1
|
Korenblum E, Massalha H, Aharoni A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. THE PLANT CELL 2022; 34:3168-3182. [PMID: 35678568 PMCID: PMC9421461 DOI: 10.1093/plcell/koac163] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 05/30/2023]
Abstract
Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.
Collapse
Affiliation(s)
- Elisa Korenblum
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon 7528809, Israel
| | - Hassan Massalha
- Theory of Condensed Matter Group, Cavendish Laboratory, Wellcome Sanger Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
3
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Yee MO, Kim P, Li Y, Singh AK, Northen TR, Chakraborty R. Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. Front Microbiol 2021; 12:625752. [PMID: 33841353 PMCID: PMC8032546 DOI: 10.3389/fmicb.2021.625752] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
The rhizosphere is a dynamic ecosystem shaped by complex interactions between plant roots, soil, microbial communities and other micro- and macro-fauna. Although studied for decades, critical gaps exist in the study of plant roots, the rhizosphere microbiome and the soil system surrounding roots, partly due to the challenges associated with measuring and parsing these spatiotemporal interactions in complex heterogeneous systems such as soil. To overcome the challenges associated with in situ study of rhizosphere interactions, specialized plant growth chamber systems have been developed that mimic the natural growth environment. This review discusses the currently available lab-based systems ranging from widely known rhizotrons to other emerging devices designed to allow continuous monitoring and non-destructive sampling of the rhizosphere ecosystems in real-time throughout the developmental stages of a plant. We categorize them based on the major rhizosphere processes it addresses and identify their unique challenges as well as advantages. We find that while some design elements are shared among different systems (e.g., size exclusion membranes), most of the systems are bespoke and speaks to the intricacies and specialization involved in unraveling the details of rhizosphere processes. We also discuss what we describe as the next generation of growth chamber employing the latest technology as well as the current barriers they face. We conclude with a perspective on the current knowledge gaps in the rhizosphere which can be filled by innovative chamber designs.
Collapse
Affiliation(s)
- Mon Oo Yee
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Kim
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Yifan Li
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Trent R. Northen
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
5
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
6
|
Cao Y, Ma C, Chen H, Zhang J, White JC, Chen G, Xing B. Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122428. [PMID: 32208308 DOI: 10.1016/j.jhazmat.2020.122428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Due to high biomass and an ability to accumulate metals, fast-growing tree species are good candidates for phytoremediation. However, little is known about the long-distance transport of heavy metals in woody plants. The present work focused on the xylem transport and phloem remobilization of copper (Cu) in Salix integra Thunb. Seedlings with 45 d preculture were grown in nutrient solutions added with 0.32 and 10 μM CuSO4 for 5 d. Micro X-ray fluorescence imaging showed the high Cu intensity in xylem tissues of both stem and root cross sections, confirming that the xylem played a vital role in Cu transport from roots to shoots. Cu was presented in both xylem sap and phloem exudate, which demonstrates the long-distance transport of Cu via both vascular tissues. Additionally, the 65Cu spiked mature leaf exported approximately 78 % 65Cu to newly emerged shoots, and approximately 22 % downward to the new roots, confirming the bidirectional transport of Cu via phloem. To our knowledge, this is the first report to characterize Cu vascular transport and remobilization in fast-growing woody plants, and the findings provide valuable mechanistic understanding for the phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Yini Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States
| | - Hongjun Chen
- Hunan Commodities Quality Supervision and Inspection Institute, Changsha, 410007, China
| | - Jianfeng Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
7
|
Agapit C, Gigon A, Girin T, Leitao L, Blouin M. Split-root system optimization based on the survival, growth and development of the model Poaceae Brachypodium distachyon. PHYSIOLOGIA PLANTARUM 2020; 168:227-236. [PMID: 30950064 DOI: 10.1111/ppl.12971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 05/09/2023]
Abstract
Split-root system has been developed to better understand plant response to environmental factors, by exposing two separate parts of a single root system to heterogeneous situations. Surprisingly, there is no study attempting to maximize plant survival, growth and root system structure through a statistically sound comparison of different experimental protocols. Here, we aim at optimizing split-root systems on the model plant for Poaceae and cereals Brachypodium distachyon in terms of plant survival, number of roots and their equal distribution between the two compartments. We tested the effect of hydroponic or soil as growing media, with or without change of media at the transplantation step. The partial or total cutting of roots and/or shoots was also tested in different treatments as it could have an influence on plant access to energy and water and consequently on survival, growth and root development. Growing plants in soil before and after transplantation in split-root system was the best condition to get the highest survival rate, number of coleoptile node axile roots and growth. Cutting the whole root system was the best option to have a high root biomass and length at the end of the experiment. However, cutting shoots was detrimental for plant growth, especially in terms of root biomass production. In well-watered conditions, a plant submitted to a transfer in a split-root system is thus mainly lacking energy to produce new roots thanks to photosynthesis or adaptive autophagy, not water or nutrients.
Collapse
Affiliation(s)
- Corinne Agapit
- Institute of Ecology and Environmental Sciences of Paris (UMR 7618), UPEC, Créteil, France
| | - Agnès Gigon
- Institute of Ecology and Environmental Sciences of Paris (UMR 7618), UPEC, Créteil, France
| | - Thomas Girin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Luis Leitao
- Institute of Ecology and Environmental Sciences of Paris (UMR 7618), UPEC, Créteil, France
| | - Manuel Blouin
- Agroécologie, AgroSup Dijon CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
8
|
Sorroche F, Walch M, Zou L, Rengel D, Maillet F, Gibelin-Viala C, Poinsot V, Chervin C, Masson-Boivin C, Gough C, Batut J, Garnerone AM. Endosymbiotic Sinorhizobium meliloti modulate Medicago root susceptibility to secondary infection via ethylene. THE NEW PHYTOLOGIST 2019; 223:1505-1515. [PMID: 31059123 DOI: 10.1111/nph.15883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.
Collapse
Affiliation(s)
| | - Mathilda Walch
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Lan Zou
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Fabienne Maillet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Véréna Poinsot
- Laboratoire IMRCP, UMR 5623 Université de Toulouse, CNRS, Toulouse, France
| | | | | | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jacques Batut
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
9
|
Xiong X, Liu N, Wei YQ, Bi YX, Luo JC, Xu RX, Zhou JQ, Zhang YJ. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:434-444. [PMID: 30290335 DOI: 10.1016/j.plaphy.2018.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A split-root system was established to investigate the effects of uniform (0/0, 50/50, and 200/200 mM salt [NaCl]) and non-uniform (0/200 and 50/200 mM NaCl) salt stress on growth, ion regulation, and the antioxidant defense system of alfalfa (Medicago sativa) by comparing a salt-tolerant (Zhongmu No.1) and salt-sensitive (Algonquin) cultivar. We found that non-uniform salinity was associated with greater plant growth rate and shoot dry weight, lower leaf Na+ concentration, higher leaf potassium cation (K+) concentration, lower lipid peroxidation, and greater superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7) activities, compared to uniform salt stress in both alfalfa cultivars. Under non-uniform salinity, a significant increase in Na+ concentration and Na+ efflux and a decline in K+ efflux in the no-saline or low-saline part of the roots alleviated salt damage. Our results also demonstrated that proline and antioxidant enzymes accumulated in both the no- or low-saline and high-saline roots, revealing that osmotic adjustment and antioxidant defense had systemic rather than localized effects in alfalfa plants, and there was a functional equilibrium within the root system under non-uniform salt stress. The salt-tolerant cultivar Zhongmu No.1 exhibited greater levels of growth compared to Algonquin under both uniform and non-uniform salt stress, with Na+ tolerance and efflux abilities more effective and greater antioxidant defense capacity evident for cultivar Zhongmu No.1.
Collapse
Affiliation(s)
- Xue Xiong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; Hebei Normal University for Nationalities, Chengde, 067000, China
| | - Nan Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yu-Qi Wei
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yi-Xian Bi
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Jian-Chuan Luo
- Institute of Grassland Research of CAAS, Huhhot, 010010, China
| | - Rui-Xuan Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Ji-Qiong Zhou
- Department of Grassland Science, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying-Jun Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China; Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture, Beijing, 100094, China.
| |
Collapse
|
10
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
11
|
Hidalgo Á, Ruiz-Sainz JE, Vinardell JM. A New, Nondestructive, Split-Root System for Local and Systemic Plant Responses Studies with Soybean. Methods Mol Biol 2018; 1734:297-306. [PMID: 29288463 DOI: 10.1007/978-1-4939-7604-1_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants use long-distance signaling mechanisms to coordinate their growth and control their interactions, positive or negative, with microbes. Split-root systems (SRS) have been used to study the relevance of both local and systemic plant mechanisms that participate in the control of rhizobia-legume symbioses. In this work we have developed a modification of the standard split-root system (SRS) used with soybean. This modified method, unlike previous systems, operates in hydroponics conditions and therefore is nondestructive and allows for the continuous monitoring of soybean roots throughout the whole experiment.
Collapse
Affiliation(s)
- Ángeles Hidalgo
- Department of Microbiology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012, Seville, Spain
| | - José E Ruiz-Sainz
- Department of Microbiology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012, Seville, Spain
| | - José M Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012, Seville, Spain.
| |
Collapse
|
12
|
Hidalgo Á, López-Baena FJ, Ruiz-Sainz JE, Vinardell JM. Studies of rhizobial competitiveness for nodulation in soybean using a non-destructive split-root system. AIMS Microbiol 2017; 3:323-334. [PMID: 31294164 PMCID: PMC6605011 DOI: 10.3934/microbiol.2017.2.323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
Split-root systems (SRS) constitute an appropriate methodology for studying the relevance of both local and systemic mechanisms that participate in the control of rhizobia-legume symbioses. In fact, this kind of approach allowed to demonstrate the autoregulation of nodulation (AON) systemic response in soybean in the 1980s. In SRS, the plant main root is cut and two lateral roots that emerge from the seedlings after root-tip removal are confined into separate compartments. After several days of growth, these plants have two separate roots that can be inoculated with the same or with different bacteria, at the same or at different times. In this work, we have used a non-destructive SRS to study two different competitiveness relations between rhizobial strains in soybean roots. One of them is the competition for nodulation between two soybean-nodulating rhizobia: the slow-grower Bradyrhizobium japonicum USDA110 and the fast-grower Sinorhizobium fredii HH103. The second is the competitive blocking of S. fredii 257DH4 nodulation in the American soybean Osumi by Sinorhizobium fredii USDA257, which is unable to nodulate American soybeans. Our results showed that the competitiveness relationships studied in this work are mitigated or even avoided when the competitive strains are spatially separated in different compartments containing half-roots from the same plant, suggesting that competitive relations are more related to local plant responses. In our opinion, split-root systems are an appropriate approach to further study competitive relations among rhizobial strains.
Collapse
Affiliation(s)
- Ángeles Hidalgo
- Department of Microbiology, Faculty of Biology, University of Seville, Avda, Reina Mercedes 6, 41012-Sevilla, Spain
| | - Francisco-Javier López-Baena
- Department of Microbiology, Faculty of Biology, University of Seville, Avda, Reina Mercedes 6, 41012-Sevilla, Spain
| | - José-Enrique Ruiz-Sainz
- Department of Microbiology, Faculty of Biology, University of Seville, Avda, Reina Mercedes 6, 41012-Sevilla, Spain
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Avda, Reina Mercedes 6, 41012-Sevilla, Spain
| |
Collapse
|
13
|
Ma Y, He X, Zhang P, Zhang Z, Ding Y, Zhang J, Wang G, Xie C, Luo W, Zhang J, Zheng L, Chai Z, Yang K. Xylem and Phloem Based Transport of CeO 2 Nanoparticles in Hydroponic Cucumber Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5215-5221. [PMID: 28383248 DOI: 10.1021/acs.est.6b05998] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Uptake and translocation of manufactured nanoparticles (NPs) in plants have drawn much attention due to their potential toxicity to the environment, including food webs. In this paper, the xylem and phloem based transport of CeO2 NPs in hydroponic cucumber plants was investigated using a split-root system. One half of the root system was treated with 200 or 2000 mg/L of CeO2 NPs for 3 days, whereas the other half remained untreated, with both halves sharing the same aerial part. The quantitative distribution and speciation of Ce in different plant tissues and xylem sap were analyzed by inductively coupled plasma-mass spectrometry, transmission electron microscope, X-ray absorption near edge structure, and X-ray fluorescence. Results show that about 15% of Ce was reduced from Ce(IV) to Ce(III) in the roots of the treated-side (TS), while almost all of Ce remained Ce(IV) in the blank-side (BS). The detection of CeO2 or its transformation products in the xylem sap, shoots, and BS roots indicates that Ce was transported as a mixture of Ce(IV) and Ce(III) from roots to shoots through xylem, while it was transported almost only in the form of CeO2 from shoots back to roots through phloem. To our knowledge, this is the first report of root-to-shoot-to-root redistribution after transformation of CeO2 NPs in plants, which has significant implications for food safety and human health.
Collapse
Affiliation(s)
- Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Ke Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204, China
| |
Collapse
|
14
|
Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Susana Goggi A, Gardea-Torresdey JL, Holden PA. Damage assessment for soybean cultivated in soil with either CeO 2 or ZnO manufactured nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1756-1768. [PMID: 27939199 DOI: 10.1016/j.scitotenv.2016.11.149] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 05/27/2023]
Abstract
With increasing use, manufactured nanomaterials (MNMs) may enter soils and impact agriculture. Herein, soybean (Glycine max) was grown in soil amended with either nano-CeO2 (0.1, 0.5, or 1.0gkg-1 soil) or nano-ZnO (0.05, 0.1, or 0.5gkg-1 soil). Leaf chlorosis, necrosis, and photosystem II (PSII) quantum efficiency were monitored during plant growth. Seed protein and protein carbonyl, plus leaf chlorophyll, reactive oxygen species (ROS), lipid peroxidation, and genotoxicity were measured for plants at harvest. Neither PSII quantum efficiency, seed protein, nor protein carbonyl indicated negative MNM effects. However, increased ROS, lipid peroxidation, and visible damage, along with decreased total chlorophyll concentrations, were observed for soybean leaves in the nano-CeO2 treatments. These effects correlated to aboveground leaf, pod, and stem production, and to root nodule N2 fixation potential. Soybeans grown in soil amended with nano-ZnO maintained growth, yield, and N2 fixation potential similarly to the controls, without increased leaf ROS or lipid peroxidation. Leaf damage was observed for the nano-ZnO treatments, and genotoxicity appeared for the highest nano-ZnO treatment, but only for one plant. Total chlorophyll concentrations decreased with increasing leaf Zn concentration, which was attributable to zinc complexes-not nano-ZnO-in the leaves. Overall, nano-ZnO and nano-CeO2 amended to soils differentially triggered aboveground soybean leaf stress and damage. However, the consequences of leaf stress and damage to N2 fixation, plant growth, and yield were only observed for nano-CeO2.
Collapse
Affiliation(s)
- John H Priester
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States; Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States
| | - Shelly Cole Moritz
- Earth Research Institute, University of California, Santa Barbara, CA 93106, United States
| | - Katherine Espinosa
- Department of Agronomy, Iowa State University, Ames, IA 50011, United States
| | - Yuan Ge
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States; Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States
| | - Ying Wang
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States; Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States
| | - Roger M Nisbet
- Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States; Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, United States
| | - Joshua P Schimel
- Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States; Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, United States
| | - A Susana Goggi
- Department of Agronomy, Iowa State University, Ames, IA 50011, United States
| | - Jorge L Gardea-Torresdey
- University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States; Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States; Earth Research Institute, University of California, Santa Barbara, CA 93106, United States; University of California Center for the Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
15
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
16
|
Can Clethra barbinervis Distinguish Nickel and Cobalt in Uptake and Translocation? Int J Mol Sci 2015; 16:21378-91. [PMID: 26370968 PMCID: PMC4613258 DOI: 10.3390/ijms160921378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Clethra barbinervis Sieb. et Zucc. accumulates Nickel (Ni) and Cobalt (Co) at high concentrations., We hypothesized that C. barbinervis cannot distinguish between Ni and Co because of the similar chemical properties of these two elements. To confirm this hypothesis and understand the role of these elements in C. barbinervis, we conducted a hydroponic split-root experiment using Ni and Co solutions. We found that the bioconcentration factor (BCF; metal concentration of each tissue/metal concentrations of each treatment solution) of Ni and Co did not significantly differ in the roots, but the BCF for Co was higher than that for Ni in the leaves. The leaves of C. barbinervis accumulated Ni or Co at high concentrations. We also found the simultaneous accumulation of Ni and Co by the multiple heavy metal treatments (Ni and Co) at high concentrations similar to those for the single treatments (Ni or Co). Elevated sulfur concentrations occurred in the roots and leaves of Co-treated seedlings but not in Ni. This result indicates that S was related to Co accumulation in the leaves. These results suggest that C. barbinervis distinguishes between Ni and Co during transport and accumulation in the leaves but not during root uptake.
Collapse
|
17
|
Gómez-Sagasti MT, Marino D. PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation? FRONTIERS IN PLANT SCIENCE 2015; 6:81. [PMID: 25763004 PMCID: PMC4340175 DOI: 10.3389/fpls.2015.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/30/2015] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is a toxic, biologically non-essential and highly mobile metal that has become an increasingly important environmental hazard to both wildlife and humans. In contrast to conventional remediation technologies, phytoremediation based on legume-rhizobia symbiosis has emerged as an inexpensive decontamination alternative which also revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years, there is a growing interest in understanding symbiotic legume-rhizobia relationship and its interactions with Cd. The aim of the present review is to provide a comprehensive picture of the main effects of Cd in N2-fixing leguminous plants and the benefits of exploiting this symbiosis together with plant growth promoting rhizobacteria to boost an efficient reclamation of Cd-contaminated soils.
Collapse
Affiliation(s)
- María T. Gómez-Sagasti
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque CountryBilbao, Spain
- *Correspondence: María T. Gómez-Sagasti, Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain e-mail:
| | - Daniel Marino
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, University of the Basque CountryBilbao, Spain
- Ikerbasque, Basque Foundation for ScienceBilbao, Spain
| |
Collapse
|