1
|
ZHANG W, STELINSKI LL, MOHAMED A, WANG G, TETTAMANTI G, CHEN M, HONG M, DALY EZ, BRUIN J, RENAULT D, KEYHANI NO, ZHAO Q. Unlocking agro-ecosystem sustainability: exploring the bottom-up effects of microbes, plants, and insect herbivores. Integr Zool 2025; 20:465-484. [PMID: 39460505 PMCID: PMC12046491 DOI: 10.1111/1749-4877.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Agricultural ecosystem formation and evolution depend on interactions and communication between multiple organisms. Within this context, communication occurs between microbes, plants, and insects, often involving the release and perception of a wide range of chemical cues. Unraveling how this information is coded and interpreted is critical to expanding our understanding of how agricultural ecosystems function in terms of competition and cooperation. Investigations examining dual interactions (e.g. plant-microbe, insect-microbe, and insect-plant) have resolved some basic components of this communication. However, there is a need for systematically examining multitrophic interactions that occur simultaneously between microorganisms, insects, and plants. A more thorough understanding of these multitrophic interactions has been made possible by recent advancements in the study of such ecological interactions, which are based on a variety of contemporary technologies such as artificial intelligence sensors, multi-omics, metabarcoding, and others. Frequently, these developments have led to the discovery of startling examples of each member manipulating the other. Here, we review recent advances in the understanding of bottom-up chemical communication between microorganisms, plants, and insects, and their consequences. We discuss the components of these "chemo-languages" and how they modify outcomes of multi-species interactions across trophic levels. Further, we suggest prospects for translating the current basic understanding of multitrophic interactions into strategies that could be applied in agricultural ecosystems to increase food safety and security.
Collapse
Affiliation(s)
- Wei ZHANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Lukasz L. STELINSKI
- Entomology and Nematology Department, Citrus Research and Education CenterUniversity of FloridaLake AlfredFloridaUSA
| | - Amr MOHAMED
- Department of Entomology, Faculty of ScienceCairo UniversityGizaEgypt
| | - Guangmin WANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Gianluca TETTAMANTI
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Moxian CHEN
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Mingsheng HONG
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Ella Z. DALY
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Jan BRUIN
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Evolutionary Biology and Population BiologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - David RENAULT
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Nemat O. KEYHANI
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Qi ZHAO
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
2
|
Han L, Ge L, Fei L, Huang C, Li Y, Fan W, Zhu D, Zhao L. A Comprehensive Evaluation of Soybean Germplasm Resources for Salt Tolerance During Germination. PLANTS (BASEL, SWITZERLAND) 2025; 14:791. [PMID: 40094730 PMCID: PMC11902203 DOI: 10.3390/plants14050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Salt stress impedes normal development, compromises plant quality, and reduces crop yield. The germination phase in soybean marks the initial stage of its growth cycle. Characterizing salt tolerance during this period can help stimulate soybean growth in natural environments and aid the rapid screening of salt-tolerant soybean varieties. Our study characterized the salt tolerance of 36 soybean germplasms in culture dishes during the germination period. Soybeans were subjected to varying concentrations (0, 60, 120, and 180 mmol/L) of NaCl solution to simulate diverse levels of salt stress, and parameters such as germination energy, germination rate, and root length were measured. Statistical techniques such as analysis of variance, membership function, cluster analysis, and quadratic regression equations were used, and the salt tolerance of these 36 soybean germplasms was determined. The critical indicators and the most effective screening concentration for assessing the germination salt tolerance of soybean were identified. Soybeans tolerated low salt concentrations; however, salt concentrations greater than 120 mmol/L significantly inhibited germination indicators. The germination rate, germination vigor, vitality index, seed germination index, total fresh weight, and total dry weight could be used to identify salt tolerance. The semi-lethal concentration of soybean was 155.4 mmol/L, and the coefficient of variation was 20.00%, indicating that it could be used as a screening concentration for evaluating salt tolerance during soybean germination. A total of 36 soybean varieties were classified into four salt tolerance levels through cluster analysis. QN-27, QN-35, and QN-36 were highly salt-resistant materials, and QN-2, QN-17, and QN-19 were salt-sensitive materials. Characterizing salt tolerance during soybean germination can facilitate the selection and breeding of salt-tolerant soybean varieties. Future research utilizing this approach can aid in the selection of soybean varieties with salinity tolerance.
Collapse
Affiliation(s)
- Lei Han
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Lerong Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Fei
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengwei Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yilin Li
- Bathurst College, Qingdao Agricultural University, Qingdao 266109, China
| | - Wentan Fan
- Bathurst College, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming 650201, China
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
3
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Li Z, Wang Z, Zhang Y, Yang J, Guan K, Song Y. Identification of stress-alleviating strains from the core drought-responsive microbiome of Arabidopsis ecotypes. THE ISME JOURNAL 2025; 19:wraf067. [PMID: 40200753 PMCID: PMC12043206 DOI: 10.1093/ismejo/wraf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
Plant genetic and metabolic cues are involved in assembling their "core microbiome" under normal growth conditions. However, whether there is a core "stress responsive microbiome" among natural plant ecotypes remains elusive. Drought is the most significant abiotic stress worldwide. Characterizing conserved core root microbiome changes upon drought stress has the potential to increase plant resistance and resilience in agriculture. We screened the drought tolerance of 130 worldwide Arabidopsis ecotypes and chose the extremely drought tolerant and sensitive ecotypes for comparative microbiome studies. We detected diverse shared differentially abundant ASVs, network driver taxa among ecotypes, suggesting the existence of core drought-responsive microbiome changes. We previously identified 1479 microorganisms through high-throughput culturing, and successfully matched diverse core drought responsive ASVs. Our phenotypic assays validated that only those core drought responsive ASVs with higher fold changes in drought tolerant ecotypes were more likely to protect plants from stress. Transcriptome analysis confirmed that a keystone strain, Massilia sp. 22G3, can broadly reshape osmotic stress responses in roots, such as enhancing the expression of water up-taking, ROS scavenging, and immune genes. Our work reveals the existence of a core drought-responsive microbiome and demonstrates its potential role in enhancing plant stress tolerance. This approach helps characterize keystone "core drought responsive" microbes, and we further provided potential mechanisms underlying Massilia sp. 22G3 mediated stress protection. This work also provided a research paradigm for guiding the discovery of core stress-alleviating microbiomes in crops using natural ecotypes (cultivars).
Collapse
Affiliation(s)
- Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianbo Yang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
6
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
8
|
Sepehry Javan Z, Razavi SM, Khalofah A, Ghorbani A. The ameliorating effects of cinnamic acid-based nanocomposite against salt stress in peppermint. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45055-45073. [PMID: 38958856 DOI: 10.1007/s11356-024-34158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Nanoparticles (NPs) are important in regulating plant tolerance to salt stress. Peppermint is one of the most widely used aromatic plants, with a high sensitivity to salt stress. The present study investigated physiological and biochemical factors to understand better the behavior of cinnamic acid (CA) and cinnamic acid nanocomposite in salinity control in peppermint plants. The first factor was salt stress with different salt concentrations, including 0, 50, 100, and 150 mg/L, the second factor was 50 μM CA, and the third factor was 50 μM CA nanocomposite based on carboxymethyl cellulose (CMC-CA NC). Results showed that stress markers increased with increasing salinity levels. On the contrary, plants treated with salinity showed a decrease in physiological and photosynthetic parameters, while the application of CA and CMC CA NC increased these critical parameters. Under salinity, compared to the control, malondialdehyde and hydrogen peroxide contents decreased by 11.3% and 70.4%, respectively. Furthermore, CA and CMC-CA NC enhanced peppermint tolerance to salinity by increasing compatible solute content such as proline, free amino acids, protein content, and soluble carbohydrates, increasing antioxidant enzymes, and decreasing stress markers in plant tissues. Compared to the control, chlorophyll fluorescence and proline content increased by 1.1% and 172.1%, respectively. Salinity stress negatively affected all physiological and biochemical parameters, but CA and CMC-CA NC treatments improved them. We concluded that the nanocomposite, a biostimulant, significantly enhances mint tolerance under salinity conditions.
Collapse
Affiliation(s)
- Zahra Sepehry Javan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, 13131561991, Iran
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, 13131561991, Iran.
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abazar Ghorbani
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, 13131561991, Iran
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Legeay J, Errafii K, Ziami A, Hijri M. The rhizosphere of a drought-tolerant plant species in Morocco: A refuge of high microbial diversity with no taxon preference. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13254. [PMID: 38725134 PMCID: PMC11082428 DOI: 10.1111/1758-2229.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/13/2024]
Abstract
Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Khaoula Errafii
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Abdelhadi Ziami
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Mohamed Hijri
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
- Institut de Recherche en Biologie VégétaleDépartement de Sciences Biologiques, Université de MontréalMontrealQuebecCanada
| |
Collapse
|
10
|
Shahmarbiglou HH, Razavi SM. Effect of naringenin based nanocomposites and pure naringenin on cumin ( Cuminum cyminum L.) under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:791-805. [PMID: 38846455 PMCID: PMC11150357 DOI: 10.1007/s12298-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Key message Naringenin based nanocomposite alleviate the harmful effects of drought stress in Cuminum cyminum and enhance carefully the plant tolerance against drought condition with different mechanisms. Abstract In the recent years, drought stress is considered as one of the most important stressful conditions for agricultural plants. Reducing the effects of drought on plants is a crucial need nowadays, which calls for innovative methods. Naringenin is one of the most known plant flavonoids with antioxidant properties. In the present work, a naringenin based nanocomposite containing carboxymethylcellulose (CMC) as carrier (CMC-Nar) with an average size of 65 nm were synthesized by coacervation method. In order to investigate the effect of CMC nanocomposites containing naringenin (CMC-Nar) and pure naringenin in modulating the effects of drought stress, cultivation of Cuminum cyminum (varieties: Isfahan and Kashan) was carried out in greenhouse conditions. Drought stress was imposed as 30% of the field capacity. Various physiological, biochemical, and phytochemical assays were performed after treating the plants in drought conditions (30%). The results indicated that treatment of nanocomposites (CMC-Nar) and pure naringenin at drought conditions increased growth and photosynthetic parameters such as germination, shoot and root fresh weight, shoot dry weight, and chlorophyll content of the Cumin. Stress markers such as malondialdehyde, H2O2, and electrolyte leakage decreased under the treatment of narinjenin and especially nanocomposites (CMC-Nar) under drought conditions. Moreover, under same condition and treatments, some biochemical parameters including soluble sugar and total protein increased but the activity of antioxidant enzymes and the level of free amino acids has gone down. Compatible Solutes (Proline and glycine betaine) also increased. There was an increase in phytochemical parameters such as total phenols, flavonoids, anthocyanin, and tannins under naringenin and nanocomposites (CMC-Nar) treatment in drought conditions. In general, nanocomposites and pure naringenin reduced the harmful effects of drought stress, and the ameliorating impacts of nanocomposites (CMC-Nar) are more than pure naringenin. According to the results: In most cases, the impact of drought stress was modulated to a greater extent by (CMC-Nar) nanocomposites in the Isfahan variety compared to the Kashan variety. This research tries to propose a new method to reduce the effects of drought stress on Cuminum cyminum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01460-7.
Collapse
Affiliation(s)
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
11
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Han X, Tang S, Ma X, Liu W, Yang R, Zhang S, Wang N, Song X, Fu C, Yang R, Cao X. Blocking miR528 function promotes tillering and regrowth in switchgrass. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:712-721. [PMID: 37929781 PMCID: PMC10893936 DOI: 10.1111/pbi.14218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
MiRNAs have been reported to be the key regulators involving a wide range of biological processes in diverse plant species, but their functions in switchgrass, an important biofuel and forage crop, are largely unknown. Here, we reported the novel function of miR528, which has expanded to four copies in switchgrass, in controlling biomass trait of tillering number and regrowth rate after mowing. Blocking miR528 activity by expressing short tandem target mimic (STTM) increased tiller number and regrowth rate after mowing. The quadruple pvmir528 mutant lines derived from genome editing also showed such improved traits. Degradome and RNA-seq analysis, combined with in situ hybridization assay revealed that up-regulation of two miR528 targets coding for Cu/Zn-SOD enzymes, might be responsible for the improved traits of tillering and regrowth in pvmir528 mutant. Additionally, natural variations in the miR528-SOD interaction exist in C3 and C4 monocot species, implying the distinct regulatory strength of the miR528-SOD module during monocot evolution. Overall, our data illuminated a novel role of miR528 in controlling biomass traits and provided a new target for genetic manipulation-mediated crop improvement.
Collapse
Affiliation(s)
- Xiangyan Han
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life SciencesNankai UniversityTianjinChina
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shanjie Tang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijingChina
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Wenwen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Ruijuan Yang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Shuaibin Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Ningning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life SciencesNankai UniversityTianjinChina
| | - Xianwei Song
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Rongxin Yang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life ScienceNanchang UniversityJiangxiChina
| | - Xiaofeng Cao
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
14
|
Xing J, Fan W, Wang J, Shi F. Variety-Driven Effect of Rhizosphere Microbial-Specific Recruitment on Drought Tolerance of Medicago ruthenica (L.). Microorganisms 2023; 11:2851. [PMID: 38137995 PMCID: PMC10745984 DOI: 10.3390/microorganisms11122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
As one of the environmental factors that seriously affect plant growth and crop production, drought requires an efficient but environmentally neutral approach to mitigate its harm to plants. Soil microbiomes can interact with plants and soil to improve the adverse effects of drought. Medicago ruthenica (L.) is an excellent legume forage with strong drought tolerance, but the key role of microbes in fighting drought stress remains unclear. What kind of flora plays a key role? Is the recruitment of such flora related to its genotype? Therefore, we selected three varieties of M. ruthenica (L.) for drought treatment, analyzed their growth and development as well as their physiological and biochemical characteristics, and performed 16S rRNA high-throughput sequencing analysis on their rhizosphere soils to clarify the variety-mediated response of rhizosphere bacteria to drought stress. It was found that among the three varieties of M. ruthenica (L.), Mengnong No.2, Mengnong No.1 and Zhilixing were subjected to drought stress and showed a reduction in plant height increment of 24.86%, 34.37%, and 31.97% and in fresh weight of 39.19%, 50.22%, and 41.12%, respectively, whereas dry weight was reduced by 23.26%, 26.10%, and 24.49%, respectively. At the same time, we found that the rhizosphere microbial community of Mengnong No. 2 was also less affected by drought, and it was able to maintain the diversity of rhizosphere soil microflora stable after drought stress, while Mennong No. 1 and Zhilixing were affected by drought stress, resulting in a decrease in rhizosphere soil bacterial community diversity indices to 92.92% and 82.27%, respectively. Moreover, the rhizosphere of Mengnon No. 2 was enriched with more nitrogen-fixing bacteria Rhizobium than the other two varieties of M. ruthenica (L.), which made it still have a good ability to accumulate aboveground biomass after drought stress. In conclusion, this study proves that the enrichment process of bacteria is closely related to plant genotype, and different varieties enrich different types of bacteria in the rhizosphere to help them adapt to drought stress, and the respective effects are quite different. Our results provide new evidence for the study of bacteria to improve the tolerance of plants to drought stress and lay a foundation for the screening and study mechanism of drought-tolerant bacteria in the future.
Collapse
Affiliation(s)
| | | | | | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (J.X.); (W.F.); (J.W.)
| |
Collapse
|
15
|
Duan P, Liu X, Niu G, Jia N, Wen T, Zeng J, Chen Q, Zhang J, Xue C, Shen Q, Yuan J. Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites. Comput Struct Biotechnol J 2023; 21:5273-5284. [PMID: 37954150 PMCID: PMC10632596 DOI: 10.1016/j.csbj.2023.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants.
Collapse
Affiliation(s)
- Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Xiaoyu Liu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoqing Niu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanyu Jia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - JianGuo Zeng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaowei Chen
- Chengdu Kentu Agricultural Technology Co., Ltd., Chengdu 610000, China
| | - Jian Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210031, China
| | - Chao Xue
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Fan W, Tang F, Wang J, Dong J, Xing J, Shi F. Drought-induced recruitment of specific root-associated bacteria enhances adaptation of alfalfa to drought stress. Front Microbiol 2023; 14:1114400. [PMID: 36910228 PMCID: PMC9995459 DOI: 10.3389/fmicb.2023.1114400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Drought is a major abiotic stress that threatens crop production. Soil microbiomes are thought to play a role in enhancing plant adaptation to various stresses. However, it remains unclear whether soil microbiomes play a key role when plants are challenged by drought and whether different varieties are enriched with specific bacteria at the rhizosphere. In this study, we measured changes in growth phenotypes, physiological and biochemical characteristics of drought-tolerant alfalfa (AH) and drought-sensitive (QS) under sterilized and unsterilized soil conditions with adequate watering and with drought stress, and analyzed the rhizosphere bacterial community composition and changes using 16S rRNA high-throughput sequencing. We observed that the unsterilized treatment significantly improved the growth, and physiological and biochemical characteristics of alfalfa seedlings under drought stress compared to the sterilized treatment. Under drought stress, the fresh and dry weight of seedlings increased by 35.24, 29.04, and 11.64%, 2.74% for unsterilized AH and QS, respectively, compared to sterilized treatments. The improvement was greater for AH than for QS. AH and QS recruited different rhizosphere bacteria when challenged by drought. Interestingly, under well-watered conditions, the AH rhizosphere was already rich in drought-tolerant bacterial communities, mainly Proteobacteria and Bacteroidetes, whereas these bacteria started to increase only when QS was subjected to drought. When drought stress was applied, AH was enriched with more drought-tolerant bacteria, mainly Acidobacteria, while the enrichment was weaker in QS rhizosphere. Therefore, the increase in drought tolerance of the drought-tolerant variety AH was greater than that of the drought-sensitive variety QS. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of alfalfa to drought stress, and clarified that this process is significantly related to the variety (genotype). The results of this study provide a basis for improving drought tolerance in alfalfa by regulating the rhizosphere microbiome.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiani Wang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Li Y, You X, Tang Z, Zhu T, Liu B, Chen MX, Xu Y, Liu TY. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13817. [PMID: 36344445 DOI: 10.1111/ppl.13817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.
Collapse
Affiliation(s)
- Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zhe Tang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| |
Collapse
|
18
|
Tiedge K, Li X, Merrill AT, Davisson D, Chen Y, Yu P, Tantillo DJ, Last RL, Zerbe P. Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (Panicum virgatum). THE NEW PHYTOLOGIST 2022; 236:1393-1408. [PMID: 36028985 PMCID: PMC9912200 DOI: 10.1111/nph.18443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 05/13/2023]
Abstract
Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis verified select drought-responsive diterpenoids as oxygenated furanoditerpenoids. Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass drought responses. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant BiologyUniversity of California, DavisDavisCA95616USA
- Groningen Institute for Evolutionary Life SciencesUniversity of Groningen9747AG Groningenthe Netherlands
| | - Xingxing Li
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Amy T. Merrill
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Danielle Davisson
- Department of Plant BiologyUniversity of California, DavisDavisCA95616USA
| | - Yuxuan Chen
- Department of Plant BiologyUniversity of California, DavisDavisCA95616USA
| | - Ping Yu
- NMR FacilityUniversity of California, DavisDavisCA95616USA
| | - Dean J. Tantillo
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Robert L. Last
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
- Department Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California, DavisDavisCA95616USA
| |
Collapse
|
19
|
Sun T, Yang Z, Chen J, Li Y, Wang J, Wang X, Tang X, Xiao H. Effects of Water Loss Stress under Tidal Effects on the Epiphytic Bacterial Community of Sargassum thunbergii in the Intertidal Zone. mSphere 2022; 7:e0030722. [PMID: 36173121 PMCID: PMC9599519 DOI: 10.1128/msphere.00307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Intertidal macroalgae face periodic water loss and rehydration caused by daily tidal changes. However, the effect of water loss stress on algal epiphytic bacteria has not yet been reported. In this study, the effects of water loss stress on the epiphytic bacteria community of Sargassum thunbergii were analyzed, and the different responses of epiphytic bacteria to water loss stress were compared between male and female algae. The results showed that after water loss stress, the diversity of the epiphytic bacterial community of S. thunbergii first decreased and then increased. Among the dominant taxa, the abundance of Cyanobacteria decreased significantly, whereas the abundance of Portibacter and Aquimarina first increased and then decreased. Additionally, the indicator species and the abundance of predicted functional genes related to carbon, nitrogen, and sulfur metabolism both changed significantly. More importantly, when the epiphytic bacteria were analyzed separately according to the algal sex, the changes in algal epiphytic bacterial community structure and indicator species were more significant, and there were sexual differences. Therefore, it was concluded that water loss stress has a significant effect on the community structure and function of the epiphytic bacteria on S. thunbergii. Meanwhile, the epiphytic bacteria community of two sexes of S. thunbergii differed in the response to water loss stress. IMPORTANCE Periodic water loss caused by the tide is an important environmental factor that is faced by intertidal macroalgae, but the impact of periodic water loss on the epiphytic bacterial communities associated with macroalgae is still unknown. Through this study, we found that the diversity, the relative abundance of dominant taxa, the indicator species, and the abundance of the predicted functional genes in the epiphytic bacteria on S. thunbergii changed with the time of water loss. Moreover, male and female S. thunbergii exhibited different responses to water loss stress. This study not only paves the way for the delineation of the interactions between S. thunbergii and its epiphytic bacteria but also provides new insights for the mechanisms of the adaptation and evolution of macroalgae in the intertidal zone.
Collapse
Affiliation(s)
- Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiya Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Chai X, Wang X, Pi Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6490-6504. [PMID: 35792505 DOI: 10.1093/jxb/erac301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed complex mechanisms to adapt to changing nitrate (NO3-) concentrations and can recruit microbes to boost nitrogen absorption. However, little is known about the relationship between functional genes and the rhizosphere microbiome in NO3- uptake of apple rootstocks. Here, we found that variation in Malus domestica NO3- transporter (MdNRT2.4) expression contributes to nitrate uptake divergence between two apple rootstocks. Overexpression of MdNRT2.4 in apple seedlings significantly improved tolerance to low nitrogen via increasing net NO3- influx at the root surface. However, inhibiting the root plasma membrane H+-ATPase activity abolished NO3- uptake and led to NO3- release, suggesting that MdNRT2.4 encodes an H+-coupled nitrate transporter. Surprisingly, the nitrogen concentration of MdNRT2.4-overexpressing apple seedlings in unsterilized nitrogen-poor soil was higher than that in sterilized nitrogen-poor soil. Using 16S ribosomal RNA gene profiling to characterize the rhizosphere microbiota, we found that MdNRT2.4-overexpressing apple seedlings recruited more bacterial taxa with nitrogen metabolic functions, especially Rhizobiaceae. We isolated a bacterial isolate ARR11 from the apple rhizosphere soil and identified it as Rhizobium. Inoculation with ARR11 improved apple seedling growth in nitrogen-poor soils, compared with uninoculated seedlings. Together, our results highlight the interaction of host plant genes with the rhizosphere microbiota for host plant nutrient uptake.
Collapse
Affiliation(s)
- Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
21
|
Li X, Sarma SJ, Sumner LW, Jones AD, Last RL. Switchgrass Metabolomics Reveals Striking Genotypic and Developmental Differences in Specialized Metabolic Phenotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022. [PMID: 35729681 DOI: 10.1101/2020.06.01.127720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites. We employed untargeted liquid chromatography-mass spectrometry, quantitative gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy to identify differences in switchgrass ecotype metabolomes. This analysis revealed striking differences between upland and lowland switchgrass metabolomes as well as distinct developmental profiles. Terpenoid- and polyphenol-derived specialized metabolites were identified, including steroidal saponins, di- and sesqui-terpenoids, and flavonoids. The saponins are particularly abundant in switchgrass extracts and have diverse aglycone cores and sugar moieties. We report seven structurally distinct steroidal saponin classes with unique steroidal cores and glycosylated at one or two positions. Quantitative GC-MS revealed differences in total saponin concentrations in the leaf blade, leaf sheath, stem, rhizome, and root (2.3 ± 0.10, 0.5 ± 0.01, 2.5 ± 0.5, 3.0 ± 0.7, and 0.3 ± 0.01 μg/mg of dw, respectively). The quantitative data also demonstrated that saponin concentrations are higher in roots of lowland (ranging from 3.0 to 6.6 μg/mg of dw) than in upland (from 0.9 to 1.9 μg/mg of dw) ecotype plants, suggesting ecotypic-specific biosynthesis and/or biological functions. These results enable future testing of these specialized metabolites on biotic and abiotic stress tolerance and can provide information on the development of low-input bioenergy crops.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Lloyd W Sumner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Columbia, Missouri 65211, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, United States
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Li X, Sarma SJ, Sumner LW, Jones AD, Last RL. Switchgrass Metabolomics Reveals Striking Genotypic and Developmental Differences in Specialized Metabolic Phenotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8010-8023. [PMID: 35729681 PMCID: PMC9264348 DOI: 10.1021/acs.jafc.2c01306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites. We employed untargeted liquid chromatography-mass spectrometry, quantitative gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy to identify differences in switchgrass ecotype metabolomes. This analysis revealed striking differences between upland and lowland switchgrass metabolomes as well as distinct developmental profiles. Terpenoid- and polyphenol-derived specialized metabolites were identified, including steroidal saponins, di- and sesqui-terpenoids, and flavonoids. The saponins are particularly abundant in switchgrass extracts and have diverse aglycone cores and sugar moieties. We report seven structurally distinct steroidal saponin classes with unique steroidal cores and glycosylated at one or two positions. Quantitative GC-MS revealed differences in total saponin concentrations in the leaf blade, leaf sheath, stem, rhizome, and root (2.3 ± 0.10, 0.5 ± 0.01, 2.5 ± 0.5, 3.0 ± 0.7, and 0.3 ± 0.01 μg/mg of dw, respectively). The quantitative data also demonstrated that saponin concentrations are higher in roots of lowland (ranging from 3.0 to 6.6 μg/mg of dw) than in upland (from 0.9 to 1.9 μg/mg of dw) ecotype plants, suggesting ecotypic-specific biosynthesis and/or biological functions. These results enable future testing of these specialized metabolites on biotic and abiotic stress tolerance and can provide information on the development of low-input bioenergy crops.
Collapse
Affiliation(s)
- Xingxing Li
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- DOE
Great Lakes Bioenergy Research Center, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Saurav J. Sarma
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
- MU
Metabolomics
Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Lloyd W. Sumner
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
- MU
Metabolomics
Center, University of Missouri, Columbia, Missouri 65211, United States
- Interdisciplinary
Plant Group, University of Missouri, Columbia, Missouri 65211, United States
| | - A. Daniel Jones
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- DOE
Great Lakes Bioenergy Research Center, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Robert L. Last
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- DOE
Great Lakes Bioenergy Research Center, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Marasco R, Fusi M, Ramond JB, Van Goethem MW, Seferji K, Maggs-Kölling G, Cowan DA, Daffonchio D. The plant rhizosheath-root niche is an edaphic "mini-oasis" in hyperarid deserts with enhanced microbial competition. ISME COMMUNICATIONS 2022; 2:47. [PMID: 37938683 PMCID: PMC9723607 DOI: 10.1038/s43705-022-00130-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Abstract
Plants have evolved unique morphological and developmental adaptations to cope with the abiotic stresses imposed by (hyper)arid environments. Such adaptations include the formation of rhizosheath-root system in which mutualistic plant-soil microbiome associations are established: the plant provides a nutrient-rich and shielded environment to microorganisms, which in return improve plant-fitness through plant growth promoting services. We hypothesized that the rhizosheath-root systems represent refuge niches and resource islands for the desert edaphic microbial communities. As a corollary, we posited that microorganisms compete intensively to colonize such "oasis" and only those beneficial microorganisms improving host fitness are preferentially selected by plant. Our results show that the belowground rhizosheath-root micro-environment is largely more hospitable than the surrounding gravel plain soil with higher nutrient and humidity contents, and cooler temperatures. By combining metabarcoding and shotgun metagenomics, we demonstrated that edaphic microbial biomass and community stability increased from the non-vegetated soils to the rhizosheath-root system. Concomitantly, non-vegetated soil communities favored autotrophy lifestyle while those associated with the plant niches were mainly heterotrophs and enriched in microbial plant growth promoting capacities. An intense inter-taxon microbial competition is involved in the colonization and homeostasis of the rhizosheath zone, as documented by significant enrichment of antibiotic resistance genes and CRISPR-Cas motifs. Altogether, our results demonstrate that rhizosheath-root systems are "edaphic mini-oases" and microbial diversity hotspots in hyperarid deserts. However, to colonize such refuge niches, the desert soil microorganisms compete intensively and are therefore prepared to outcompete potential rivals.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc W Van Goethem
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Kholoud Seferji
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
24
|
Fang J, Xiong K, Chi Y, Song S, He C, He S. Research Advancement in Grassland Ecosystem Vulnerability and Ecological Resilience and Its Inspiration for Improving Grassland Ecosystem Services in the Karst Desertification Control. PLANTS (BASEL, SWITZERLAND) 2022; 11:1290. [PMID: 35631715 PMCID: PMC9145024 DOI: 10.3390/plants11101290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022]
Abstract
Karst desertification control of grasslands balances the ecological and economic benefits of ecological restoration and rural ecological animal husbandry development. In the context of global changes and intensified human activities, the fragility of grassland ecosystems under karst desertification control is becoming increasingly evident, and enhancing the ecological resilience and ecosystem services of grasslands is an issue that urgently needs to be addressed. In this paper, the CNKI literature, WOS core databases and Goolgle scholar were used as search sources, identifying 179 articles related to the study of grassland ecosystem vulnerability and ecological resilience. This research systematically reviewed the progress of grassland ecosystem vulnerability research and analyzed the relationship between grassland ecosystem services (GESs) and grassland ecosystem vulnerability and resilience. The direction of enhancing GESs in karst areas is indicated in terms of the reciprocal feedback, synergistic relationship, and mechanism of action of GESs, vulnerability, and resilience. It is also emphasized that the karst desertification area should provide an ecological foundation for the sustainable development of the regional environment around the supply-and-demand relationship of GESs, the trade-off synergy of service flow, and the enhancement of ecological resilience, thereby consolidating the effectiveness of karst desertification control, enhancing GESs, and helping rural revitalization.
Collapse
Affiliation(s)
- Jinzhong Fang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Cheng He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Shuyu He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (J.F.); (Y.C.); (S.S.); (C.H.); (S.H.)
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|