1
|
Gorshkova T, Gorshkov O, Mokshina N. How it all begins: molecular players of the early graviresponse in the non-elongating part of flax stem. PLANT MOLECULAR BIOLOGY 2025; 115:61. [PMID: 40285981 DOI: 10.1007/s11103-025-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Plants have developed two major strategies to adjust their position in response to gravity: differential cell growth on opposing sides of elongating regions and complex processes in non-elongating stem parts, such as the development of reaction wood. Gravistimulation of flax plants induces gravitropic curvature in non-elongating stem parts, largely associated with modifications in phloem and xylem fibers. To gain insight into the key "triggers" and "forward players" that induce negative gravitropic reactions, transcriptome profiling of phloem fibers and xylem tissues from the pulling and opposite stem sides was conducted 1 and 8 h after gravistimulation. The first observed reaction was the activation of processes associated with RNA synthesis and protein folding in both tissues and stem sides, followed by the activation of kinases and transferases. Transcriptomic data revealed rapid and substantial shifts in chloroplast metabolism across all analyzed tissues, including the temporal activation of the branched-chain amino acid pathway, adjustments to light-harvesting complexes, and jasmonic acid biosynthesis. Notably, auxin transporter genes were activated only in the xylem, while other auxin-related genes showed minimal upregulation 1 h after stem inclination in any analyzed sample. Asymmetric changes between stem sides included the sharp activation of ethylene-related genes in the phloem fibers of the opposite stem side, as well as tertiary cell wall deposition in both the phloem and xylem fibers of the pulling stem side during the later stages of the graviresponse. These results provide valuable insights into the mechanisms underlying plant response to gravity.
Collapse
Affiliation(s)
- Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia.
| |
Collapse
|
2
|
Yun C, Ma W, Feng J, Li L. Branching angles in the modulation of plant architecture: Molecular mechanisms, dynamic regulation, and evolution. PLANT COMMUNICATIONS 2025; 6:101292. [PMID: 40007121 PMCID: PMC12010374 DOI: 10.1016/j.xplc.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants develop branches to expand areas for assimilation and reproduction. Branching angles coordinate with branching types, creating diverse plant shapes that are adapted to various environments. Two types of branching angle-the angle between shoots and the angle in relation to gravity or the gravitropic set-point angle (GSA) along shoots-determine the spacing between shoots and the shape of the aboveground plant parts. However, it remains unclear how these branching angles are modulated throughout shoot development and how they interact with other factors that contribute to plant architecture. In this review, we systematically focus on the molecular mechanisms that regulate branching angles across various species, including gravitropism, anti-gravitropic offset, phototropism, and other regulatory factors, which collectively highlight comprehensive mechanisms centered on auxin. We also discuss the dynamics of branching angles during development and their relationships with branching number, stress resistance, and crop yield. Finally, we provide an evolutionary perspective on the conserved role of auxin in the regulation of branching angles.
Collapse
Affiliation(s)
- Chen Yun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wanzhuang Ma
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Jun Feng
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lanxin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Huang LC, Li YY, Lai JX, An Y, Song XQ, Zhao ST, Zhang J, Lu MZ. Superoxide anions induce tension wood formation by promoting cambium cell activity. PLANT PHYSIOLOGY 2024; 197:kiae672. [PMID: 39715459 DOI: 10.1093/plphys/kiae672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024]
Abstract
Tension wood (TW), characterized by increased cambium cell proliferation and few vessels, is a classical model for the mechanical analysis of wood formation. In this study, we found higher superoxide anion (O2.-) levels in the cambium zone of poplar (Populus alba × P. glandulosa clone "84K") TW than in that of opposite wood during gravistimulation. Treatment with an O2.- activator (methyl viologen) resulted in tension-wood-like xylem tissue formation, and transgenic plants with reduced cambium O2.- levels presented an attenuated gravity response. Time-course detection of O2.- and indole-3-acetic acid (IAA) levels revealed that auxin responses were enhanced following increases in O2.- levels, suggesting that IAA mediates TW induction downstream of O2.-. Rapid division but advanced programmed cell death in cambium cells was detected in both gravistimulated and O2.- activator-treated plants. These findings suggest that high O2.- levels trigger downstream IAA signaling to promote cambium cell proliferation and induce TW formation.
Collapse
Affiliation(s)
- Li-Chao Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Yu Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian-Xin Lai
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100094, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100094, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Xu W, Cheng H, Cheng J, Zhu S, Cui Y, Wang C, Wu J, Lan X, Cheng Y. A COBRA family protein, PtrCOB3, contributes to gelatinous layer formation of tension wood fibers in poplar. PLANT PHYSIOLOGY 2024; 196:323-337. [PMID: 38850037 DOI: 10.1093/plphys/kiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabeling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified 3 transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a 2-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yongyao Cui
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jianzhen Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Xie Q, Ahmed U, Qi C, Du K, Luo J, Wang P, Zheng B, Shi X. A protocol for identifying universal reference genes within a genus based on RNA-Seq data: a case study of poplar stem gene expression. FORESTRY RESEARCH 2024; 4:e021. [PMID: 39524407 PMCID: PMC11524287 DOI: 10.48130/forres-0024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 11/16/2024]
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) plays a crucial role in relative gene expression analysis, and accurate normalization relies on suitable reference genes (RGs). In this study, a pipeline for identifying candidate RGs from publicly available stem-related RNA-Seq data of different Populus species under various developmental and abiotic stress conditions is presented. DESeq2's median of ratios yielded the smallest coefficient of variance (CV) values in a total of 292 RNA-Seq samples and was therefore chosen as the method for sample normalization. A total of 541 stably expressed genes were retrieved based on the CV values with a cutoff of 0.3. Universal gene-specific primer pairs were designed based on the consensus sequences of the orthologous genes of each Populus RG candidate. The expression levels of 12 candidate RGs and six reported RGs in stems under different abiotic stress conditions or in different Populus species were assessed by RT-qPCR. The expression stability of selected genes was further evaluated using ΔCt, geNorm, NormFinder, and BestKeeper. All candidate RGs were stably expressed in different experiments and conditions in Populus. A test dataset containing 117 RNA-Seq samples was then used to confirm the expression stability, six candidate RGs and three reported RGs met the requirement of CV ≤ 0.3. In summary, this study was to propose a systematic and optimized protocol for the identification of constitutively and stably expressed genes based on RNA-Seq data, and Potri.001G349400 (CNOT2) was identified as the best candidate RG suitable for gene expression studies in poplar stems.
Collapse
Affiliation(s)
- Qi Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Ahmed
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Kebing Du
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengcheng Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueping Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Urbancsok J, Donev EN, Sivan P, van Zalen E, Barbut FR, Derba-Maceluch M, Šimura J, Yassin Z, Gandla ML, Karady M, Ljung K, Winestrand S, Jönsson LJ, Scheepers G, Delhomme N, Street NR, Mellerowicz EJ. Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. THE NEW PHYTOLOGIST 2023; 240:2312-2334. [PMID: 37857351 DOI: 10.1111/nph.19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.
Collapse
Affiliation(s)
- János Urbancsok
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Evgeniy N Donev
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Pramod Sivan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Elena van Zalen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Félix R Barbut
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Zakiya Yassin
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | | | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, 78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Gerhard Scheepers
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
7
|
Mokshina NE, Mikshina PV, Gorshkova TA. Expression of Cellulose Synthase Genes During the Gravistimulation of Flax (Linum usitatissimum) and Poplar (Populus alba × tremula) Plants. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202203013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sousa-Baena MS, Onyenedum JG. Bouncing back stronger: Diversity, structure, and molecular regulation of gelatinous fiber development. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102198. [PMID: 35286861 DOI: 10.1016/j.pbi.2022.102198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Gelatinous fibers (G-fibers) are specialized contractile cells found in a diversity of vascular plant tissues, where they provide mechanical support and/or facilitate plant mobility. G-fibers are distinct from typical fibers by the presence of an innermost thickened G-layer, comprised mainly of axially oriented cellulose microfibrils. Despite the disparate developmental origins-tension wood fibers from the vascular cambium or primary phloem fibers from the procambium-G-fiber development, composition, and molecular signatures are remarkably similar; however, important distinctions do exist. Here, we synthesize current knowledge of the phylogenetic diversity, compositional makeup, and the molecular profiles that characterize G-fiber development and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Mariane S Sousa-Baena
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA.
| | - Joyce G Onyenedum
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Chery JG, Glos RAE, Anderson CT. Do woody vines use gelatinous fibers to climb? THE NEW PHYTOLOGIST 2022; 233:126-131. [PMID: 34160082 DOI: 10.1111/nph.17576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Many plant movements are facilitated by contractile cells called gelatinous fibers (G-fibers), but how G-fibers function in the climbing movements of woody vines remains underexplored. In this Insight, we compare the presence and distribution of G-fibers in the stems of stem-twiners, which wrap around supports, with non-stem-twiners, which attach to supports via tendrils or adventitious roots. An examination of 164 species spanning the vascular plant phylogeny reveals that G-fibers are common in stem-twiners but scarce in non-stem-twiners, suggesting that G-fibers are preferentially formed in the organ responsible for movement. When present, G-fibers are in the xylem, phloem, pericycle, and/or cortex. We discuss the hypothesis that G-fibers are foundational to plant movement and highlight research opportunities concerning G-fiber development and function.
Collapse
Affiliation(s)
- Joyce G Chery
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Rosemary A E Glos
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Liu B, Liu J, Yu J, Wang Z, Sun Y, Li S, Lin YCJ, Chiang VL, Li W, Wang JP. Transcriptional reprogramming of xylem cell wall biosynthesis in tension wood. PLANT PHYSIOLOGY 2021; 186:250-269. [PMID: 33793955 PMCID: PMC8154086 DOI: 10.1093/plphys/kiab038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/02/2023]
Abstract
Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of black cottonwood (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 heat-shock TF (HSFB3-1) and MYB092. Transcriptomic analysis and chromatin immunoprecipitation (ChIP) were used to identify direct TF-DNA interactions in P. trichocarpa xylem protoplasts overexpressing the TFs. This analysis established a transcriptional regulatory network in which PtrHSFB3-1 and PtrMYB092 directly activate 8 and 11 monolignol genes, respectively. The TF-DNA interactions were verified for their specificity and transactivator roles in 35 independent CRISPR-based biallelic mutants and overexpression transgenic lines of PtrHSFB3-1 and PtrMYB092 in P. trichocarpa. The gene-edited trees (mimicking the repressed PtrHSFB3-1 and PtrMYB092 under tension stress) have stem wood composition resembling that of TW during normal growth and under tension stress (i.e., low lignin and high cellulose), whereas the overexpressors showed an opposite effect (high lignin and low cellulose). Individual overexpression of the TFs impeded lignin reduction under tension stress and restored high levels of lignin biosynthesis in the TW. This study offers biological insights to further uncover how metabolism, growth, and stress adaptation are coordinately regulated in trees.
Collapse
Affiliation(s)
- Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry, Beihua University, Jilin 132013, China
| | - Juan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Author for communication:
| |
Collapse
|
11
|
Lee SR, Pollard DA, Galati DF, Kelly ML, Miller B, Mong C, Morris MN, Roberts-Nygren K, Kapler GM, Zinkgraf M, Dang HQ, Branham E, Sasser J, Tessier E, Yoshiyama C, Matsumoto M, Turman G. Disruption of a ∼23-24 nucleotide small RNA pathway elevates DNA damage responses in Tetrahymena thermophila. Mol Biol Cell 2021; 32:1335-1346. [PMID: 34010017 PMCID: PMC8694037 DOI: 10.1091/mbc.e20-10-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.
Collapse
Affiliation(s)
- Suzanne R Lee
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Domenico F Galati
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan L Kelly
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Brian Miller
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Christina Mong
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan N Morris
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Geoffrey M Kapler
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Matthew Zinkgraf
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Hung Q Dang
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Erica Branham
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Jason Sasser
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Erin Tessier
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Maya Matsumoto
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Gaea Turman
- Biology Department, Western Washington University, Bellingham, WA 98225
| |
Collapse
|
12
|
Lopez D, Franchel J, Venisse JS, Drevet JR, Label P, Coutand C, Roeckel-Drevet P. Early transcriptional response to gravistimulation in poplar without phototropic confounding factors. AOB PLANTS 2021; 13:plaa071. [PMID: 33542802 PMCID: PMC7850117 DOI: 10.1093/aobpla/plaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 05/30/2023]
Abstract
In response to gravistimulation under anisotropic light, tree stems showing an active cambium produce reaction wood that redirects the axis of the trees. Several studies have described transcriptomic or proteomic models of reaction wood relative to the opposite wood. However, the mechanisms leading to the formation of reaction wood are difficult to decipher because so many environmental factors can induce various signalling pathways leading to this developmental reprogramming. Using an innovative isotropic device where the phototropic response does not interfere with gravistimulation we characterized the early molecular responses occurring in the stem of poplar after gravistimulation in an isotropic environment, and without deformation of the stem. After 30 min tilting at 35° under anisotropic light, we collected the upper and lower xylems from the inclined stems. Controls were collected from vertical stems. We used a microarray approach to identify differentially expressed transcripts. High-throughput real-time PCR allowed a kinetic experiment at 0, 30, 120 and 180 min after tilting at 35°, with candidate genes. We identified 668 differentially expressed transcripts, from which we selected 153 candidates for additional Fluidigm qPCR assessment. Five candidate co-expression gene clusters have been identified after the kinetic monitoring of the expression of candidate genes. Gene ontology analyses indicate that molecular reprogramming of processes such as 'wood cell expansion', 'cell wall reorganization' and 'programmed cell death' occur as early as 30 min after gravistimulation. Of note is that the change in the expression of different genes involves a fine regulation of gibberellin and brassinosteroid pathways as well as flavonoid and phosphoinositide pathways. Our experimental set-up allowed the identification of genes regulated in early gravitropic response without the bias introduced by phototropic and stem bending responses.
Collapse
Affiliation(s)
- David Lopez
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jérôme Franchel
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Joël R Drevet
- Université Clermont Auvergne, GReD INSERM U1103-CNRS UMR 6293, Faculté de Médecine, CRBC (Centre de Recherche Bio-Clinique), Clermont-Ferrand, France
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Catherine Coutand
- INRAE, UR 115 PSH, Centre de recherche PACA, 228, route de l’aérodrome, CS, Avignon Cedex, France
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| |
Collapse
|
13
|
Zinkgraf M, Zhao ST, Canning C, Gerttula S, Lu MZ, Filkov V, Groover A. Evolutionary network genomics of wood formation in a phylogenetic survey of angiosperm forest trees. THE NEW PHYTOLOGIST 2020; 228:1811-1823. [PMID: 32696464 DOI: 10.1111/nph.16819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Wood formation was present in early angiosperms, but has been highly modified through evolution to generate the anatomical diversity seen in extant angiosperm lineages. In this project, we modeled changes in gene coexpression relationships associated with the evolution of wood formation in a phylogenetic survey of 13 angiosperm tree species. Gravitropic stimulation was used as an experimental treatment to alter wood formation and also perturb gene expression. Gene transcript abundances were determined using RNA sequencing of developing wood tissues from upright trees, and from the top (tension wood) and bottom (opposite wood) tissues of gravistimulated trees. A network-based approach was employed to align gene coexpression networks across species based on orthologous relationships. A large-scale, multilayer network was modeled that identified both lineage-specific gene coexpression modules and modules conserved across multiple species. Functional annotation and analysis of modules identified specific regulatory processes associated with conserved modules, including regulation of hormones, protein phosphorylation, meristem development and epigenetic processes. Our results provide novel insights into the evolution and development of wood formation, and demonstrate the ability to identify biological processes and genes important for the evolution of a foundational trait in nonmodel, undomesticated forest trees.
Collapse
Affiliation(s)
- Matthew Zinkgraf
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
- College of Science and Engineering, Western Washington University, Bellingham, WA, 98225-9063, USA
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Courtney Canning
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
| | - Suzanne Gerttula
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Vladimir Filkov
- Computer Science, University of California Davis, Davis, CA, 95618, USA
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Ramakrishnan M, Yrjälä K, Vinod KK, Sharma A, Cho J, Satheesh V, Zhou M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur 2020. [DOI: 10.1002/fes3.229] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Department of Forest Sciences University of Helsinki Helsinki Finland
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS) Chinese Academy of Sciences Shanghai China
| | - Viswanathan Satheesh
- National Key Laboratory of Plant Molecular Genetics CAS Center for Excellence in Molecular Plant Sciences Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai China
- Shanghai Center for Plant Stress Biology CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High‐efficiency Utilization Zhejiang A&F University Hangzhou China
| |
Collapse
|
15
|
Du J, Gerttula S, Li Z, Zhao ST, Liu YL, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. THE NEW PHYTOLOGIST 2020; 225:1516-1530. [PMID: 31120133 DOI: 10.1111/nph.15936] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 05/06/2023]
Abstract
Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Suzanne Gerttula
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Zehua Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, 311300, China
| | - Andrew T Groover
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
17
|
Seyfferth C, Wessels BA, Gorzsás A, Love JW, Rüggeberg M, Delhomme N, Vain T, Antos K, Tuominen H, Sundberg B, Felten J. Ethylene Signaling Is Required for Fully Functional Tension Wood in Hybrid Aspen. FRONTIERS IN PLANT SCIENCE 2019; 10:1101. [PMID: 31611886 PMCID: PMC6775489 DOI: 10.3389/fpls.2019.01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/12/2019] [Indexed: 06/01/2023]
Abstract
Tension wood (TW) in hybrid aspen trees forms on the upper side of displaced stems to generate a strain that leads to uplifting of the stem. TW is characterized by increased cambial growth, reduced vessel frequency and diameter, and the presence of gelatinous, cellulose-rich (G-)fibers with its microfibrils oriented parallel to the fiber cell axis. Knowledge remains limited about the molecular regulators required for the development of this special xylem tissue with its characteristic morphological, anatomical, and chemical features. In this study, we use transgenic, ethylene-insensitive (ETI) hybrid aspen trees together with time-lapse imaging to show that functional ethylene signaling is required for full uplifting of inclined stems. X-ray diffraction and Raman microspectroscopy of TW in ETI trees indicate that, although G-fibers form, the cellulose microfibril angle in the G-fiber S-layer is decreased, and the chemical composition of S- and G-layers is altered than in wild-type TW. The characteristic asymmetric growth and reduction of vessel density is suppressed during TW formation in ETI trees. A genome-wide transcriptome profiling reveals ethylene-dependent genes in TW, related to cell division, cell wall composition, vessel differentiation, microtubule orientation, and hormone crosstalk. Our results demonstrate that ethylene regulates transcriptional responses related to the amount of G-fiber formation and their properties (chemistry and cellulose microfibril angle) during TW formation. The quantitative and qualitative changes in G-fibers are likely to contribute to uplifting of stems that are displaced from their original position.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bernard A. Wessels
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Laboratory of Wood Materials, Swiss Federal Laboratories of Materials Science and Technology, Dubendorf, Switzerland
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Vain
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Stora Enso AB, Nacka, Sweden
| | - Judith Felten
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
18
|
Liu JG, Han X, Yang T, Cui WH, Wu AM, Fu CX, Wang BC, Liu LJ. Genome-wide transcriptional adaptation to salt stress in Populus. BMC PLANT BIOLOGY 2019; 19:367. [PMID: 31429697 PMCID: PMC6701017 DOI: 10.1186/s12870-019-1952-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Adaptation to abiotic stresses is crucial for the survival of perennial plants in a natural environment. However, very little is known about the underlying mechanisms. Here, we adopted a liquid culture system to investigate plant adaptation to repeated salt stress in Populus trees. RESULTS We first evaluated phenotypic responses and found that plants exhibit better stress tolerance after pre-treatment of salt stress. Time-course RNA sequencing (RNA-seq) was then performed to profile changes in gene expression over 12 h of salt treatments. Analysis of differentially expressed genes (DEGs) indicated that significant transcriptional reprogramming and adaptation to repeated salt treatment occurred. Clustering analysis identified two modules of co-expressed genes that were potentially critical for repeated salt stress adaptation, and one key module for salt stress response in general. Gene Ontology (GO) enrichment analysis identified pathways including hormone signaling, cell wall biosynthesis and modification, negative regulation of growth, and epigenetic regulation to be highly enriched in these gene modules. CONCLUSIONS This study illustrates phenotypic and transcriptional adaptation of Populus trees to salt stress, revealing novel gene modules which are potentially critical for responding and adapting to salt stress.
Collapse
Affiliation(s)
- Jin-Gui Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, 311300 China
| | - Tong Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Wen-Hui Cui
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Xiang Fu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian, 271018 Shandong China
| |
Collapse
|
19
|
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. The Dynamics of Cambial Stem Cell Activity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:293-319. [PMID: 30822110 DOI: 10.1146/annurev-arplant-050718-100402] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stem cell populations in meristematic tissues at distinct locations in the plant body provide the potency of continuous plant growth. Primary meristems, at the apices of the plant body, contribute mainly to the elongation of the main plant axes, whereas secondary meristems in lateral positions are responsible for the thickening of these axes. The stem cells of the vascular cambium-a secondary lateral meristem-produce the secondary phloem (bast) and secondary xylem (wood). The sites of primary and secondary growth are spatially separated, and mobile signals are expected to coordinate growth rates between apical and lateral stem cell populations. Although the underlying mechanisms have not yet been uncovered, it seems likely that hormones, peptides, and mechanical cues orchestrate primary and secondary growth. In this review, we highlight the current knowledge and recent discoveries of how cambial stem cell activity is regulated, with a focus on mobile signals and the response of cambial activity to environmental and stress factors.
Collapse
Affiliation(s)
- Urs Fischer
- KWS SAAT SE, 37555 Einbeck, Germany
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Lu N, Ma W, Han D, Liu Y, Wang Z, Wang N, Yang G, Qu G, Wang Q, Zhao K, Wang J. Genome-wide analysis of the Catalpa bungei caffeic acid O-methyltransferase (COMT) gene family: identification and expression profiles in normal, tension, and opposite wood. PeerJ 2019; 7:e6520. [PMID: 30886769 PMCID: PMC6421059 DOI: 10.7717/peerj.6520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Caffeic acid O-methyltransferase (COMT) is an important protein that participates in lignin synthesis and is associated with the ratio of G-/S-type lignin in plants. COMTs are associated with the wood properties of forest trees; however, little known about the COMT family in Catalpa bungei, a valuable timber tree species in China . We performed a comprehensive analysis of COMT genes in the C. bungei genome by describing the gene structure and phylogenetic relationships of each family member using bioinformatics-based methods. A total of 23 putative COMT genes were identified using the conserved domain sequences and amino acid sequences of COMTs from Arabidopsis thaliana and Populus trichocarpa as probes. Phylogenetic analysis showed that 23 CbuCOMTs can be divided into three groups based on their structural characteristics; five conserved domains were found in the COMT family. Promoter analysis indicated that the CbuCOMT promoters included various cis-acting elements related to growth and development. Real-time quantitative polymerase chain reaction (PCR) analysis showed differential expression among CbuCOMTs. CbuCOMT2, 7, 8, 9, 10, 12, 13, 14, 21, and 23 were mainly expressed in xylem. Only CbuCOMT23 was significantly downregulated in tension wood and upregulated in opposite wood compared to normal wood. Our study provides new information about the CbuCOMT gene family and will facilitate functional characterisation in further research.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Donghua Han
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Ying Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiuxia Wang
- Nanyang Research Institute of Forestry, Nanyang, China
| | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry, Luoyang, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Abstract
Identification of differentially expressed genes has been a high priority task of downstream analyses to further advances in biomedical research. Investigators have been faced with an array of issues in dealing with more complicated experiments and metadata, including batch effects, normalization, temporal dynamics (temporally differential expression), and isoform diversity (isoform-level quantification and differential splicing events). To date, there are currently no standard approaches to precisely and efficiently analyze these moderate or large-scale experimental designs, especially with combined metadata. In this report, we propose comprehensive analytical pipelines to precisely characterize temporal dynamics in differential expression of genes and other genomic features, i.e., the variability of transcripts, isoforms and exons, by controlling batch effects and other nuisance factors that could have significant confounding effects on the main effects of interest in comparative models and may result in misleading interpretations.
Collapse
|
22
|
Zinkgraf M, Groover A, Filkov V. Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2018. [DOI: 10.1007/978-3-030-00825-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|