1
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Wu ZQ, Yang YB, Zhang XX, Wang SY, Wang YW, Xue J, Zhang YX, Gai MY, Duan BH, Yang HL. PalCYCD3;3 breaks axillary bud dormancy and promotes shoot branching through activation by PalBES1 in the BR signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109993. [PMID: 40393230 DOI: 10.1016/j.plaphy.2025.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
The development of lateral branches in plants is intricately modulated by phytohormonal signaling networks; however, the functional role of D-type cyclins (CYCDs) within this regulatory scheme is not yet fully elucidated. Recent investigations have identified brassinosteroids (BRs) as pivotal regulators of cell cycle dynamics, yet their interactions with CYCD-mediated pathways in meristematic activity require systematic investigation. This research aimed to clarify the function of PalCYCD3; 3 in the regulation of axillary meristem (AM) and its interaction with BR signaling in Populus alba. Histochemical GUS staining demonstrated the specific localization of PalCYCD3;3 within the organizing centers of both the shoot apical meristem (SAM) and AM. PalCYCD3;3-overexpressing P. alba displayed a significant increase in lateral branch formation compared to wild-type counterparts, alongside a marked reduction in AM cell size, mirroring the effects observed in wild-type plants treated with 1 μM brassinolide (BL). Treatment with BL was shown to upregulate both PalCYCD3;3 and the BR signaling mediator PalBES1 in axillary buds. Dual-luciferase reporter assays and electrophoretic mobility shift assays verified the direct interaction of PalBES1 with the promoter of PalCYCD3;3. Additionally, yeast two-hybrid screening combined with bimolecular fluorescence complementation confirmed the physical associations between PalCYCD3; 3 and key cell cycle regulators PalCDKA; 1, PalCDKB1; 1, PalCDKD; 1, and PalCDKE; 1. Our findings establish that BR signaling activates PalCYCD3; 3-CDK complexes through PalBES1-mediated transcriptional regulation, thereby promoting AM cell proliferation and lateral branch development.
Collapse
Affiliation(s)
- Zhao-Qun Wu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Ye-Bo Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiu-Xing Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Shi-Yi Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Yu-Wen Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jing Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Yue-Xuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Meng-Yu Gai
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Bo-Hao Duan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Hai-Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Du Y, Ye C, Han P, Sheng Y, Li F, Sun H, Zhang J, Li J. The molecular mechanism of transcription factor regulation of grain size in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112434. [PMID: 40023197 DOI: 10.1016/j.plantsci.2025.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Rice is a crucial food crop in China, and the continuous and stable improvement of rice yield is of great significance for ensuring national food security. Grain size in rice is closely related to thousand-grain weight, making it a key factor influencing yield. Identifying genes associated with grain size and elucidating their molecular mechanisms are essential for breeding high-yield, high-quality rice varieties. Transcription factors play a vital role in regulating plant growth and development, and many transcription factor families are crucial in controlling grain size in rice. Here, we review the mechanisms by which transcription factors regulate rice grain size, summarize and evaluate the regulatory mechanisms of transcription factors that have been discovered in recent decades to regulate rice grain size, construct two possible super networks composed of transcription factors as links to regulate rice grain size, and points out the application of transcription factors regulating grain size in rice breeding. This review will provide a roadmap for understanding the regulatory mechanisms of rice grain size and applying these genes to rice breeding using molecular breeding techniques.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| | - Chun Ye
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Peijie Han
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Yile Sheng
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Fei Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Hongzheng Sun
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Jing Zhang
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Junzhou Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Miao R, Lin Q, Cao P, Zhou C, Feng M, Lan J, Luo S, Zhang F, Wu H, Hao Q, Zheng H, Ma T, Huang Y, Mou C, Nguyen T, Cheng Z, Guo X, Liu S, Jiang L, Wan J. SMALL AND ROUND GRAIN is involved in the brassinosteroid signaling pathway which regulates grain size in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1290-1306. [PMID: 39936852 DOI: 10.1111/jipb.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Grain size is a key determinant of 1,000-grain weight, one of three factors determining grain yield. However, the complete regulatory network controlling grain size has not been fully clarified. Here, we identified a rice mutant, named small and round grain (srg) that exhibits semi-dwarf stature and small grain size. Cytological analysis showed that cell length and number of spikelet epidermal cells of the srg mutant are reduced, indicating that SRG controls grain size by promoting cell elongation and increasing cell number. SRG encodes a kinesin belonging to the kinesin-1 subfamily and is extensively expressed in different plant tissues with relatively high expression in young panicles. SRG protein is mainly located in the nucleus and cell membrane. Expression of the SRG gene was induced by brassinolide through the brassinosteroid (BR) responsive factor OsWRKY53 and SRG protein was phosphorylated by BR-activated kinase OsBSK3 to prevent its degradation. In addition, microtubule (MT) morphology was abnormal and disordered in the srg and cr-1 mutants. These findings suggest that BR likely stabilizes orderly assembly and arrangement of MTs by stabilizing SRG proteins, thus promoting grain size. SRG overexpression lines produced more tillers and significantly larger and heavier grains to increase 1,000-grain weight, suggesting that SRG has potential to increase grain yield. Our study indicated that SRG is a new BR responsive factor and BR might regulate grain size by influencing the expression of SRG.
Collapse
Affiliation(s)
- Rong Miao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Penghui Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 215105, China
| | - Chunlei Zhou
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Lan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmin Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Faculty of Natural Sciences, Quynhon University, Quynhon, 590000, Binhdinh, Vietnam
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resource and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| |
Collapse
|
5
|
Yan P, Wang Y, Cui J, Liu M, Zhu Y, Ma F, Liu Y, Lan D, Dong S, Hu Z, Niu F, Liu Y, Zhang X, He S, Hu J, Yuan X, Li Y, Yang J, Cao L, Luo X. OsMAPKKK5 affects brassinosteroid signal transduction via phosphorylating OsBSK1-1 and regulates rice plant architecture and yield. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1798-1813. [PMID: 39967024 PMCID: PMC12018843 DOI: 10.1111/pbi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Improving plant architecture and increasing yields are the main goals of rice breeders. However, yield is a complex trait influenced by many yield-related traits. Identifying and characterizing important genes in the coordinated network regulating complex rice traits and their interactions is conducive to cultivating high-yielding rice varieties. In this study, we determined that the interaction between mitogen-activated protein kinase kinase kinase5 (OsMAPKKK5) and brassinosteroid-signalling kinase1-1 (OsBSK1-1) regulates yield-related traits in rice. Specifically, OsMAPKKK5 phosphorylates OsBSK1-1, which enhances the interaction between these two proteins, but adversely affects the OsBSK1-1-OsBRI1 (BR insensitive1) and OsBSK1-1-OsPPKL1 (protein phosphatase with two Kelch-like domains) interactions. Additionally, OsMAPKKK5 disrupts brassinosteroid signal transduction, which prevents OsBZR1 (brassinazole-resistant1) from efficiently entering the nucleus, thereby negatively modulating its function as a transcription factor regulating downstream effector genes, ultimately adversely affecting plant architecture and yield. This study revealed the relationship between the MAPK cascade and the regulatory effects of brassinosteroid on the rice grain yield involves OsMAPKKK5 and OsBSK1-1. The study data may be important for future investigations on the rice yield-regulating molecular network.
Collapse
Affiliation(s)
- Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yahui Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Yang Liu
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shicong He
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yizhen Li
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| |
Collapse
|
6
|
Jin X, Fu L, Chen C, Liu J, Liu Y, Zhang W, Li X, Liu C, Bu Q, Tian X. OsBSK3 and OsBSK2 regulate grain size and leaf angle via MAPK signaling pathway in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:104. [PMID: 40254664 DOI: 10.1007/s00122-025-04889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Grain size and leaf angle are key agronomic traits that determine the final yield. OsBSKs (BRASSINOSTEROID-SIGNALING KINASES) and OsMAPKs (MITOGEN ACTIVATED PROTEIN KINASE) are known to play essential roles in plant growth, development, and stress responses. However, the potential crosstalk between these pathways and their specific roles in regulating grain size and leaf angle remain largely unexplored in rice. Here, we characterized that OsBSKs regulate grain size and leaf angle in rice, and among these, OsBSK2 and OsBSK3 may play more critical roles. The grain size and leaf angle in osbsk3 and osbsk2 mutants are significantly smaller, whereas the OsBSK3-overexpressing lines (OsBSK3-OEs) exhibit considerably larger grain size and leaf angle compared to the others. Furthermore, both OsBSK3 and OsBSK2 interact with OsMKKK10, indirectly activating OsMAPK6 in plant cells. Notably, mutations in MAPK cascade components, such as smg2-1 (an osmkkk10 mutant), smg1-1 (an osmkk4 mutant), and dsg1 (an osmapk6 mutant), resulted in significantly reduced leaf angles. Moreover, these mutations were able to rescue the increased grain size and leaf angle observed in OsBSK3 overexpression lines. Additionally, we also identified OsWRKY53 as a potential downstream target of the OsBSKs-OsMKKK10-OsMKK4-OsMAPK6 cascade in the regulation of grain size and leaf angle. Taken together, the above results not only highlight the essential and specific roles of OsBSK3 and OsBSK2 in regulating rice grain size and leaf angle, but also reveal the mechanism which OsBSK3/OsBSK2 mediate MAPK cascade to regulate rice grain size and leaf angle.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linli Fu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Chunxiao Chen
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
7
|
Tian W, Peng Z, Zhang X, Zheng Y, Wang Y, Feng B, Li Y, He G, Sang X. OsMAPKKKε regulates apical spikelet development by adjusting Reactive Oxygen Species accumulates in Oryza sativa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112280. [PMID: 39401544 DOI: 10.1016/j.plantsci.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Rice panicle abortion can significantly impact rice yield and food security. Recent research has revealed that panicle abortion is influenced by environmental factors as well as regulated by specific genes. Here we report a novel panicle apical abortion 4 (paa4) mutant with semi-dwarf and panicle apical abortion phenotype, and its abortion occurs when the panicle length is approximately 7 cm. Map-based cloning has identified that PAA4 encodes a Mitogen-activated Protein Kinase Kinase Kinase ε (OsMAPKKKε) protein, and a substitution of G to A in exon 19 of OsMAPKKKε that leads to panicle apical abortion. PAA4 has a higher expression in the spikelet although which expressed in all organs of rice. During panicle growth, excessive Reactive Oxygen Species (ROS) accumulate in the apical panicle of paa4, eventually inducing programmed cell death (PCD). Transcriptome sequencing indicates that PAA4 plays a role in both the generation and elimination of ROS. Therefore, PAA4 might be involved in the balance of ROS at the apical panicle and then affects spikelet development in Oryza sativa.
Collapse
Affiliation(s)
- Weijiang Tian
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Ziwei Peng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xin Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yumeng Zheng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yuanyuan Wang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Beiqi Feng
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715 China.
| |
Collapse
|
8
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
9
|
Whisnant ED, Keith C, Smieska L, Chia JC, Bekele-Alemu A, Vatamaniuk OK, VanBuren R, Ligaba-Osena A. Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ Eragrostis tef (Zucc.) Trotter]. FRONTIERS IN PLANT SCIENCE 2024; 15:1485819. [PMID: 39726428 PMCID: PMC11669528 DOI: 10.3389/fpls.2024.1485819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation. In this study, we assessed the natural variation in seed size of 189 tef and 11 accessions of its wild progenitor Indian lovegrass (Eragrostis pilosa (L.) P. Beauv.) and explored the mineral distribution of representative accessions. Our findings revealed significant natural variation in seed size and mineral concentration among both the tef and E. pilosa accessions. We observed significant variation in seed length, seed width, and seed area among the accessions of both Eragrostis spp. we analyzed. Using representative accessions of both species, we also found significant variation in 1000-grain weight. The observed variation in seed size attributes prompted us to use comparative genomics to identify seed size regulating genes based on the well-studied and closely related monocot cereal rice [Oryza sativa (L.)]. Using this approach, we identified putative orthologous genes in the tef genome that belong to a number of key pathways known to regulate seed size in rice. Phylogenetic analysis of putative tef orthologs of ubiquitin-proteasome, G-protein, MAPK, and brassinosteroid (BR)-family genes indicate significant similarity to seed size regulating genes in rice and other cereals. Because tef is known to be more nutrient-dense than other more common cereals such as rice, wheat, and maize, we also studied the mineral concentration of selected accessions using ICP-OES and explored their distribution within the seeds using synchrotron-based X-ray fluorescence (SXRF) microscopy. The findings showed significant variation in seed mineral concentration and mineral distribution among the selected accessions of both Eragrostis spp. This study highlights the natural variation in seed size attributes, mineral concentration, and distribution, while establishing the basis for understanding the genetic mechanisms regulating these traits. We hope our findings will lead to a better understanding of the evolution of tef at the genetic level and for the development of elite tef cultivars to improve seed size, yield, and quality of the grains.
Collapse
Affiliation(s)
- Eric D. Whisnant
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Christian Keith
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States
| | - Ju-Chen Chia
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Olena K. Vatamaniuk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
10
|
Chen X, Hu X, Jiang J, Wang X. Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits. PLANT & CELL PHYSIOLOGY 2024; 65:1568-1580. [PMID: 38619133 DOI: 10.1093/pcp/pcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number and leaf erectness, and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Xiaotong Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- College of Agriculture, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, 379 Mingli Street, Zhengzhou, Henan 450046, China
- Sanya Institute of Henan University, 6 Wutong Courtyard, Sanya, Hainan 572025, China
| |
Collapse
|
11
|
Huang G, Lu J, Yin X, Zhang L, Liu C, Zhang X, Lin H, Zuo J. QTL mapping and candidate gene mining of seed size and seed weight in castor plant (Ricinus communis L.). BMC PLANT BIOLOGY 2024; 24:885. [PMID: 39342119 PMCID: PMC11438104 DOI: 10.1186/s12870-024-05611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Castor (Ricinus communis L., 2n = 2x = 20) is an important industrial crop, due to its oil is very important to the global special chemical industry. Seed size and seed weight are fundamentally important in determining castor yield, while little is known about it. In this study, QTL analysis and candidate gene mining of castor seed size and seed weight were conducted with composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and marker enrichment strategy in 4 populations, i.e., populations F2, BC1, S1-1 and S1-2, derived from 2 accessions with significant phenotypic differences. RESULTS In the QTL primary mapping, 2 novel QTL clusters were detected in marker intervals RCM520-RCM76 and RCM915-RCM950. In order to verify their accuracy and to narrow their intervals, QTL remapping was carried out in populations F2 and BC1. Among them, 44 and 30 QTLs underlying seed size and seed weight were detected in F2 population using methods CIM and ICIM-ADD respectively, including 4-9 and 3-5 ones conferring each trait were identified with a phenotypic variation explained ranged from 37.92 to 115.81% and 32.86-45.98% respectively. The remapping results in BC1 population were consistent with those in F2 population. Importantly, 3 QTL clusters (i.e. QTL-cluster1, QTL-cluster2 and QTL-cluster3) were found in marker intervals RCM74-RCM76 (37.1 kb), RCM930-RCM950 (259.8 kb) and RCM918-RCM920 (172.9 kb) respectively; in addition, all of them were detected again, the former one was found in the S1-2 population, and the latter two were found simultaneously in the populations S1-1 and S1-2. Finally, 6 candidate genes (i.e. LOC8266555, LOC8281168, LOC8281151, LOC8259066, LOC8258591 and LOC8270077) were screened in the above QTL clusters, they were differentially expressed in multiple seed tissues of both parents, signifying the potential role in regulating seed size and seed weight. CONCLUSION The above results not only provide new insights into the genetic structure of seed size and seed weight in castor, but also lay the foundation for the functional identification of these candidate genes.
Collapse
Affiliation(s)
- Guanrong Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiannong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xuegui Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Liuqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chaoyu Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haihong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinying Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
12
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
13
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
14
|
Zhou X, Lei Z, An P. Post-Translational Modification of WRKY Transcription Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2040. [PMID: 39124158 PMCID: PMC11314200 DOI: 10.3390/plants13152040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Post-translational modifications (PTMs) of proteins are involved in numerous biological processes, including signal transduction, cell cycle regulation, growth and development, and stress responses. WRKY transcription factors (TFs) play significant roles in plant growth, development, and responses to both biotic and abiotic stresses, making them one of the largest and most vital TF families in plants. Recent studies have increasingly highlighted the importance of PTMs of WRKY TFs in various life processes. This review focuses on the recent advancements in understanding the phosphorylation and ubiquitination of WRKY TFs, particularly their roles in resistance to biotic and abiotic stresses and in plant growth and development. Future research directions and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Xiangui Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zaojuan Lei
- Huanghua Port Business Department, Technical Center of Shijiazhuang Customs District, Cangzhou 061113, China; (Z.L.); (P.A.)
| | - Pengtian An
- Huanghua Port Business Department, Technical Center of Shijiazhuang Customs District, Cangzhou 061113, China; (Z.L.); (P.A.)
| |
Collapse
|
15
|
Ma Z, Miao J, Yu J, Pan Y, Li D, Xu P, Sun X, Li J, Zhang H, Li Z, Zhang Z. The wall-associated kinase GWN1 controls grain weight and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:150. [PMID: 38847846 DOI: 10.1007/s00122-024-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.
Collapse
Affiliation(s)
- Zhiqi Ma
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinli Miao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianping Yu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Abbas W, Shalmani A, Zhang J, Sun Q, Zhang C, Li W, Cui Y, Xiong M, Li Y. The GW5-WRKY53-SGW5 module regulates grain size variation in rice. THE NEW PHYTOLOGIST 2024; 242:2011-2025. [PMID: 38519445 DOI: 10.1111/nph.19704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 (suppressor of gw5) by map-based cloning using an F2 segregation population by fixing same genotype of the master QTG GW5. SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis-element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5. These findings elucidated a new pathway for grain size regulation by the GW5-WRKY53-SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.
Collapse
Affiliation(s)
- Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qi Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yana Cui
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
17
|
Liu L, Zhao L, Liu Y, Zhu Y, Chen S, Yang L, Li X, Chen W, Xu Z, Xu P, Wang H, Yu D. Transcription factor OsWRKY72 controls rice leaf angle by regulating LAZY1-mediated shoot gravitropism. PLANT PHYSIOLOGY 2024; 195:1586-1600. [PMID: 38478430 DOI: 10.1093/plphys/kiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 06/02/2024]
Abstract
Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.
Collapse
Affiliation(s)
- Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| |
Collapse
|
18
|
Hou G, Wu G, Jiang H, Bai X, Chen Y. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts ( Cyperus esculentus L.). Int J Mol Sci 2024; 25:5100. [PMID: 38791140 PMCID: PMC11121407 DOI: 10.3390/ijms25105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.
Collapse
Affiliation(s)
- Guangshan Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue Bai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun 666303, China;
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
19
|
Mei E, He M, Xu M, Tang J, Liu J, Liu Y, Hong Z, Li X, Wang Z, Guan Q, Tian X, Bu Q. OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:771-786. [PMID: 38470298 DOI: 10.1111/jipb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
Collapse
Affiliation(s)
- Enyang Mei
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hong
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenyu Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
20
|
Li Y, Li Y, Zou X, Jiang S, Cao M, Chen F, Yin Y, Xiao W, Liu S, Guo X. Bioinformatic Identification and Expression Analyses of the MAPK-MAP4K Gene Family Reveal a Putative Functional MAP4K10-MAP3K7/8-MAP2K1/11-MAPK3/6 Cascade in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:941. [PMID: 38611471 PMCID: PMC11013086 DOI: 10.3390/plants13070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascades act as crucial signaling modules that regulate plant growth and development, response to biotic/abiotic stresses, and plant immunity. MAP3Ks can be activated through MAP4K phosphorylation in non-plant systems, but this has not been reported in plants to date. Here, we identified a total of 234 putative TaMAPK family members in wheat (Triticum aestivum L.). They included 48 MAPKs, 17 MAP2Ks, 144 MAP3Ks, and 25 MAP4Ks. We conducted systematic analyses of the evolution, domain conservation, interaction networks, and expression profiles of these TaMAPK-TaMAP4K (representing TaMAPK, TaMAP2K, TaMAP3K, and TaMAP4K) kinase family members. The 234 TaMAPK-TaMAP4Ks are distributed on 21 chromosomes and one unknown linkage group (Un). Notably, 25 of these TaMAP4K family members possessed the conserved motifs of MAP4K genes, including glycine-rich motif, invariant lysine (K) motif, HRD motif, DFG motif, and signature motif. TaMAPK3 and 6, and TaMAP4K10/24 were shown to be strongly expressed not only throughout the growth and development stages but also in response to drought or heat stress. The bioinformatics analyses and qRT-PCR results suggested that wheat may activate the MAP4K10-MEKK7-MAP2K11-MAPK6 pathway to increase drought resistance in wheat, and the MAP4K10-MAP3K8-MAP2K1/11-MAPK3 pathway may be involved in plant growth. In general, our work identified members of the MAPK-MAP4K cascade in wheat and profiled their potential roles during their response to abiotic stresses and plant growth based on their expression pattern. The characterized cascades might be good candidates for future crop improvement and molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - You Li
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha 410082, China
| | - Miyuan Cao
- College of Biology, Hunan University, Changsha 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| |
Collapse
|
21
|
Wei S, Yu Z, Du F, Cao F, Yang M, Liu C, Qi Z, Chen Q, Zou J, Wang J. Integrated Transcriptomic and Proteomic Characterization of a Chromosome Segment Substitution Line Reveals the Regulatory Mechanism Controlling the Seed Weight in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:908. [PMID: 38592937 PMCID: PMC10975824 DOI: 10.3390/plants13060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Soybean is the major global source of edible oils and vegetable proteins. Seed size and weight are crucial traits determining the soybean yield. Understanding the molecular regulatory mechanism underlying the seed weight and size is helpful for improving soybean genetic breeding. The molecular regulatory pathways controlling the seed weight and size were investigated in this study. The 100-seed weight, seed length, seed width, and seed weight per plant of a chromosome segment substitution line (CSSL) R217 increased compared with those of its recurrent parent 'Suinong14' (SN14). Transcriptomic and proteomic analyses of R217 and SN14 were performed at the seed developmental stages S15 and S20. In total, 2643 differentially expressed genes (DEGs) and 208 differentially accumulated proteins (DAPs) were detected at S15, and 1943 DEGs and 1248 DAPs were detected at S20. Furthermore, integrated transcriptomic and proteomic analyses revealed that mitogen-activated protein kinase signaling and cell wall biosynthesis and modification were potential pathways associated with seed weight and size control. Finally, 59 candidate genes that might control seed weight and size were identified. Among them, 25 genes were located on the substituted segments of R217. Two critical pathways controlling seed weight were uncovered in our work. These findings provided new insights into the seed weight-related regulatory network in soybean.
Collapse
Affiliation(s)
- Siming Wei
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Zhenhai Yu
- Heilongjiang Province Green Food Science Institute, Harbin 150028, China;
| | - Fangfang Du
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Fubin Cao
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Jianan Zou
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Jinhui Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| |
Collapse
|
22
|
Yan Y, Zhu X, Qi H, Zhang H, He J. Regulatory mechanism and molecular genetic dissection of rice ( Oryza sativa L.) grain size. Heliyon 2024; 10:e27139. [PMID: 38486732 PMCID: PMC10938125 DOI: 10.1016/j.heliyon.2024.e27139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
With the sharp increase of the global population, adequate food supply is a great challenge. Grain size is an essential determinant of rice yield and quality. It is a typical quantitative trait controlled by multiple genes. In this paper, we summarized the quantitative trait loci (QTL) that have been molecularly characterized and provided a comprehensive summary of the regulation mechanism and genetic pathways of rice grain size. These pathways include the ubiquitin-proteasome system, G-protein, mitogen-activated protein kinase, phytohormone, transcriptional factors, abiotic stress. In addition, we discuss the possible application of advanced molecular biology methods and reasonable breeding strategies, and prospective on the development of high-yielding and high-quality rice varieties using molecular biology techniques.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| |
Collapse
|
23
|
Zhu X, Li Y, Zhao X, Feng Y, Bao Z, Liu W, Li F. OsOFP6 Overexpression Alters Plant Architecture, Grain Shape, and Seed Fertility. Int J Mol Sci 2024; 25:2889. [PMID: 38474136 DOI: 10.3390/ijms25052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
OVATE family proteins (OFPs) play important roles in plant growth and development, hormone signaling, and stress response pathways. However, the functions of OsOFPs in rice are largely unknown. In this study, a novel gain-of-function rice mutant, Osofp6-D, was identified. This mutant exhibited decreased plant height, erect leaves, reduced panicle size, short and wide seeds, delayed seed germination time, and reduced fertility. These phenotypic changes were attributed to the increased expression of OsOFP6, which was caused by a T-DNA insertion. Complementation of the Osofp6-D phenotype by knockout of OsOFP6 using the CRISPR/Cas9 system confirmed that the Osofp6-D phenotype was caused by OsOFP6 overexpression. In addition, transgenic plants overexpressing OsOFP6 with the 35S promoter mimicked the Osofp6-D phenotype. Cytological observations of the glumes showed that OsOFP6 overexpression altered the grain shape, mainly by altering the cell shape. Hormone response experiments showed that OsOFP6 was involved in the gibberellin (GA) and brassinolide (BR) signaling responses. Further studies revealed that OsOFP6 interacts with E3BB, which is orthologous to the Arabidopsis central organ size-control protein BIG BROTHER (BB). This study further elucidates the regulation mechanism of the rice OFP family on plant architecture and grain shape.
Collapse
Affiliation(s)
- Xuting Zhu
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuan Li
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiangqian Zhao
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yukai Feng
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhengkai Bao
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenzhen Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Feifei Li
- College of Advanced Agricultural Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
24
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
25
|
Wu C, Deng W, Shan W, Liu X, Zhu L, Cai D, Wei W, Yang Y, Chen J, Lu W, Kuang J. Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module. Cell Rep 2023; 42:112832. [PMID: 37498740 DOI: 10.1016/j.celrep.2023.112832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Zhang J, Zhang X, Liu X, Pai Q, Wang Y, Wu X. Molecular Network for Regulation of Seed Size in Plants. Int J Mol Sci 2023; 24:10666. [PMID: 37445843 DOI: 10.3390/ijms241310666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The size of seeds is particularly important for agricultural development, as it is a key trait that determines yield. It is controlled by the coordinated development of the integument, endosperm, and embryo. Large seeds are an important way of improving the ultimate "sink strength" of crops, providing more nutrients for early plant growth and showing certain tolerance to abiotic stresses. There are several pathways for regulating plant seed size, including the HAIKU (IKU) pathway, ubiquitin-proteasome pathway, G (Guanosine triphosphate) protein regulatory pathway, mitogen-activated protein kinase (MAPK) pathway, transcriptional regulators pathway, and phytohormone regulatory pathways including the auxin, brassinosteroid (BR), gibberellin (GA), jasmonic acid (JA), cytokinin (CK), Abscisic acid (ABA), and microRNA (miRNA) regulatory pathways. This article summarizes the seed size regulatory network and prospective ways of improving yield. We expect that it will provide a valuable reference to researchers in related fields.
Collapse
Affiliation(s)
- Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaofeng Pai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yahui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
27
|
Li Y, Wu S, Huang Y, Ma X, Tan L, Liu F, Lv Q, Zhu Z, Hu M, Fu Y, Zhang K, Gu P, Xie D, Sun H, Sun C. OsMADS17 simultaneously increases grain number and grain weight in rice. Nat Commun 2023; 14:3098. [PMID: 37248234 DOI: 10.1038/s41467-023-38726-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
During the processes of rice domestication and improvement, a trade-off effect between grain number and grain weight was a major obstacle for increasing yield. Here, we identify a critical gene COG1, encoding the transcription factor OsMADS17, with a 65-bp deletion in the 5' untranslated region (5' UTR) presented in cultivated rice increasing grain number and grain weight simultaneously through decreasing mRNA translation efficiency. OsMADS17 controls grain yield by regulating multiple genes and that the interaction with one of them, OsAP2-39, has been characterized. Besides, the expression of OsMADS17 is regulated by OsMADS1 directly. It indicates that OsMADS1-OsMADS17-OsAP2-39 participates in the regulatory network controlling grain yield, and downregulation of OsMADS17 or OsAP2-39 expression can further improve grain yield by simultaneously increasing grain number and grain weight. Our findings provide insights into understanding the molecular basis co-regulating rice yield-related traits, and offer a strategy for breeding higher-yielding rice varieties.
Collapse
Affiliation(s)
- Yuanjie Li
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Sheng Wu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Yongyu Huang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zuofeng Zhu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Meixia Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yongcai Fu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Kun Zhang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Hongying Sun
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Chuanqing Sun
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
28
|
Li F, Chen X, Yang R, Zhang K, Shan W, Joosten MHAJ, Du Y. Potato protein tyrosine phosphatase StPTP1a is activated by StMKK1 to negatively regulate plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:646-661. [PMID: 36519513 PMCID: PMC9946141 DOI: 10.1111/pbi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruixin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Kun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | | | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
29
|
Mei E, Tang J, He M, Liu Z, Tian X, Bu Q. OsMKKK70 Negatively Regulates Cold Tolerance at Booting Stage in Rice. Int J Mol Sci 2022; 23:ijms232214472. [PMID: 36430953 PMCID: PMC9697274 DOI: 10.3390/ijms232214472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cold stress at the booting stage leads to a lower seed setting rate and seriously threatens the production of rice (Oryza sativa L.), which has become a major yield-limiting factor in higher-altitude and -latitude regions. Because cold tolerance at the booting stage (CTB) is a complex trait and is controlled by multiple loci, only a few genes have been reported so far. In this study, a function of OsMKKK70 (Mitogen Activated Protein Kinase Kinase Kinase 70) in response to CTB was characterized. OsMKKK70 expression was rapidly induced by cold stress at the booting stage. OsMKKK70 overexpression (OsMKKK70-OE) plants were more sensitive to cold stress at the booting stage with a lower seed setting and pollen fertility, but there was no significant difference between the osmkkk70 mutant and WT. Considering the effect of functional redundancy, we further tested the CTB response of osmkkk62/70 and osmkkk55/62/70, the double and triple mutants of OsMKKK70 with its closest homologs OsMKKK62 and OsMKKK55, and found that osmkkk62/70 and osmkkk55/62/70 displayed significantly increased CTB with a higher seed setting and pollen fertility, indicating that OsMKKK70 negatively regulates rice CTB. Moreover, under the low-temperature (LT) condition, the osmkkk62/70 mutant had slightly higher Gibberellin (GA) contents, increased expression of GA biosynthesis genes, and lower protein level of OsSLR1 in anthers than those in WT. By contrast, OsMKKK70-OE anther had a lower GA biosynthesis than that of WT. Together, these findings suggest that OsMKKK70 negatively regulates rice CTB by fine-tuning GA levels in anthers.
Collapse
Affiliation(s)
- Enyang Mei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Mingliang He
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Correspondence: (X.T.); (Q.B.)
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (X.T.); (Q.B.)
| |
Collapse
|
30
|
Yang Y, Wu C, Shan W, Wei W, Zhao Y, Kuang J, Chen J, Jiang Y, Lu W. Mitogen-activated protein kinase 14-mediated phosphorylation of MaMYB4 negatively regulates banana fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac243. [PMID: 36643754 PMCID: PMC9832833 DOI: 10.1093/hr/uhac243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades play crucial parts in plant growth, development processes, immune ability, and stress responses; however, the regulatory mechanism by which MAPK affects fruit ripening remains largely unexplored. Here, we reported that MaMPK14 cooperated with MaMYB4 to mediate postharvest banana fruit ripening. Transient overexpression of individual MaMPK14 and MaMYB4 in banana fruit delayed fruit ripening, confirming the negative roles in the ripening. The ripening negative regulator MaMYB4 could repress the transcription of genes associated with ethylene biosynthesis and fruit softening, such as MaACS1, MaXTH5, MaPG3, and MaEXPA15. Furthermore, MaMPK14 phosphorylated MaMYB4 at Ser160 via a direct interaction. Mutation at Ser160 of MaMYB4 reduced its interaction with MaMPK14 but did not affect its subcellular localization. Importantly, phosphorylation of MaMYB4 by MaMPK14 enhanced the MaMYB4-mediated transcriptional inhibition, binding strength, protein stability, and the repression of fruit ripening. Taken together, our results delineated the regulation pathway of MAPK module during banana fruit ripening, which involved the phosphorylation modification of MaMYB4 mediated by MaMPK14.
Collapse
Affiliation(s)
| | | | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yating Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wangjin Lu
- Corresponding author. Email address: (W. Lu). Telephone: +86-020-85285527. Fax: +86-020-85285527
| |
Collapse
|
31
|
Regulatory Mechanisms of Mitogen-Activated Protein Kinase Cascades in Plants: More than Sequential Phosphorylation. Int J Mol Sci 2022; 23:ijms23073572. [PMID: 35408932 PMCID: PMC8998894 DOI: 10.3390/ijms23073572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play crucial roles in almost all biological processes in plants. They transduce extracellular cues into cells, typically through linear and sequential phosphorylation and activation of members of the signaling cascades. However, accumulating data suggest various regulatory mechanisms of plant MAPK cascades in addition to the traditional phosphorylation pathway, in concert with their large numbers and coordinated roles in plant responses to complex ectocytic signals. Here, we highlight recent studies that describe the uncanonical mechanism of regulation of MAPK cascades, regarding the activation of each tier of the signaling cascades. More particularly, we discuss the unusual role for MAPK kinase kinases (MAPKKKs) in the regulation of MAPK cascades, as accumulating data suggest the non-MAPKKK function of many MAPKKKs. In addition, future work on the biochemical activation of MAPK members that needs attention will be discussed.
Collapse
|
32
|
Tang J, Mei E, He M, Bu Q, Tian X. Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. PLANTA 2022; 255:92. [PMID: 35322309 DOI: 10.1007/s00425-022-03871-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
OsWRKY24 functions redundantly with OsWRKY53, while OsWRKY70 functions differently from OsWRKY53 in regulating grain size. Grain size is a key agronomic trait that affects grain yield and quality in rice (Oryza sativa L.). The transcription factor OsWRKY53 positively regulates grain size through brassinosteroid (BR) signaling and Mitogen-Activated Protein Kinase (MAPK) cascades. However, whether the OsWRKY53 homologs OsWRKY24 and OsWRKY70 also contribute to grain size which remains unknown. Here, we report that grain size in OsWRKY24 overexpression lines and oswrky24 mutants is similar to that of the wild type. However, the oswrky24 oswrky53 double mutant produced smaller grains than the oswrky53 single mutant, indicating functional redundancy between OsWRKY24 and OsWRKY53. In addition, OsWRKY70 overexpression lines displayed an enlarged leaf angle, reduced plant height, longer grains, and higher BR sensitivity, phenotypes similar to those of OsWRKY53 overexpression lines. Importantly, a systematic characterization of seed length in the oswrky70 single, the oswrky53 oswrky70 double and the oswrky24 oswrky53 oswrky70 triple mutant indicated that loss of OsWRKY70 also leads to increased seed length, suggesting that OsWRKY70 might play a role distinct from that of OsWRKY53 in regulating grain size. Taken together, these findings suggest that OsWRKY24 and OsWRKY70 regulate rice grain size redundantly and independently from OsWRKY53.
Collapse
Affiliation(s)
- Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enyang Mei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
33
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|