1
|
Wang T, Li L, Liu L, Tan R, Wu Q, Zhu X, Hua H, Dai Y, Li H, Mao J, Zhao J, Yin Z. Overview of pharmacodynamical research of traditional Chinese medicine on hyperuricemic nephropathy: from the perspective of dual-regulatory effect on the intestines and kidneys. Front Pharmacol 2025; 16:1517047. [PMID: 40264662 PMCID: PMC12011833 DOI: 10.3389/fphar.2025.1517047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Uncontrolled hyperuricemia contributes to chronic kidney disease, characterized by renal inflammatory cell infiltration and tubulointerstitial fibrosis, eventually leading to renal failure. In addition to liver and kidney, the intestine tract plays a vital role in the development and progression of hyperuricemia and hyperuricemic nephropathy (HN) through various mechanisms. The conventional therapeutic strategy for HN is uric acid-lowering therapy (ULT) and renal protection; however, unsatisfactory results are often obtained in clinical practice. Growing evidence has demonstrated that traditional Chinese medicines (TCMs) achieve an anti-HN effect by modulating multiple targets and approaches with fewer side effects. Therefore, this paper reviews the pathogenesis of HN, including the role of soluble and insoluble urates in kidney and intestine, and the role of intestinal tract in the progression of HN. Meanwhile, the recent advancements in TCMs for the treatment of HN are summarized and analyzed, with a focus on their modulation of intestinal flora and metabolites, urate-related transporters, immuno-inflammation and barrier function in the intestines. Notably, for the first time, we propose the perspective that TCMs treat HN through a dual-regulatory effect on the intestines and kidneys. Additionally, the problems existing in current research and the feasible research strategies combined with emerging technologies such as fermentation and nanotechnology are discussed, thus providing novel ideas for HN management.
Collapse
Affiliation(s)
- Ting Wang
- Country School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Li Li
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Li Liu
- Sichuan Institute for Translational Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Qinxuan Wu
- Changsha Medical University, Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha, China
| | - Xin Zhu
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Hua Hua
- Sichuan Institute for Translational Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ying Dai
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Huan Li
- Sichuan Acupuncture and Moxibustion School, Chengdu, China
| | - Jiuzhou Mao
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Junning Zhao
- Country School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhujun Yin
- Sichuan Academy of Chinese Medicine Sciences, Institute of Pharmacology & Toxicology of Chinese Materia Medica, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Changsha Medical University, Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha, China
| |
Collapse
|
2
|
Lin P, Zhang L, Tang X, Wang J. Exploring the causal association between uric acid and lung cancer in east Asian and European populations: a mendelian randomization study. BMC Cancer 2024; 24:801. [PMID: 38965453 PMCID: PMC11225240 DOI: 10.1186/s12885-024-12576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Lung cancer still ranks first in the mortality rate of cancer. Uric acid is a product of purine metabolism in humans. Its presence in the serum is controversial; some say that its high levels have a protective effect against tumors, others say the opposite, that is, high levels increase the risk of cancer. Therefore, the aim of this study was to investigate the potential causal association between serum uric acid levels and lung cancer. METHODS Mendelian randomization was used to achieve our aim. Sensitivity analyses was performed to validate the reliability of the results, followed by reverse Mendelian analyses to determine a potential reverse causal association. RESULTS A significant causal association was found between serum uric acid levels and lung cancer in East Asian and European populations. Further sublayer analysis revealed a significant causal association between uric acid and small cell lung cancer, while no potential association was observed between uric acid and non-small cell lung cancer, squamous lung cancer, and lung adenocarcinoma. The sensitivity analyses confirmed the reliability of the results. Reverse Mendelian analysis showed no reverse causal association between uric acid and lung cancer. CONCLUSIONS The results of this study suggested that serum uric acid levels were negatively associated with lung cancer, with uric acid being a potential protective factor for lung cancer. In addition, uric acid level monitoring was simple and inexpensive. Therefore, it might be used as a biomarker for lung cancer, promoting its wide use clinical practice.
Collapse
Affiliation(s)
- Ping Lin
- Department of Radiotherapy, The Second Hospital of Longyan, Longyan, 364000, Fujian Province, China.
| | - Linxiang Zhang
- Department of Dermatology, The Second Hospital of Longyan, Longyan, 364000, Fujian Province, China
| | - Xiaohui Tang
- Department of Pathology, The Second Hospital of Longyan, Longyan, 364000, Fujian Province, China
| | - Jihuang Wang
- Department of Radiotherapy, The Second Hospital of Longyan, Longyan, 364000, Fujian Province, China
| |
Collapse
|
3
|
Wu S, Xue W, Yu H, Yu H, Shi Z, Wang L, Peng A. Serum uric acid levels and health outcomes in CKD: a prospective cohort study. Nephrol Dial Transplant 2024; 39:510-519. [PMID: 37698875 DOI: 10.1093/ndt/gfad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Hyperuricemia is prevalent in individuals with chronic kidney disease (CKD). Elevated serum uric acid (SUA) concentrations have been considered an independent risk factor for the onset of CKD. However, the relationship between SUA concentrations and long-term health outcomes among patients with CKD remains unclear. METHODS We performed a prospective cohort study with nationally representative sample to investigate the relationship between SUA concentrations and mortality risk including all-cause, cardiovascular disease (CVD) and cancer mortality, among patients with CKD. The weighted restricted cubic spline analyses combined with the multivariate-adjusted Cox proportional hazard models were used to test the nonlinearity of relationship. RESULTS The 6642 patients participating in National Health and Nutrition Examination Survey 1999-2018 were enrolled. During 656 885 person-months of follow-up time, 2619 all-cause deaths were recorded, including 1030 CVD deaths and 458 cancer deaths. Our study presented J-shaped non-linear relationships between SUA concentrations and all-cause and CVD mortality with inflection points at 311.65 μmol/L and 392.34 μmol/L, respectively. When SUA concentration was higher than those inflection points, every increase of 50 μmol/L SUA was associated with 11.7% and 17.0% greater multivariable-adjusted hazard ratio of all-cause and CVD mortality, respectively. In addition, a negative linear correlation with cancer mortality was detected. CONCLUSION These findings suggested that maintaining appropriate SUA concentrations may improve long-term health outcomes among CKD patients. The corresponding inflection points of J-shaped non-linear relationships were 311.65 and 392.34 μmol/L for all-cause and CVD mortality. Further clinical trials are required to investigate uric acid-lowering targets.
Collapse
Affiliation(s)
- Shijie Wu
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Wen Xue
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hanqing Yu
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hanjie Yu
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhaoqiang Shi
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ling Wang
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ai Peng
- Center for Nephrology and Clinical Metabolomics and Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
4
|
Rodríguez-Rovira I, López-Sainz A, Palomo-Buitrago ME, Pérez B, Jiménez-Altayó F, Campuzano V, Egea G. Hyperuricaemia Does Not Interfere with Aortopathy in a Murine Model of Marfan Syndrome. Int J Mol Sci 2023; 24:11293. [PMID: 37511051 PMCID: PMC10379183 DOI: 10.3390/ijms241411293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or pro-oxidant properties depending on the concentration and accumulation site. We aimed to evaluate whether hyperuricaemia causes harm or relief in MFS aortopathy pathogenesis. Two-month-old male wild-type (WT) and MFS mice (Fbn1C1041G/+) were injected intraperitoneally for several weeks with potassium oxonate (PO), an inhibitor of uricase (an enzyme that catabolises UA to allantoin). Plasma UA and allantoin levels were measured via several techniques, aortic root diameter and cardiac parameters by ultrasonography, aortic wall structure by histopathology, and pNRF2 and 3-NT levels by immunofluorescence. PO induced a significant increase in UA in blood plasma both in WT and MFS mice, reaching a peak at three and four months of age but decaying at six months. Hyperuricaemic MFS mice showed no change in the characteristic aortic aneurysm progression or aortic wall disarray evidenced by large elastic laminae ruptures. There were no changes in cardiac parameters or the redox stress-induced nuclear translocation of pNRF2 in the aortic tunica media. Altogether, the results suggest that hyperuricaemia interferes neither with aortopathy nor cardiopathy in MFS mice.
Collapse
Affiliation(s)
- Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Angela López-Sainz
- Department of Cardiology, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | | | - Belen Pérez
- Department of Pharmacology, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08192 Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08192 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- UZA/UA Center of Medical Genetics, University of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
5
|
Wen Y, Xu J, Pan D, Wang C. Removal of substrate inhibition of Acinetobacter baumannii xanthine oxidase by point mutation at Gln-201 enables efficient reduction of purine content in fish sauce. Food Chem X 2023; 17:100593. [PMID: 36845495 PMCID: PMC9944496 DOI: 10.1016/j.fochx.2023.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Xanthine oxidase is an oxidase that has a molybdopterin structure with substrate inhibition. Here, we show that a single point mutation (Q201) in the Acinetobacter baumannii xanthine oxidase (AbXOD) obtained mutant Q201E (k cat =799.44 s-1, no inhibition) with high enzyme activity and decrease of substrate inhibition in 5 mmol/L high substrate model, and which cause two loops structure change at active center, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Molecular docking results showed that the change of flexible loop increased the affinity between substrate and enzyme, and the formation of a π-π bond and two hydrogen bonds made the substrate more stable in the active center. Ultimately, Q201E can still maintain better enzyme activity under high purine content (an approximately 7-fold improvement over the wild-type), indicating a broader application prospect in the manufacture of low-purine food.
Collapse
Affiliation(s)
- You Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Jiahui Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Donglei Pan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Chenghua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| |
Collapse
|
6
|
Wu H, Dai R, Wang M, Chen C. Uric acid promotes myocardial infarction injury via activating pyrin domain-containing 3 inflammasome and reactive oxygen species/transient receptor potential melastatin 2/Ca 2+pathway. BMC Cardiovasc Disord 2023; 23:10. [PMID: 36627567 PMCID: PMC9830724 DOI: 10.1186/s12872-023-03040-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.
Collapse
Affiliation(s)
- Haiyun Wu
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Ruozhu Dai
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Min Wang
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Chengbo Chen
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| |
Collapse
|
7
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
8
|
Huang Y, Chen R, Yang S, Chen Y, Lü X. The Mechanism of Interaction Between Gold Nanoparticles and Human Dermal Fibroblasts Based on Integrative Analysis of Transcriptomics and Metabolomics Data. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this paper was to combine transcriptomics and metabolomics to analyze the mechanism of gold nanoparticles (GNPs) on human dermal fibroblasts (HDFs). First, 20-nm GNPs were prepared, and the differentially expressed genes in HDFs were subsequently screened by transcriptome
sequencing technology after 4, 8, and 24 h of treatment with GNPs. By comparing the metabolic pathways in which the metabolites obtained in a previous study were involved, the pathways involving both genes and metabolites were filtered, and the differentially expressed genes and metabolites
with upstream and downstream relationships were screened out. The gene–metabolite–metabolic pathway network was further constructed, and the functions of metabolic pathways, genes and metabolites in the important network were analyzed and experimentally verified. The results of
transcriptome sequencing experiments showed that 1904, 1216 and 489 genes were differentially expressed in HDFs after 4, 8 and 24 h of treatment with GNPs, and these genes were involved in 270, 235 and 163 biological pathways, respectively. Through the comparison and analysis of the metabolic
pathways affected by the metabolites, 7, 3 and 2 metabolic pathways with genes and metabolites exhibiting upstream and downstream relationships were identified. Through analysis of the gene–metabolite–metabolic pathway network, 4 important metabolic pathways, 9 genes and 7 metabolites
were identified. Combined with the results of verification experiments on oxidative stress, apoptosis, the cell cycle, the cytoskeleton and cell adhesion, it was found that GNPs regulated the synthesis of downstream metabolites through upstream genes in important metabolic pathways. GNPs inhibited
oxidative stress and thus did not induce significant apoptosis, but they exerted effects on several cellular functions, including arresting the cell cycle and affecting the cytoskeleton and cell adhesion.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Shuci Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Ye Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| |
Collapse
|
9
|
Cell-free probiotic supernatant (CFS) treatment alleviates indomethacin-induced enterocolopathy in BALB/c mice by down-modulating inflammatory response and oxidative stress: potential alternative targeted treatment. Inflammopharmacology 2022; 30:1685-1703. [PMID: 35505268 DOI: 10.1007/s10787-022-00996-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Probiotics and their metabolites appear to be a promising approach that targets both the intestinal inflammation and dysbiosis in bowel diseases. In this context, the emergence of the probiotic cell-free supernatant (CFS) has attracted more attention as a safe and targeted alternative therapy with reduced side effects. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) can cause significant intestinal alterations and inflammation, leading to experimental enterocolopathy resembling Crohn disease. Therefore, we investigated the effect of CFS supplementation on the inflammation and the mucosal intestinal alterations induced by NSAIDs, indomethacin. In the current study, a murine model of intestinal inflammation was generated by the oral gavage (o.g) of indomethacin (10 mg/kg) to BALB/C mice. A group of mice treated with indomethacin was concomitantly treated orally by CFS for 5 days. The Body Health Condition index was monitored, and histological scores were evaluated. Moreover, oxidative and pro-inflammatory markers were assessed. Interestingly, we observed that CFS treatment attenuated the severity of the intestinal inflammation in our enterocolopathy model and resulted in the improvement of the clinical symptoms and the histopathological features. Notably, nitric oxide, tumor necrosis factor alpha, malondialdehyde, and myeloperoxidase levels were down-modulated by CFS supplementation. Concomitantly, an attenuation of NF-κB p65, iNOS, COX2 expression in the ileum and the colon was reported. Collectively, our data suggest that CFS treatment has a beneficial effect in experimental enterocolopathy model and could constitute a good therapeutic candidate for alleviating inflammatory responses and to maintain mucosal homeostasis during chronic and severe conditions of intestinal inflammation.
Collapse
|
10
|
Wang M, Wu J, Jiao H, Oluwabiyi C, Li H, Zhao J, Zhou Y, Wang X, Lin H. Enterocyte synthesizes and secrets uric acid as antioxidant to protect against oxidative stress via the involvement of Nrf pathway. Free Radic Biol Med 2022; 179:95-108. [PMID: 34954337 DOI: 10.1016/j.freeradbiomed.2021.12.307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
The gut is an important site to excreting uric acid (UA) in addition to the kidney. The gastrointestinal tract is constantly exposed to various potentially harmful substances, triggering intestinal oxidative damage. In the present study, the hypothesis that UA is can be synthesized to function as an antioxidant in the gut is evaluated. The synthesis and secretion of UA by enterocytes were analyzed in the presence of inosine, a precursor of UA, febuxostat (Fx), an inhibitor of xanthine oxidase (XOR), and H2O2. The regulation of Nrf2 pathway on UA secretion and transport were evaluated in the present of agonist (TBHQ) and inhibitor (ML385) of Nrf2. The in vivo result showed that UA and its oxidation product allantoin were presented in gut contents along the gastrointestinal tract and the highest level of UA and allantoin were detected in duodenum and jejunum respectively. The genes in the de novo purine nucleotide synthesis and salvage-catabolism pathways, and UA transporters were expressed in the intestinal tract. In the in vitro cultured enterocytes and everted gut sacs, inosine stimulated UA synthesis and secretion. H2O2 stimulated UA synthesis and secretion and meanwhile induced oxidative damage. UA attenuated H2O2-induced oxidative damage by Nrf2 pathway. UA secretion and transport were reduced by blocking Nrf2 with ML385, while increased by activating Nrf2 with TBHQ. This study provides new insights into the antioxidant effects if UA on intestinal lumen. The result suggests that activation of Nrf2 pathway is involved in the transportation and secretion of UA.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Jianmin Wu
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Hongchao Jiao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Cecilia Oluwabiyi
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Jingpeng Zhao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China
| | - Xiaojuan Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| | - Hai Lin
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, PR China.
| |
Collapse
|
11
|
Protective Effect of Luminal Uric Acid Against Indomethacin-Induced Enteropathy: Role of Antioxidant Effect and Gut Microbiota. Dig Dis Sci 2022; 67:121-133. [PMID: 33569665 DOI: 10.1007/s10620-021-06848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uric acid (UA) has anti- and pro-inflammatory properties. We previously revealed that elevated serum UA levels provide protection against murine small intestinal injury probably via luminal UA secreted in the small intestine. Luminal UA may act as an antioxidant, preventing microbiota vulnerability to oxidative stress. However, whether luminal UA is increased under hyperuricemia and plays a protective role in a dose-dependent manner as well as the mechanism by which luminal UA exerts its protective effects on enteropathy remains unknown. METHODS Inosinic acid (IMP) (1000 mg/kg, i.p.) was administered to obtain high serum UA (HUA) and moderate serum UA (500 mg/kg IMP, i.p.) mice. UA concentrations and levels of oxidative stress markers in the serum and intestine were measured. Mice received indomethacin (20 mg/kg, i.p.) to evaluate the effects of UA on indomethacin-induced enteropathy. Reactive oxygen species (ROS) on the ileal mucosa were analyzed. The fecal microbiota of HUA mice was transplanted to investigate its effect on indomethacin-induced enteropathy. RESULTS IMP increased luminal UA dose-dependently, with higher levels of luminal antioxidant markers. Indomethacin-induced enteropathy was significantly ameliorated in both UA-elevated groups, with decreased indomethacin-induced luminal ROS. The microbiota of HUA mice showed a significant increase in α-diversity and a significant difference in β-diversity from the control. Fecal microbiota transplantation from HUA mice ameliorated indomethacin-induced enteropathy. CONCLUSIONS The protective role of luminal UA in intestinal injury is likely exerted via oxidative stress elimination and microbiota composition modulation, preferably for gut immunity. Therefore, enhancing anaerobic conditions using antioxidants is a potential therapeutic target.
Collapse
|
12
|
Uric Acid-An Emergent Risk Marker for Thrombosis? J Clin Med 2021; 10:jcm10102062. [PMID: 34065792 PMCID: PMC8150596 DOI: 10.3390/jcm10102062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Hyperuricemia is nowadays an established cardiovascular risk factor. Experimental studies linked elevated serum uric acid (SUA) levels with endothelial dysfunction (ED), inflammation, and prothrombotic state. The purpose of this review is to summarize the current evidence that emphasizes the possible role of uric acid as a biomarker for a prothrombotic state. A large number of clinical trials correlated SUA levels with both incident and recurrent cases of venous thromboembolism (VTE), independent of other confounding risk factors. Moreover, increased SUA levels may be an important tool for the risk stratification of patients with pulmonary embolism (PE). Left atrial thrombosis was correlated with high SUA levels in several studies and its addition to classical risk scores improved their predictive abilities. In patients with acute myocardial infarction (MI), hyperuricemia was associated with increased mortality, and the idea that hyperuricemia may be able to act as a surrogate to unstable coronary plaques was advanced. Finally, SUA was correlated with an increased risk of thromboembolic events in different systemic diseases. In conclusion, uric acid has been considered a marker of a thrombotic milieu in several clinical scenarios. However, this causality is still controversial, and more experimental and clinical data is needed.
Collapse
|
13
|
Shen S, He F, Cheng C, Xu B, Sheng J. Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed Pharmacother 2021; 133:110990. [PMID: 33232925 DOI: 10.1016/j.biopha.2020.110990] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis pathway has been linked to myocardial ischemia-reperfusion (MI/R) injury. This study explored whether uric acid (UA) aggravates MI/R injury through NLRP3 inflammasome-mediated pyroptosis. METHODS In vivo, a mouse MI/R model was established by ligating the left coronary artery, and a mouse hyperuricemia model was created by intraperitoneal injection of potassium oxonate (PO). Then, the myocardial infarction (MI) size; terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) immunofluorescence; and serum levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), and UA, as well as the expression level of pyroptosis-related protein and caspase-3 in heart tissues, were measured. Separately, primary mouse cardiomyocytes were cultured in vitro to create a hypoxia/reoxygenation (H/R) model. We then compared cardiomyocytes viability, TUNEL immunofluorescence, and the levels of LDH, reactive oxygen species (ROS), and pyroptosis-related protein and caspase-3 in cardiomyocytes. RESULTS In vivo, the MI area, levels of CK-MB and LDH, rate of cell death, and pyroptosis-related protein and the expression of caspase-3 were significantly higher in the MI/R group than in the sham group, and high UA levels worsened these changes. In vitro, cardiomyocytes viability was significantly downregulated, and the levels of ROS, LDH, pyroptosis-related protein, caspase-3, and the rate of cardiomyocyte death were significantly higher in the H/R + UA group compared with the HR group. Administration of an NLRP3 inflammasome inhibitor and ROS scavenger reversed these effects. CONCLUSION UA aggravates MI/R-induced activation of the NLRP3 inflammatory cascade and pyroptosis by promoting ROS generation, while inflammasome inhibitors and ROS scavengers partly reverse the injury.
Collapse
Affiliation(s)
- ShiChun Shen
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, No. 678 FuRong Road, Hefei, Anhui Province, 230601, China.
| | - Fei He
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, No. 678 FuRong Road, Hefei, Anhui Province, 230601, China.
| | - Cheng Cheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, No. 678 FuRong Road, Hefei, Anhui Province, 230601, China.
| | - BangLong Xu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, No. 678 FuRong Road, Hefei, Anhui Province, 230601, China.
| | - JianLong Sheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, No. 678 FuRong Road, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
14
|
Sánchez-Trigueros MI, Méndez-Cruz F, Pineda-Peña EA, Rivera-Espinoza Y, Castañeda-Hernández G, Chávez-Piña AE. Synergistic protective effects between docosahexaenoic acid and omeprazole on the gastrointestinal tract in the indomethacin-induced injury model. Drug Dev Res 2020; 82:543-552. [PMID: 33319390 DOI: 10.1002/ddr.21772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs due to their antipyretic, anti-inflammatory, and analgesic properties. However, NSAIDs can cause adverse reactions, mainly gastrointestinal damage. Omeprazole (OMP) exhibits gastroprotective activity, but its protection is limited at the intestinal level. For this reason, it is essential to utilize a combination of therapies that provide fewer adverse effects, such as the combined treatment of OMP and docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-inflammatory, analgesic, and gastroprotective activities. The objective of this study was to evaluate the pharmacological interaction between DHA and OMP in a murine model of indomethacin-induced gastrointestinal damage. The gastroprotective and enteroprotective effects of DHA (0.3-10 mg/kg, p.o.), OMP (1-30 mg/kg, p.o.), or the combination treatment of both compounds (3-56.23 mg/kg, p.o.) were evaluated in the indomethacin-induced gastrointestinal damage model (30 mg/kg, p.o.). Since DHA and OMP exhibited a protective effect in a dose-responsive fashion, the ED30 for each individual compound was determined and a 1:1 combination of DHA and OMP was tested. Isobolographic analysis was used to determine any pharmacodynamic interactions. Since the effective experimental dose ED30 (Zexp) of the combined treatment of DHA and OMP was lower than the theoretical additive dose (Zadd; p < .05) in both the stomach and small intestine their protective effects were considered synergistic. These results indicate that the synergistic protective effects from combined treatment of DHA and OMP could be ideal for mitigating damage generated by NSAIDs at the gastrointestinal level.
Collapse
Affiliation(s)
- Martha Ivonne Sánchez-Trigueros
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Fidel Méndez-Cruz
- Laboratorio de Farmacología, Programa de Servicio Social en Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH) del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Elizabeth Arlen Pineda-Peña
- Carrera Médico Cirujano, Facultad de Estudios Superiores Zaragoza, Campus I, Iztapalapa, Ciudad de México, Mexico
| | - Yadira Rivera-Espinoza
- Doctorado en Ciencias en Biotecnología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gilberto Castañeda-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
15
|
Wang J, Fan Y, Cai X, Gao Z, Yu Z, Wei B, Tang Y, Hu L, Liu WT, Gu Y. Uric acid preconditioning alleviated doxorubicin induced JNK activation and Cx43 phosphorylation associated cardiotoxicity via activation of AMPK-SHP2 signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1570. [PMID: 33437769 PMCID: PMC7791217 DOI: 10.21037/atm-20-3105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Doxorubicin is an anthracycline antibiotic, which is effective for treating various malignancies such as leukemias and lymphomas. However, its serious cumulative dose-dependent cardiotoxicity limits its clinical application. Previous studies have shown that doxorubicin-associated cardiotoxicity is closely related to adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). Uric acid is known to exert a strong antioxidant function and moderate protection on the nerves. However, its cardioprotective properties have not been established. This study aimed to investigate the potential effect of uric acid preconditioning on doxorubicin-induced cardiotoxicity and the involvement of AMPK signaling in this process. Methods An acute cardiotoxicity model of doxorubicin was established by intraperitoneal injection of a single dose of doxorubicin (20 mg/kg) in mice. Uric acid (62.5, 125, and 250 mg/kg) was intragastrically administered to mice one day before doxorubicin treatment and then continuously administered every 24 h for 8 consecutive days. The mortality rate and weight of the mice were recorded every day. Electrocardiograms (ECG) and serum biochemicals were detected with an ECG instrument and enzyme-linked immunosorbent assay kit (Elisa) respectively. A real-time cell analyzer (RTCA) was used to investigate the cytotoxicity of doxorubicin in vitro. Cell signaling was assayed by western blotting. Results Uric acid (125 mg/kg) preconditioning increased the survival rate and body weight of doxorubicin-treated mice. Uric acid also effectively alleviated prolongation of the doxorubicin-induced QT interval, slowed heart rate, and reduced the plasma levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK) in plasma in mice. Moreover, uric acid strongly activated AMPK and Src homology 2 domain-containing protein tyrosine phosphatase (SHP2), inhibiting doxorubicin-induced expression phosphorylated-c-Jun N-terminal kinases (JNK) and phosphorylated-connexin 43 (Cx43) in vitro and in vivo and effectively reversing the doxorubicin-induced decreased viability of H9C2 myocardial cells in vitro. Conclusions We demonstrated that uric acid preconditioning alleviated doxorubicin-induced cardiotoxicity through the AMPK-SHP2-JNK-Cx43 signaling pathway.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yixin Fan
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Cai
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Gao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyi Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wei
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yanhong Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ghafarzadeh S, Hobbenaghi R, Tamaddonfard E, Farshid AA, Imani M. Crocin exerts improving effects on indomethacin-induced small intestinal ulcer by antioxidant, anti-inflammatory and anti-apoptotic mechanisms. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:277-284. [PMID: 32206222 PMCID: PMC7065578 DOI: 10.30466/vrf.2018.93512.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/03/2018] [Indexed: 01/07/2023]
Abstract
Crocin is a plant-derived carotenoid and bears potent antioxidant property. Ranitidine (a histamine H2 receptor blocker) is used for peptic ulcer treatment. The present study was planned to investigate the effects of crocin and ranitidine on indomethacin-induced ulcer in small intestine of rats. Animals were randomized into two major groups including indo-methacin (10.00 mg kg-1, ulcer group, 48 rats) and normal saline (1.00 mL kg-1, intact group, 48 rats) groups. Each of these two major groups was subdivided into eight subgroups for intra-peritoneal (IP) injections of normal saline, crocin (2.50, 10.00 and 40.00 mg kg-1), ranitidine (5.00 and 20.00 mg kg-1), crocin (2.50 and 10.00 mg kg-1) plus ranitidine (5.00 mg kg-1). Indomethacin induced intestinal ulcer was characterized by bleeding, inflammation, epithelial hyperplasia and crypt loss. This non-steroidal anti-inflammatory drug (NSAID), indomethacin decreased goblet cell number and superoxide dismutase (SOD) activity and increased small intestine weight, organo-somatic index (OSI), malodealdehyde (MDA), tumor necrosis factor-α (TNF-α) and caspase-3 contents of intestine. Crocin resolved all the above-mentioned parameter changes induced by indomethacin. These treatments produced no significant effects on the above-mentioned parameters of intact group. The results of the present study showed tissue protective and anti-ulcer effects of crocin on small intestine by antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Ranitidine alone showed no effect; however, in combination with crocin it exerted recovery effects. It is recommended that crocin, be considered as a therapeutic agent for NSAIDs-induced intestinal damage management.
Collapse
Affiliation(s)
- Sadat Ghafarzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Abbas Farshid
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
17
|
Doyle C, Cristofaro V, Sullivan MP, Adam RM. Inosine - a Multifunctional Treatment for Complications of Neurologic Injury. Cell Physiol Biochem 2018; 49:2293-2303. [PMID: 30261493 DOI: 10.1159/000493831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) caused by trauma or disease leads to motor and sensory abnormalities that depend on the level, severity and duration of the lesion. The most obvious consequence of SCI is paralysis affecting lower and upper limbs. SCI also leads to loss of bladder and bowel control, both of which have a deleterious, life-long impact on the social, psychological, functional, medical and economic well being of affected individuals. Currently, there is neither a cure for SCI nor is there adequate management of its consequences. Although medications provide symptomatic relief for the complications of SCI including muscle spasms, lower urinary tract dysfunction and hyperreflexic bowel, strategies for repair of spinal injuries and recovery of normal limb and organ function are still to be realized. In this review, we discuss experimental evidence supporting the use of the naturally occurring purine nucleoside inosine to improve the devastating sequelae of SCI. Evidence suggests inosine is a safe, novel agent with multifunctional properties that is effective in treating complications of SCI and other neuropathies.
Collapse
Affiliation(s)
- Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|