption of phytochemicals has a preventive or inhibitory effect on cancer progression or proliferation, depending on the stage of colorectal cancer. Therefore, the discovery of phytochemicals regulating the Nrf2/KEAP1 axis and verification of their efficacy have attracted scientific attention. In this review, we summarize the role of oxidative stress and the Nrf2/KEAP1 signaling pathway in colorectal cancer, and the possible utility of phytochemicals with respect to the regulation of the Nrf2/KEAP1 axis in colorectal cancer.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| |
Collapse
|
13
|
Hussain Y, Luqman S, Meena A. Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches. Curr Top Med Chem 2021; 20:1791-1809. [PMID: 32357817 DOI: 10.2174/1568026620666200502005411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems. METHODS A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like "Anticancer drugs", "flavonoids", "oncology research", and "pharmacokinetics". RESULTS Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids. CONCLUSION This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid's pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.
Collapse
Affiliation(s)
- Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
14
|
Luo P, Wu S, Ji K, Yuan X, Li H, Chen J, Tian Y, Qiu Y, Zhong X. LncRNA MIR4435-2HG mediates cisplatin resistance in HCT116 cells by regulating Nrf2 and HO-1. PLoS One 2020; 15:e0223035. [PMID: 33232319 PMCID: PMC7685444 DOI: 10.1371/journal.pone.0223035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Cisplatin resistance is still a serious problem in the clinic. However, the underlying mechanism remains unknown. In our study, we investigated cisplatin resistance by using the cisplatin-resistant cell line HCT116R. METHODS The HCT116 cell line, a colon cancer cell line, was purchased. Cell viability was determined using CCK-8 Assay Kit. The gene expression levels of MIR4435-2HG, Nrf2, and HO-1, and caspase activity were determined using qRT-PCR and Caspase 3 Assay Kit, respectively. RESULTS In this study, we found that the levels of the lncRNA MIR4435-2HG were dramatically increased in the cisplatin-resistant cell line HCT116R. Knockdown of MIR4435-2HG in HCT116R cells significantly restored the sensitivity to cisplatin, inhibited cell proliferation and promoted cell apoptosis. Furthermore, Nrf2 and HO-1 mRNA levels, as critical molecules in the oxidative stress pathway, were inhibited by siRNAs targeting MIR4435-2HG, suggesting that MIR4435-2HG-mediated cisplatin resistance occurs through the Nrf2/HO-1 pathway. CONCLUSION Our findings demonstrate that the lncRNA MIR4435-2HG is a main factor driving the cisplatin resistance of HCT116 cells.
Collapse
Affiliation(s)
- Ping Luo
- Department of Breast Tumor of Nanchang Third Hospital, Nanchang, Jiangxi, China
| | - Shugui Wu
- Department of Oncology of Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Xia Yuan
- Department of Tumor Radiotherapy of Jiangxi Province Cancer Hospital, Nanchang, Jiangxi, China
| | - Hongmi Li
- Department of Tumor Radiotherapy of Jiangxi Province Cancer Hospital, Nanchang, Jiangxi, China
| | - Jinping Chen
- Department of Oncology of Yichun People’s Hospital, Yichun, Jiangxi, China
| | - Yunfei Tian
- Department of Interventional of Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Yang Qiu
- Department of Tumor Radiotherapy of Jiangxi Province Cancer Hospital, Nanchang, Jiangxi, China
- * E-mail: (YQ); (XZ)
| | - Xiaoming Zhong
- Department of Tumor Radiotherapy of Jiangxi Province Cancer Hospital, Nanchang, Jiangxi, China
- * E-mail: (YQ); (XZ)
| |
Collapse
|
15
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
16
|
Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α/ATF4 and IRE1 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3480569. [PMID: 31930117 PMCID: PMC6942794 DOI: 10.1155/2019/3480569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
Collapse
|
17
|
Zhang W, Zhang W, Sun L, Xiang L, Lai X, Li Q, Sun S. The effects and mechanisms of epigallocatechin-3-gallate on reversing multidrug resistance in cancer. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Xu XY, Zhao CN, Cao SY, Tang GY, Gan RY, Li HB. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2019; 60:1693-1705. [PMID: 30869995 DOI: 10.1080/10408398.2019.1588223] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tea is a traditional and popular beverage worldwide, and the consumption of tea has been demonstrated to possess many health benefits, such as cardiovascular protection, anti-obesity, anti-diabetes, and anticancer. Epidemiological studies have shown that the consumption of tea is inversely associated with the risk of several cancers. In addition, experimental studies have revealed that the anticancer actions of tea are mainly attributed to tea polyphenols, such as epigallocatechin-3-gallate and theaflavins. Both in vitro and in vivo studies have demonstrated that the possible anticancer mechanisms are the inhibition on proliferation, anti-angiogenesis, induction of apoptosis, suppression on metastasis, inhibition on cancer stem cells, and modulation on gut microbiota. Its synergetic anticancer effects with drugs or other compounds could promote anticancer therapies. Furthermore, clinical trials have elucidated that intervention of tea phytochemicals is effective in the prevention of several cancers. This paper is an updated review for the prevention and management of cancers by tea based on the findings from epidemiological, experimental and clinical studies, and special attention is paid on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Rady I, Mohamed H, Rady M, Siddiqui IA, Mukhtar H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hadir Mohamed
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A. Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
20
|
Bimonte S, Albino V, Piccirillo M, Nasto A, Molino C, Palaia R, Cascella M. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: experimental findings and translational perspectives. Drug Des Devel Ther 2019; 13:611-621. [PMID: 30858692 PMCID: PMC6387605 DOI: 10.2147/dddt.s180079] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a primary liver malignancy, is one of the deadliest cancers worldwide. Despite orthotopic liver transplantation and hepatic resection representing the principal lines of treatment for this pathology, only a minority of patients can be resected owing to cirrhosis or late diagnosis. Keeping in mind the end goal of conquering these challenges, new alternative approaches have been proposed. Accumulating evidence has demonstrated that epigallocatechin-3-gallate (EGCG), the principal catechin of green tea with multiple biological properties, is able to modulate different molecular mechanisms underlying HCC, mainly through its antioxidant activity. In this article, we revise these findings reported in the literature, in order to highlight the potential roles of EGCG in the treatment of HCC. The CAMARADES criteria were applied for quality assessment of animal studies, and a narrative synthesis performed. New bits of information available for translational perspectives into clinical practice are addressed.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy,
| | - Vittorio Albino
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy
| | - Mauro Piccirillo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy
| | - Aurelio Nasto
- UOC Chirurgia Generale ad Indirizzo Oncologico, POA Tortora, Pagani, Salerno, Italy
| | - Carlo Molino
- A Cardarelli Chirurgia Generale - AORN, Naples, Italy
| | - Raffaele Palaia
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy,
| |
Collapse
|
21
|
Zhang S, Zhao Y, Ohland C, Jobin C, Sang S. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radic Biol Med 2019; 131:332-344. [PMID: 30578921 PMCID: PMC6345541 DOI: 10.1016/j.freeradbiomed.2018.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
The in vivo mechanism of tea polyphenol-mediated prevention of many chronic diseases is still largely unknown. Studies have shown that accumulation of toxic reactive cellular metabolites, such as ammonia and reactive carbonyl species (RCS), is one of the causing factors to the development of many chronic diseases. In this study, we investigated the in vivo interaction between (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in tea leaves, and ammonia and RCS. We found that EGCG could be oxidized to EGCG quinone in mice, and then rapidly react with ammonia to generate the aminated EGCG metabolite, 4'-NH2-EGCG. Both EGCG and its aminated metabolite could further scavenge RCS, such as methylglyoxal (MGO), malondialdehyde (MDA), and trans-4-hydroxy-2-nonenal (4-HNE), to produce the RCS conjugates of EGCG and the aminated EGCG. Both the aminated and the RCS conjugated metabolites of EGCG were detected in human after drinking four cups of green tea per day. By comparing the levels of the aminated and the RCS conjugated metabolites in EGCG exposed germ-free (GF) mice and specific-pathogen-free (SPF) mice, we demonstrated that gut microbiota facilitate the formation of the aminated metabolite of EGCG, the RCS conjugates of EGCG, and the RCS conjugates of the aminated EGCG. By comparing the trapping capacities of EGCG and its aminated metabolite under aerobic and anaerobic conditions, we found that oxygen is not essential for the trapping of reactive species by EGCG and 4'-NH2-EGCG suggesting that EGCG and its aminated metabolite could scavenge RCS in the GI track and in the circulation system. Altogether, this study provides in vivo evidences that EGCG has the capacity to scavenge toxic reactive metabolic wastes. This finding opens a new window to understand the underlying mechanisms by which drinking tea could prevent the development of chronic diseases.
Collapse
Affiliation(s)
- Shuwei Zhang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Christina Ohland
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
22
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
23
|
Jiang P, Xu C, Chen L, Chen A, Wu X, Zhou M, Haq IU, Mariyam Z, Feng Q. EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells. Mol Carcinog 2018; 57:1835-1844. [DOI: 10.1002/mc.22901] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Lijun Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Ijaz ul Haq
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
24
|
Nurdin SU, Le Leu RK, Aburto-Medina A, Young GP, Stangoulis JCR, Ball AS, Abbott CA. Effects of Dietary Fibre from the Traditional Indonesian Food, Green Cincau ( Premna oblongifolia Merr.) on Preneoplastic Lesions and Short Chain Fatty Acid Production in an Azoxymethane Rat Model of Colon Cancer. Int J Mol Sci 2018; 19:E2593. [PMID: 30200383 PMCID: PMC6164679 DOI: 10.3390/ijms19092593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Green cincau (Premna oblongifolia Merr.) is a traditional food of Indonesia and provides a natural source of dietary fibre and antioxidants. This study evaluated the ability of green cincau, and other dietary fibres with or without the addition of anti-oxidant, epigallocatechin-3-gallate (EGCG), to prevent colorectal cancer in a 12 week azoxymethane (AOM) rat model. While all dietary treatments stimulated short chain fatty acid production (SCFA) in the digesta and faeces, no one treatment was able to significantly protect against aberrant crypt formation (ACF), when compared to the control diet. However, feeding green cincau leaves or extracts did not result in an increase in ACF compared to the control diet. Unexpectedly, when the dietary fibre source was pectin, 0.1% EGCG increased proliferative activity and liver lipid peroxidation when compared to the control diet containing cellulose. Examination of faecal microbial communities identified the presence of short chain acid producing bacteria, but a distinct community profile was not observed from any individual diet group. Overall, this research implies that combining dietary fibre with an antioxidant does not automatically equate to a beneficial response. Further work is required to investigate the health-promoting properties of green cincau.
Collapse
Affiliation(s)
- Samsu U Nurdin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Richard K Le Leu
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Arturo Aburto-Medina
- School of Science, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia.
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Andy S Ball
- School of Science, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia.
| | - Catherine A Abbott
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| |
Collapse
|
25
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
26
|
SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:37. [PMID: 29475441 PMCID: PMC6389193 DOI: 10.1186/s13046-018-0689-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Doxorubicin is the preferred chemotherapeuticdrug for osteosarcoma treatment of which clinical efficacy is limited because of its chemo-resistance and cardiac toxicity. It is necessary to develop the combination regimen with complementary molecular mechanisms to reduce the side effects and enhance sensitivity of Doxorubicin. EGCG is a polyphenol in green tea with antitumor bioactivity,which has been found that its combination with certain chemotherapeutic drugs could improve the antitumor efficiency. METHODS In this study, MTT assay was used to detect the cell growth inhibition The CD133+/CD44+ cells were isolated from U2OS and SaoS2 cell lines using magnetic-activated cell sorting and identified by flow cytometry analysis. qRT-PCR was used for determining the relative mRNA levels of key genes. Immunofluorescence was performed to evaluate the autophagy flux alterations. Self-renewal ability was accessed by sphere-forming assay. Tumorigenicity in nude mice was preformed to evaluate tumorigenicity in vivo. RESULTS We found that EGCG targeting LncRNA SOX2OT variant 7 produced synergistic effects with Doxorubicin on osteosarcoma cell growth inhibition. On the one hand, EGCG could reduce the Doxorubicin-induced pro-survival autophagy through decreasing SOX2OT variant 7 to improve the growth inhibition of Doxorubicin. On the other hand, EGCG could partially inactivate Notch3/DLL3 signaling cascade targeting SOX2OT variant 7 to reduce the stemness then abated drug-resistance of osteosarcoma cells. CONCLUSIONS This study will help to reveal the molecular mechanisms of synergistic effects of EGCG and Doxorubicin on OS chemotherapy and improve the clinical efficacy of chemotherapy as well as provide a basis for developing antitumor drugs targeting osteosarcoma stem cells.
Collapse
|
27
|
Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget 2018; 7:20180-92. [PMID: 26933999 PMCID: PMC4991446 DOI: 10.18632/oncotarget.7745] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
The feature of oral squamous cell carcinomas (OSCC) is commonly metastasizing to locoreginal lymph nodes, and the involvement of lymph nodes metastasis represents the one of important prognostic factors of poor clinical outcome. MicroRNAs (miRNAs) have been shown to be key players of cancer-related hallmarks including cancer stemness, EMT (epithelial-mesenchymal transition), and metastaisis. Herein we showed that OSCC-derived ALDH1+ cancer stem cells (OSCC-CSCs) express lower level of miR-204, and miR-204 over-expression suppresses cancer stemness and in vivo tumor-growth of OSCC-CSCs. miR-204 binds on their 3′UTR-regions of Slug and Sox4 and suppressing their expression in OSCC-CSCs. On the contrary, down-regulation of miR-204 significantly increased cancer stemness and the lymph nodes incidence of orthotopic animal models. Furthermore, co-knockdown with sh-Slug and sh-Sox4 synergistically rescued miR-204-supressing cancer stemness and EMT properties. Clinical results further revealed that a miR-204lowSlughighSox4high signature predicted the worse survival prognosis of OSCC patients by Kaplan-Meier survival analyses. Up-regulated miR-204-targeting Slug and Sox4 by epigallocatechin-3-gallate (EGCG) treatment significantly inhibited the proliferation rate, self-renewal capacity, and the percentage of ALDH1+ and CD44+ cells in OSCC-CSCs Oral-feeding of EGCG effectively alleviated tumor-progression in OSCC-CSCs-xenotransplanted immunocompromised mice through miR-204 activation. In conclusion, miR-204-mediated suppression of cancer stemness and EMT properties could be partially augmented by the anti-CSCs effect of EGCG.
Collapse
|
28
|
Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev 2017; 120:89-107. [PMID: 28736304 DOI: 10.1016/j.addr.2017.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 12/18/2022]
Abstract
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC.
Collapse
Affiliation(s)
- Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany.
| | - Manish Solanki
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| |
Collapse
|
30
|
Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J Cancer Res Clin Oncol 2017; 143:2401-2412. [PMID: 28942499 PMCID: PMC5693978 DOI: 10.1007/s00432-017-2515-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Purpose Our previous experiments show that the main constituent of green-tea catechins, (−)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. Methods The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Results Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Conclusions Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.
Collapse
|
31
|
Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46:84-106. [PMID: 28676460 DOI: 10.1016/j.semcancer.2017.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 139, Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 3 Hristo Botev Blvd., Plovdiv 4000, Bulgaria; Clinic of Maxillofacial Surgery, University Hospital St. George, 66 Peshtersko Shosse Blvd., Plovdiv 4002, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Sheikh Bahaei St., P.O. Box 19395, 5487 Tehran, Iran
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; MEDFUTURE -Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republici 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
32
|
(-)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway. Nutrients 2017; 9:nu9060572. [PMID: 28587207 PMCID: PMC5490551 DOI: 10.3390/nu9060572] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of tea consumption on cancer prevention have been generally reported, while (−)-Epigallocatechin-3-gallate (EGCG) is the major active component from green tea. Cancer stem cells (CSCs) play a crucial role in the process of cancer development. Targeting CSCs may be an effective way for cancer intervention. However, the effects of EGCG on colorectal CSCs and the underlying mechanisms remain unclear. Spheroid formation assay was used to enrich colorectal CSCs from colorectal cancer cell lines. Immunoblotting analysis and quantitative real-time polymerase chain reaction were used to measure the alterations of critical molecules expression. Immunofluorescence staining analysis was also used to determine the expression of CD133. We revealed that EGCG inhibited the spheroid formation capability of colorectal cancer cells as well as the expression of colorectal CSC markers, along with suppression of cell proliferation and induction of apoptosis. Moreover, we illustrated that EGCG downregulated the activation of Wnt/β-catenin pathway, while upregulation of Wnt/β-catenin diminished the inhibitory effects of EGCG on colorectal CSCs. Taken together, this study suggested that EGCG could be an effective natural compound targeting colorectal CSCs through suppression of Wnt/β-catenin pathway, and thus may be a promising agent for colorectal cancer intervention.
Collapse
|
33
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017. [DOI: 10.1080/10408398.2016.1231168 pmid: 27645804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
34
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017; 58:924-941. [PMID: 27645804 DOI: 10.1080/10408398.2016.1231168] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Ren-You Gan
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Hua-Bin Li
- c Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhong-Quan Sui
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China
| | - Harold Corke
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
35
|
Redondo-Blanco S, Fernández J, Gutiérrez-Del-Río I, Villar CJ, Lombó F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front Pharmacol 2017; 8:109. [PMID: 28352231 PMCID: PMC5348533 DOI: 10.3389/fphar.2017.00109] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Claudio J Villar
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
36
|
Müller S, Cañeque T, Acevedo V, Rodriguez R. Targeting Cancer Stem Cells with Small Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201600109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Müller
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Tatiana Cañeque
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Verónica Acevedo
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| | - Raphaël Rodriguez
- Institut Curie Research Center; CNRS UMR 3666; Organic Synthesis and Cell Biology Group; 26 rue d'Ulm 75248 Paris France
| |
Collapse
|
37
|
Wu SM, Lin SL, Lee KY, Chuang HC, Feng PH, Cheng WL, Liao CJ, Chi HC, Lin YH, Tsai CY, Chen WJ, Yeh CT, Lin KH. Hepatoma cell functions modulated by NEK2 are associated with liver cancer progression. Int J Cancer 2017; 140:1581-1596. [PMID: 27925179 DOI: 10.1002/ijc.30559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 12/22/2022]
Abstract
NEK2 (NIMA-related expressed kinase 2) is a serine/threonine centrosomal kinase that acts as a critical regulator of centrosome structure and function. Aberrant NEK2 activities lead to failure in regulating centrosome duplication. NEK2 overexpression promotes tumorigenesis and is associated with poor prognosis in several cancers. Increased NEK2 expression during the late pathological stage has been detected in the Oncomine liver dataset and hepatocellular carcinoma (HCC) specimens. Elevated NEK2 protein is associated with poor overall survival in patients with HCC. However, the precise roles and mechanisms of NEK2 in liver cancer progression remain largely unknown. An earlier functional study revealed that NEK2 mediates drug resistance (cisplatin or lipo-doxorubicin) via expression of an ABCC10 transporter. Active angiogenesis and metastasis underlie the rapid recurrence and poor survival of HCC. Results from the current study showed that NEK2 mediates tumor growth, metastasis and angiogenesis in vivo. NEK2-mediated drug resistance was blocked by a specific PI3K or AKT inhibitor. Moreover, NEK2 mediated liver cancer cell migration via pAKT/NF-κB signaling and matrix metalloproteinase (MMP) activation. Angiogenesis was induced via the same signaling pathway and IL-8 stimulation. Our findings collectively indicate that NEK2 modulates hepatoma cell functions, including growth, drug resistance, metastasis and angiogenesis via downstream genes activation.
Collapse
Affiliation(s)
- Sheng-Ming Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Syuan-Ling Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan, Taiwan
| |
Collapse
|