1
|
Du C, Sun W, Song Q, Zuo K. GhDOFD45 promotes sucrose accumulation in cotton seeds by transcriptionally activating GhSWEET10 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2468-2484. [PMID: 39514290 DOI: 10.1111/tpj.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cotton seed development and fiber elongation are the inseparable and overlapped development processes requiring the continuous supply of sucrose as the direct carbon source. However, little is known about the molecular mechanism of how sucrose is transported from the source tissues (leaves) into growing cotton seeds. Here, we identify the function of a sucrose transporter gene, Sugars Will Eventually be Exported Transporter 10, GhSWEET10 in cotton seed development. GhSWEET10 encodes a functional sucrose transporter, predominantly expressing in the funiculus, inner seedcoat, and endosperm during fiber elongation. GhSWEET10 RNAi plants (GhSWEET10i) accumulated less sucrose and glucose in growing seeds and that led to shorter fibers and smaller seeds, whereas GhSWEET10 overexpressed plants (GhSWEET10OE) had bigger seeds and longer fibers with more sugar accumulation during fiber elongation. GhSWEET10 gene is transcriptionally controlled by the transcription factor GhDOFD45. GhDOFD45 knockout plants (GhDOFD45-KO) possessed the phenotypes of smaller seeds and shorter fibers like those of GhSWEET10i plants. Furthermore, GhSWEET10 mainly exports the sucrose from the funiculus into developing seeds according to the mimic-analysis of sucrose transporting. Collectively, all these findings show that GhDOFD45 positively regulates GhSWEET10 expression to mainly transport sucrose from leaves into developing cotton seeds. Our findings also imply that the sucrose transport into enlarging seeds benefits fiber development, and thus GhSWEET10 can be selected as a target of breeding novel cotton varieties with larger and more vigorous seeds.
Collapse
Affiliation(s)
- Chuanhui Du
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Qingwei Song
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Li M, Li Q, Li S, Niu X, Xu H, Li P, Bian X, Chen Z, Liu Q, Zhang H, Liu Y, Wu S. SHORT-ROOT specifically functions in the chalazal region to modulate assimilate partitioning into seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2031-2044. [PMID: 39476335 DOI: 10.1111/tpj.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024]
Abstract
Nourishing the embryo with endosperm and enclosing both embryo and endosperm in the seed coat are two important evolutionary innovations. Seed coat is conventionally viewed as a protective layer that functions after the seed has matured. Here, we challenge this notion by showing that a subregion of the seed coat, termed the chalazal seed coat (CZSC), is geared to gate seed nutrition loading in developing seeds. The CZSC develops the coordinative system comprising the apoplastic isolation, mediated by the restricted suberization, and the active transport, mediated by the specific expression of a variety of transporters, at as early as the globular embryo stage in both Arabidopsis and soybean seeds. This coordinated system in the CZSC disrupts the vascular continuum to the maternal tissues and forces the nutrient transport into selective and active absorption. We further reveal that the precision of the spatiotemporal suberin deposition and transporter expression is controlled by the regulatory hierarchy of SHR-MYBs cascades. Our results provide a mechanistic insight into the assimilate accumulation in dicot seeds.
Collapse
Affiliation(s)
- Meng Li
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Qianfang Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xufang Niu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huimin Xu
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Pengxue Li
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Xinxin Bian
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichang Chen
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunqi Liu
- Zhongguancun, Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Shuang Wu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Sharma V, Ali MF, Kawashima T. Insights into dynamic coenocytic endosperm development: Unraveling molecular, cellular, and growth complexity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102566. [PMID: 38830335 DOI: 10.1016/j.pbi.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Khan A, Tian R, Bean SR, Yerka M, Jiao Y. Transcriptome and metabolome analyses reveal regulatory networks associated with nutrition synthesis in sorghum seeds. Commun Biol 2024; 7:841. [PMID: 38987396 PMCID: PMC11237005 DOI: 10.1038/s42003-024-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.
Collapse
Affiliation(s)
- Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ran Tian
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Scott R Bean
- Grain Quality and Structure Research Unit, Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Melinda Yerka
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Yinping Jiao
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
5
|
Jedličková V, Hejret V, Demko M, Jedlička P, Štefková M, Robert HS. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 2023; 24:236. [PMID: 37142980 PMCID: PMC10158150 DOI: 10.1186/s12864-023-09316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.
Collapse
Affiliation(s)
- Veronika Jedličková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Demko
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Walker PL, Ziegler DJ, Giesbrecht S, McLoughlin A, Wan J, Khan D, Hoi V, Whyard S, Belmonte MF. Control of white mold (Sclerotinia sclerotiorum) through plant-mediated RNA interference. Sci Rep 2023; 13:6477. [PMID: 37081036 PMCID: PMC10119085 DOI: 10.1038/s41598-023-33335-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
The causative agent of white mold, Sclerotinia sclerotiorum, is capable of infecting over 600 plant species and is responsible for significant crop losses across the globe. Control is currently dependent on broad-spectrum chemical agents that can negatively impact the agroecological environment, presenting a need to develop alternative control measures. In this study, we developed transgenic Arabidopsis thaliana (AT1703) expressing hairpin (hp)RNA to silence S. sclerotiorum ABHYDROLASE-3 and slow infection through host induced gene silencing (HIGS). Leaf infection assays show reduced S. sclerotiorum lesion size, fungal load, and ABHYDROLASE-3 transcript abundance in AT1703 compared to wild-type Col-0. To better understand how HIGS influences host-pathogen interactions, we performed global RNA sequencing on AT1703 and wild-type Col-0 directly at the site of S. sclerotiorum infection. RNA sequencing data reveals enrichment of the salicylic acid (SA)-mediated systemic acquired resistance (SAR) pathway, as well as transcription factors predicted to regulate plant immunity. Using RT-qPCR, we identified predicted interacting partners of ABHYDROLASE-3 in the polyamine synthesis pathway of S. sclerotiorum that demonstrate co-reduction with ABHYDROLASE-3 transcript levels during infection. Together, these results demonstrate the utility of HIGS technology in slowing S. sclerotiorum infection and provide insight into the role of ABHYDROLASE-3 in the A. thaliana-S. sclerotiorum pathosystem.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Dylan J Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein McLoughlin
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Joey Wan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Vanessa Hoi
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
7
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
8
|
Chen D, Chen H, Dai G, Zhang H, Liu Y, Shen W, Zhu B, Cui C, Tan C. Genome-wide identification and expression analysis of the anthocyanin-related genes during seed coat development in six Brassica species. BMC Genomics 2023; 24:103. [PMID: 36894869 PMCID: PMC9999611 DOI: 10.1186/s12864-023-09170-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Yellow seed is one favorite trait for the breeding of Brassica oilseed crops, but the performance of seed coat color is very complicated due to the involvement of various pigments. The change of seed coat color of Brassica crops is related to the specific synthesis and accumulation of anthocyanin, and the expression level of structural genes in anthocyanin synthesis pathway is specifically regulated by transcription factors. Despite some previous reports on the regulations of seed coat color from linkage marker development, gene fine-mapping and multi-omics association analysis, the trait of Brassica crops is affected by the evolutionary events such as genome triploidization, the regulatory mechanism is still largely unknown. In this study, we identified genes related to anthocyanin synthesis in six Brassica crops in U-triangle at the genome-wide level and performed collinearity analysis. A total of 1119 anthocyanin-related genes were identified, the collinear relationship of anthocyanin-related genes on subgenomic chromosomes was the best in B. napus (AACC) and the worst in B. carinata (BBCC). The comparisons of gene expressions for anthocyanin metabolic pathways in seed coats during seed development revealed differences in its metabolism among these species. Interestingly, the R2R3-MYB transcription factors MYB5 and TT2 were differentially expressed at all eight stages of seed coat development, indicating that they might be the key genes that caused the variation of the seed coat color. The expression curve and trend analyses of the seed coat development period showed that the main reason for the unexpressed copies of MYB5 and TT2 was likely gene silencing caused by gene structural variation. These results were valuable for the genetic improvement of Brassica seed coat color, and also provided new insights into gene multicopy evolution in Brassica polyploids.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haimei Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chendu, 610066, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
9
|
Walker PL, Girard IJ, Becker MG, Giesbrecht S, Whyard S, Fernando WGD, de Kievit TR, Belmonte MF. Tissue-specific mRNA profiling of the Brassica napus-Sclerotinia sclerotiorum interaction uncovers novel regulators of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6697-6710. [PMID: 35961003 DOI: 10.1093/jxb/erac333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/10/2022] [Indexed: 05/05/2023]
Abstract
White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Povilus RA, Friedman WE. Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction. PLANT REPRODUCTION 2022; 35:161-178. [PMID: 35184212 DOI: 10.1007/s00497-022-00438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The first record of gene expression during seed development within the Nymphaeales provides evidence for a variety of biological processes, including dynamic epigenetic patterning during sexual reproduction in the water lily Nymphaea thermarum. Studies of gene expression during seed development have been performed for a growing collection of species from a phylogenetically broad sampling of flowering plants (angiosperms). However, angiosperm lineages whose origins predate the divergence of monocots and eudicots have been largely overlooked. In order to provide a new resource for understanding the early evolution of seed development in flowering plants, we sequenced transcriptomes of whole ovules and seeds from three key stages of reproductive development in the waterlily Nymphaea thermarum, an experimentally tractable member of the Nymphaeales. We first explore patterns of gene expression, beginning with mature ovules and continuing through fertilization into early- and mid-stages of seed development. We find patterns of gene expression that corroborate histological/morphological observations of seed development in this species, such as expression of genes involved in starch synthesis and transcription factors that have been associated with embryo and endosperm development in other species. We also find evidence for processes that were previously not known to be occurring during seed development in this species, such as epigenetic modification. We then examine the expression of genes associated with patterning DNA and histone methylation-processes that are essential for seed development in distantly related and structurally diverse monocots and eudicots. Around 89% of transcripts putatively homologous to DNA and histone methylation modifiers are expressed during seed development in N. thermarum, including homologs of genes known to pattern imprinting-related epigenetic modifications. Our results suggest that dynamic epigenetic patterning is a deeply conserved aspect of angiosperm seed development.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA.
| |
Collapse
|
11
|
Wu J, Liang J, Lin R, Cai X, Zhang L, Guo X, Wang T, Chen H, Wang X. Investigation of Brassica and its relative genomes in the post-genomics era. HORTICULTURE RESEARCH 2022; 9:uhac182. [PMID: 36338847 PMCID: PMC9627752 DOI: 10.1093/hr/uhac182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/07/2022] [Indexed: 06/16/2023]
Abstract
The Brassicaceae family includes many economically important crop species, as well as cosmopolitan agricultural weed species. In addition, Arabidopsis thaliana, a member of this family, is used as a molecular model plant species. The genus Brassica is mesopolyploid, and the genus comprises comparatively recently originated tetrapolyploid species. With these characteristics, Brassicas have achieved the commonly accepted status of model organisms for genomic studies. This paper reviews the rapid research progress in the Brassicaceae family from diverse omics studies, including genomics, transcriptomics, epigenomics, and three-dimensional (3D) genomics, with a focus on cultivated crops. The morphological plasticity of Brassicaceae crops is largely due to their highly variable genomes. The origin of several important Brassicaceae crops has been established. Genes or loci domesticated or contributing to important traits are summarized. Epigenetic alterations and 3D structures have been found to play roles in subgenome dominance, either in tetraploid Brassica species or their diploid ancestors. Based on this progress, we propose future directions and prospects for the genomic investigation of Brassicaceae crops.
Collapse
Affiliation(s)
| | | | | | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Tianpeng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | | |
Collapse
|
12
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
13
|
Tandukar Z, Chopra R, Frels K, Heim B, Marks MD, Anderson JA. Genetic dissection of seed characteristics in field pennycress via genome-wide association mapping studies. THE PLANT GENOME 2022; 15:e20211. [PMID: 35484973 DOI: 10.1002/tpg2.20211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Field pennycress (Thlaspi arvense L.) is a new winter annual cash cover crop with high oil content and seed yield, excellent winter hardiness, early maturation, and resistance to most pests and diseases. It provides living cover on fallow croplands between summer seasons, and in doing so reduces nutrient leaching into water sources, mitigates soil erosion, and suppresses weed growth. The first ever genome-wide association study (GWAS) was conducted on a pennycress diversity panel to identify marker trait associations with important seed size and composition related traits. The entire population was phenotyped in three total environments over 2 yr, and seed area, length, width, thousand grain weight, total oil, and total protein were measured post-harvest with specialized high-throughput imaging and near-infrared spectroscopy. Basic unbiased linear prediction values were calculated for each trait. Seed size traits tended to have higher entry mean reliabilities (0.76-0.79) compared with oil content (0.51) and protein content (0.37). Genotyping-by-sequencing identified 33,606 high quality genome-wide single nucleotide polymorphism (SNPs) that were coupled with phenotypic data to perform GWAS for seed area, length, width, thousand grain weight, total oil, and total protein content. Fifty-nine total marker-trait associations were identified revealing genomic regions controlling each trait. The significant SNPs explained 0.06-0.18% of the total variance for that trait in our population. A list of candidate genes was identified based on their functional annotations and characterization in other species. Our results confirm that GWAS is an efficient strategy to identify significant marker-trait associations that can be incorporated into marker-assisted selection pipelines to accelerate pennycress breeding progress.
Collapse
Affiliation(s)
- Zenith Tandukar
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - Ratan Chopra
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - Katherine Frels
- Dep. of Agronomy and Horticulture, Univ. of Nebraska, Lincoln, NE, USA
| | - Brett Heim
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - M David Marks
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
14
|
Khan D, Ziegler DJ, Kalichuk JL, Hoi V, Huynh N, Hajihassani A, Parkin IAP, Robinson SJ, Belmonte MF. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:477-489. [PMID: 34786793 DOI: 10.1111/tpj.15587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 05/22/2023]
Abstract
We profiled the global gene expression landscape across the reproductive lifecycle of Brassica napus. Comparative analysis of this nascent amphidiploid revealed the contribution of each subgenome to plant reproduction. Whole-genome transcription factor networks identified BZIP11 as a transcriptional regulator of early B. napus seed development. Knockdown of BZIP11 using RNA interference resulted in a similar reduction in gene activity of predicted gene targets, and a reproductive-lethal phenotype. Global mRNA profiling revealed lower accumulation of Cn subgenome transcripts relative to the An subgenome. Subgenome-specific transcription factor networks identified distinct transcription factor families enriched in each of the An and Cn subgenomes early in seed development. Analysis of laser-microdissected seed subregions further reveal subgenome expression dynamics in the embryo, endosperm and seed coat of early stage seeds. Transcription factors predicted to be regulators encoded by the An subgenome are expressed primarily in the seed coat, whereas regulators encoded by the Cn subgenome were expressed primarily in the embryo. Data suggest subgenome bias are characteristic features of the B. napus seed throughout development, and that such bias might not be universal across the embryo, endosperm and seed coat of the developing seed. Transcriptional networks spanning both the An and Cn genomes of the whole B. napus seed can identify valuable targets for seed development research and that -omics level approaches to studying gene regulation in B. napus can benefit from both broad and high-resolution analyses.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Dylan J Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jenna L Kalichuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Vanessa Hoi
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Nina Huynh
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Abolfazl Hajihassani
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
15
|
Povilus RA, Gehring M. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102121. [PMID: 34801784 DOI: 10.1016/j.pbi.2021.102121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Although the ultimate purpose of a seed is the successful establishment of the next generation, seed development involves more than embryo growth. In angiosperms, seed development requires the intimate coordination of three distinct entities - maternal tissue and two offspring, embryo and embryo-nourishing endosperm. Although seeds are cornerstones of many terrestrial ecosystems and human diets, we are only beginning to understand the interactions among seed tissues and the molecular processes and genes that determine them. Recent studies of gene expression and function in distantly related angiosperms, combined with over 100 years of embryological research, have repeatedly highlighted the endosperm associated with maternal-filial boundaries as a central point in seed developmental dynamics. In this review, we highlight evidence that links this zone with nutritional dynamics, developmental signaling, and imprinted gene expression. We suggest that the underappreciated diversity of this specialized endosperm across angiosperms deserves further study from developmental, molecular, and genetic perspectives.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Fernie AR. Asserting dominance: the subgenome networks underlying Canola seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:475-476. [PMID: 35092327 DOI: 10.1111/tpj.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
17
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
18
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
19
|
Sun S, Yi C, Ma J, Wang S, Peirats-Llobet M, Lewsey MG, Whelan J, Shou H. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean ( Glycine max) Tissues during Early Seed Development. Int J Mol Sci 2020; 21:E7603. [PMID: 33066688 PMCID: PMC7589660 DOI: 10.3390/ijms21207603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023] Open
Abstract
Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.
Collapse
Affiliation(s)
- Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Changyu Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Jing Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marta Peirats-Llobet
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia;
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| |
Collapse
|
20
|
Li MQ, Yang J, Wang X, Li DX, Zhang CB, Tian ZH, You MH, Bai SQ, Lin HH. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153183. [PMID: 32422512 DOI: 10.1016/j.jplph.2020.153183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Elymus, the largest genus of the Triticeae Dumort, is a forage grass in the Qinghai-Tibetan Plateau, where the climate has gradually become increasingly dry in recent years. To understand the mechanisms of the response to drought stress in Elymus species, we first investigated physiological and biochemical responses to polyethylene glycol (PEG-6000) simulated drought stress in two Elymus species, Elymus nutans and Elymus sibiricus, and found that E. nutans was more tolerant to drought stress than E. sibiricus. De novo transcriptome analysis of these two Elymus species treated with or without 10 % PEG-6000 revealed that a total of 1695 unigenes were commonly regulated by drought treatment in these two Elymus species, with 1614 unigenes up-regulated and 81 unigenes down-regulated. The coexpressed differentially expressed genes (DEGs) were enriched in regulation of transcription and gene expression in the GO database. KEGG pathway analysis indicated plant hormone signaling transduction were mostly enriched in co-expressed DEGs. Furthermore, genes annotated in the plant hormone signaling transduction were screened from co-expressed DEGs, and found that abscisic acid plays the major role in the drought stress tolerance of Elymus. Meanwhile, transcription factors screened from co-expressed DEGs were mainly classified into the ERF subfamily and WRKY, DREB, and HSF family members. Our results provide further reference for studying the response mechanism and culturing highly tolerant grasses of the Elymus species under drought stress.
Collapse
Affiliation(s)
- Ming-Qun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Da-Xu Li
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Chang-Bing Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Zhi-Hui Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ming-Hong You
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Shi-Qie Bai
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China.
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
21
|
Siles L, Eastmond P, Kurup S. Big data from small tissues: extraction of high-quality RNA for RNA-sequencing from different oilseed Brassica seed tissues during seed development. PLANT METHODS 2020; 16:80. [PMID: 32518582 PMCID: PMC7275424 DOI: 10.1186/s13007-020-00626-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/28/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Obtaining high-quality RNA for gene expression analyses from different seed tissues is challenging due to the presence of various contaminants, such as polyphenols, polysaccharides and lipids which interfere with RNA extraction methods. At present, the available protocols for extracting RNA from seeds require high amounts of tissue and are mainly focused on extracting RNA from whole seeds. However, extracting RNA at the tissue level enables more detailed studies regarding tissue specific transcriptomes during seed development. RESULTS Seeds from heart stage embryo to mature developmental stages of Brassica napus and B. oleracea were sampled for isolation of the embryo, endosperm and seed coat tissues. Ovules and ovary wall tissue were also collected from pre-fertilized buds. Subsequent to testing several RNA extraction methods, modifications applied to E.Z.N.A. Plant RNA and Picopure RNA Isolation kit extraction methods resulted in RNA with high yield and quality. Furthermore, the use of polyvinylpolypyrrolidone for seed coats and endosperm at green stages resulted in high-quality RNA. As a result of the introduced modifications to established RNA extraction methods, the RNA from all the above-mentioned tissues presented clear 28S and 18S bands and high RIN values, ranging from 7.0 to 10.0. The protocols reported in this study are not only suitable for different and challenging seed tissue types, but also enable the extraction of high-quality RNA using only 2 to 3 mg of starting tissue. CONCLUSIONS Here, we present efficient, reproducible and reliable high-quality RNA extraction methods for diverse oilseed Brassica spp reproductive tissue types including pre-fertilization and developing seed tissues for diploid and polyploid species. The high-quality RNA obtained is suitable for RNA-Sequencing and subsequent gene expression analysis.
Collapse
Affiliation(s)
- Laura Siles
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Peter Eastmond
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| |
Collapse
|
22
|
Affiliation(s)
- John Harada
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Sullivan AM, Arsovski AA, Thompson A, Sandstrom R, Thurman RE, Neph S, Johnson AK, Sullivan ST, Sabo PJ, Neri FV, Weaver M, Diegel M, Nemhauser JL, Stamatoyannopoulos JA, Bubb KL, Queitsch C. Mapping and Dynamics of Regulatory DNA in Maturing Arabidopsis thaliana Siliques. FRONTIERS IN PLANT SCIENCE 2019; 10:1434. [PMID: 31798605 PMCID: PMC6868056 DOI: 10.3389/fpls.2019.01434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 05/04/2023]
Abstract
The genome is reprogrammed during development to produce diverse cell types, largely through altered expression and activity of key transcription factors. The accessibility and critical functions of epidermal cells have made them a model for connecting transcriptional events to development in a range of model systems. In Arabidopsis thaliana and many other plants, fertilization triggers differentiation of specialized epidermal seed coat cells that have a unique morphology caused by large extracellular deposits of polysaccharides. Here, we used DNase I-seq to generate regulatory landscapes of A. thaliana seeds at two critical time points in seed coat maturation (4 and 7 DPA), enriching for seed coat cells with the INTACT method. We found over 3,000 developmentally dynamic regulatory DNA elements and explored their relationship with nearby gene expression. The dynamic regulatory elements were enriched for motifs for several transcription factors families; most notably the TCP family at the earlier time point and the MYB family at the later one. To assess the extent to which the observed regulatory sites in seeds added to previously known regulatory sites in A. thaliana, we compared our data to 11 other data sets generated with 7-day-old seedlings for diverse tissues and conditions. Surprisingly, over a quarter of the regulatory, i.e. accessible, bases observed in seeds were novel. Notably, plant regulatory landscapes from different tissues, cell types, or developmental stages were more dynamic than those generated from bulk tissue in response to environmental perturbations, highlighting the importance of extending studies of regulatory DNA to single tissues and cell types during development.
Collapse
Affiliation(s)
| | - Andrej A. Arsovski
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Agnieszka Thompson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Robert E. Thurman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Shane Neph
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Audra K. Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Shawn T. Sullivan
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Peter J. Sabo
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Fidencio V. Neri
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Molly Weaver
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- *Correspondence: Kerry L. Bubb,
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|