1
|
Hagenaar DA, Mous SE, ten Hoopen LW, Rietman AB, Hiralal KR, Bindels‐de Heus KGCB, de Nijs PFA, Mohr TC, Lens EJ, Hillegers MHJ, Moll HA, de Wit MY, Dieleman GC. Age-Related Trajectories of Autistic Traits in Children With Angelman Syndrome. Autism Res 2025; 18:870-880. [PMID: 40116126 PMCID: PMC12015797 DOI: 10.1002/aur.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder. Previous studies indicate a high prevalence of autism spectrum disorder (ASD) with considerable variability. Little is known regarding the longitudinal trajectory of autistic traits. We aim to investigate autistic traits, the effect of age on these traits, and associated features in AS children. This (partly) longitudinal clinical record study at the ENCORE Expertise Center involved 107 AS children aged 2-18 with one (N = 107), two (N = 49), or three (N = 14) measurements. Autistic traits and sensory processing issues were assessed using various instruments, and DSM classifications were used descriptively. Covariates were genotype, gender, and epilepsy. Results indicate a high prevalence of autistic traits and sensory processing issues. Children with the deletion genotype exhibited more autistic traits. Autism Diagnostic Observation Schedule (ADOS) classifications indicated higher rates of ASD compared to clinician DSM classifications. Autistic traits generally remained stable over time, except that ADOS scores significantly decreased for children with the UBE3A mutation genotype, and in the social affect domain for the entire group. In conclusion, incorporating the assessment of autistic traits and sensory processing into clinical practice for AS is important to inform adaptations of the environment to meet the child's needs. Additionally, clinicians and researchers should be mindful of the potential for overestimating ASD traits in AS when relying on the ADOS. ASD diagnosis in AS should integrate multiple diagnostic instruments, diverse hetero-anamnestic sources, and multidisciplinary expert opinions.
Collapse
Affiliation(s)
- Doesjka A. Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
- Department of PediatricsErasmus MCRotterdamthe Netherlands
| | - Sabine E. Mous
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Leontine W. ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - André B. Rietman
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Kamil R. Hiralal
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Karen G. C. B. Bindels‐de Heus
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of PediatricsErasmus MCRotterdamthe Netherlands
| | - Pieter F. A. de Nijs
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Theresa C. Mohr
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Eline J. Lens
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Manon H. J. Hillegers
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| | - Henriette A. Moll
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of PediatricsErasmus MCRotterdamthe Netherlands
| | - Marie‐Claire Y. de Wit
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Neurology and Pediatric NeurologyErasmus MCRotterdamthe Netherlands
| | - Gwen C. Dieleman
- ENCORE Expertise Centre for Neurodevelopmental DisordersErasmus MCRotterdamthe Netherlands
- Department of Child‐ and Adolescent Psychiatry/PsychologyErasmus MCRotterdamthe Netherlands
| |
Collapse
|
2
|
Sadhwani A, Powers S, Wheeler A, Miller H, Potter SN, Peters SU, Bacino CA, Skinner SA, Wink LK, Erickson CA, Bird LM, Tan WH. Developmental milestones and daily living skills in individuals with Angelman syndrome. J Neurodev Disord 2024; 16:32. [PMID: 38879552 PMCID: PMC11179294 DOI: 10.1186/s11689-024-09548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a neurodevelopmental disorder associated with severe global developmental delay. However, the ages at which different developmental skills are achieved in these individuals remain unclear. We seek to determine the probability and the age of acquisition of specific developmental milestones and daily living skills in individuals with AS across the different molecular subtypes, viz. class I deletion, class II deletion, uniparental disomy, imprinting defect, and UBE3A variants. METHODS Caregivers participating in a longitudinal multicenter Angelman Syndrome Natural History Study completed a questionnaire regarding the age at which their children achieved specific developmental milestones and daily living skills. The Cox Proportional Hazard model was applied to analyze differences in the probability of achievement of skills at various ages among five molecular subtypes of AS. RESULTS Almost all individuals, regardless of molecular subtype, were able to walk with support by five years of age. By age 15, those with a deletion had at least a 50% probability of acquiring 17 out of 30 skills compared to 25 out of 30 skills among those without a deletion. Overall, fine and gross motor skills such as holding and reaching for small objects, sitting, and walking with support were achieved within a fairly narrow range of ages, while toileting, feeding, and hygiene skills tend to have greater variability in the ages at which these skills were achieved. Those without a deletion had a higher probability (25-92%) of achieving daily living skills such as independently toileting and dressing compared to those with a deletion (0-13%). Across all molecular subtypes, there was a low probability of achieving independence in bathing and brushing teeth. CONCLUSION Individuals with AS without a deletion are more likely to achieve developmental milestones and daily living skills at an earlier age than those with a deletion. Many individuals with AS are unable to achieve daily living skills necessary for independent self-care.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Department of Psychiatry and Behavioral Services, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry and Behavioral Services, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Sonya Powers
- RTI International, Research Triangle Park, NC, USA
- Edmentum, Minneapolis, MN, USA
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC, USA
| | - Hillary Miller
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Aetna, Hartford, CT, USA
| | | | - Sarika U Peters
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos A Bacino
- Kleberg Genetics Clinic, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | | - Logan K Wink
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Talkiatry Management Services, LLC, New York, USA
| | - Craig A Erickson
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Lynne M Bird
- University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Wen-Hann Tan
- Department of Psychiatry and Behavioral Services, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
3
|
Hagenaar DA, Bindels-de Heus KGCB, Lubbers K, Ten Hoopen LW, Rietman AB, de Nijs PFA, Hillegers MHJ, Moll HA, de Wit MCY, Dieleman GC, Mous SE. Child characteristics associated with child quality of life and parenting stress in Angelman syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:248-263. [PMID: 38009976 DOI: 10.1111/jir.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental disorder characterised by severe intellectual disability, movement disorder, epilepsy, sleeping problems, and behavioural issues. Little is known on child health-related quality of life (HRQoL) in AS. AS family studies have reported elevated parenting stress and a high impact of the child's syndrome on the parent. It is unclear which factors influence child HRQoL and parenting stress/impact in AS. METHODS We collected data prospectively through standardised clinical assessments of children with AS at the ENCORE Expertise centre for Angelman Syndrome at the Erasmus MC Sophia Children's Hospital. A linear regression analysis was conducted for the following outcome variables: (1) child HRQoL (Infant and Toddler Quality of Life Questionnaire); (2) the impact of the child's syndrome on the parent (Infant and Toddler Quality of Life Questionnaire); and (3) parenting stress (Parenting Stress Index). Predictor variables were child genotype, epilepsy, sleeping problems (Sleep Disturbance Scale for Children), cognitive developmental level (Bayley Cognition Scale), autistic features (Autism Diagnostic Observation Schedule) and emotional/behavioural problems (Child Behaviour Checklist). Covariates were sex, age and socio-economic status. RESULTS The study sample consisted of 73 children with AS, mean age = 9.1 years, range = 2-18 years. Emotional/behavioural problems were the strongest significant predictor of lowered child HRQoL. Internalising problems were driving this effect. In addition, having the deletion genotype and higher age was related to lower child HRQoL. Sleeping problems were related to a higher impact of the child's syndrome on the parent. Finally, emotional/behavioural problems were associated with higher parenting stress. Cognitive developmental level, autistic features and epilepsy were not a significant predictor of child HRQoL and parenting stress/impact. CONCLUSIONS These results suggest that interventions aimed at increasing child HRQoL and decreasing parenting stress/impact in AS should focus on child emotional/behavioural problems and sleeping problems, using a family-centred approach.
Collapse
Affiliation(s)
- D A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
- Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - K G C B Bindels-de Heus
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - K Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - A B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - P F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - M H J Hillegers
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - H A Moll
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - M C Y de Wit
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology and Paediatric Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - G C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - S E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
- Department of Child- and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Lau KA, Yang X, Rioult-Pedotti MS, Tang S, Appleman M, Zhang J, Tian Y, Marino C, Yao M, Jiang Q, Tsuda AC, Huang YWA, Cao C, Marshall J. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol 2023; 230:102513. [PMID: 37536482 DOI: 10.1016/j.pneurobio.2023.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.
Collapse
Affiliation(s)
- Kara A Lau
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Stephen Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Jianan Zhang
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - Yuyang Tian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Caitlin Marino
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mudi Yao
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ayumi C Tsuda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
5
|
Keary CJ, McDougle CJ. Current and emerging treatment options for Angelman syndrome. Expert Rev Neurother 2023; 23:835-844. [PMID: 37599585 DOI: 10.1080/14737175.2023.2245568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, limited expressive language, epilepsy, and motor impairment. Angelman syndrome is caused by haploinsufficiency of the UBE3A gene on the maternal copy of chromosome 15. There have been ongoing advances in the understanding of neurological, behavioral, and sleep-based problems and associated treatments for patients with AS. These results along with gene-based therapies entering into clinical development prompted this review. AREAS COVERED The authors summarize the research basis describing phenomenology of epilepsy and behavioral concerns such as hyperactivity behavior, aggression, self-injury, repetitive behavior, and sleep disorder. The evidence for recent treatment advances in these target symptom domains of concern is reviewed, and the potential for emerging gene therapy treatments is considered. EXPERT OPINION The prospect for emerging gene therapies means that increasing efforts should be directed toward the early identification of AS implemented equitably. Recent studies emphasize the important role of behavioral therapy in addressing mental health concerns such as aggression and disordered sleep.
Collapse
Affiliation(s)
- Christopher J Keary
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Christopher J McDougle
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Jenner L, Richards C, Howard R, Moss J. Heterogeneity of Autism Characteristics in Genetic Syndromes: Key Considerations for Assessment and Support. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2023; 10:132-146. [PMID: 37193200 PMCID: PMC10169182 DOI: 10.1007/s40474-023-00276-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Purpose of Review Elevated prevalence of autism characteristics is reported in genetic syndromes associated with intellectual disability. This review summarises recent evidence on the behavioural heterogeneity of autism in the following syndromes: Fragile X, Cornelia de Lange, Williams, Prader-Willi, Angelman, Down, Smith-Magenis, and tuberous sclerosis complex. Key considerations for assessment and support are discussed. Recent Findings The profile and developmental trajectory of autism-related behaviour in these syndromes indicate some degree of syndrome specificity which may interact with broader behavioural phenotypes (e.g. hypersociability), intellectual disability, and mental health (e.g. anxiety). Genetic subtype and co-occurring epilepsy within syndromes contribute to increased significance of autism characteristics. Autism-related strengths and challenges are likely to be overlooked or misunderstood using existing screening/diagnostic tools and criteria, which lack sensitivity and specificity within these populations. Summary Autism characteristics are highly heterogeneous across genetic syndromes and often distinguishable from non-syndromic autism. Autism diagnostic assessment practices in this population should be tailored to specific syndromes. Service provisions must begin to prioritise needs-led support.
Collapse
Affiliation(s)
- Lauren Jenner
- School of Psychology, University of Surrey, Guildford, England
| | | | - Rachel Howard
- School of Psychology, University of Surrey, Guildford, England
| | - Joanna Moss
- School of Psychology, University of Surrey, Guildford, England
| |
Collapse
|
7
|
Sadhwani A, Wheeler A, Gwaltney A, Peters SU, Barbieri-Welge RL, Horowitz LT, Noll LM, Hundley RJ, Bird LM, Tan WH. Developmental Skills of Individuals with Angelman Syndrome Assessed Using the Bayley-III. J Autism Dev Disord 2023; 53:720-737. [PMID: 33517526 PMCID: PMC8322148 DOI: 10.1007/s10803-020-04861-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 12/27/2022]
Abstract
We describe the development of 236 children with Angelman syndrome (AS) using the Bayley Scales of Infant and Toddler Development, Third Edition. Multilevel linear mixed modeling approaches were used to explore differences between molecular subtypes and over time. Individuals with AS continue to make slow gains in development through at least age 12 years of age at about 1-2 months/year based on age equivalent score and 1-16 growth score points/year depending on molecular subtype and domain. Children with a deletion have lower scores at baseline and slower rate of gaining skills while children with UBE3A variant subtype demonstrated higher scores as well as greater rates of skill attainment in all domains. The developmental profiles of UPD and ImpD were similar.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC, USA
| | | | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rene L. Barbieri-Welge
- Developmental Evaluation Clinic, Rady Children’s Hospital - San Diego, San Diego, CA, USA
| | | | - Lisa M. Noll
- Psychology Service, Texas Children’s Hospital, Houston, TX, USA,Baylor College of Medicine, Houston, TX, USA
| | - Rachel J. Hundley
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne M. Bird
- Division of Dysmorphology/Genetics, Rady Children’s Hospital - San Diego, San Diego, CA, USA,Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Wen-Hann Tan
- Harvard Medical School, Boston, MA, USA,Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
8
|
Viho EMG, Punt AM, Distel B, Houtman R, Kroon J, Elgersma Y, Meijer OC. The Hippocampal Response to Acute Corticosterone Elevation Is Altered in a Mouse Model for Angelman Syndrome. Int J Mol Sci 2022; 24:ijms24010303. [PMID: 36613751 PMCID: PMC9820460 DOI: 10.3390/ijms24010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Angelman Syndrome (AS) is a severe neurodevelopmental disorder, caused by the neuronal absence of the ubiquitin protein ligase E3A (UBE3A). UBE3A promotes ubiquitin-mediated protein degradation and functions as a transcriptional coregulator of nuclear hormone receptors, including the glucocorticoid receptor (GR). Previous studies showed anxiety-like behavior and hippocampal-dependent memory disturbances in AS mouse models. Hippocampal GR is an important regulator of the stress response and memory formation, and we therefore investigated whether the absence of UBE3A in AS mice disrupted GR signaling in the hippocampus. We first established a strong cortisol-dependent interaction between the GR ligand binding domain and a UBE3A nuclear receptor box in a high-throughput interaction screen. In vivo, we found that UBE3A-deficient AS mice displayed significantly more variation in circulating corticosterone levels throughout the day compared to wildtypes (WT), with low to undetectable levels of corticosterone at the trough of the circadian cycle. Additionally, we observed an enhanced transcriptomic response in the AS hippocampus following acute corticosterone treatment. Surprisingly, chronic corticosterone treatment showed less contrast between AS and WT mice in the hippocampus and liver transcriptomic responses. This suggests that UBE3A limits the acute stimulation of GR signaling, likely as a member of the GR transcriptional complex. Altogether, these data indicate that AS mice are more sensitive to acute glucocorticoid exposure in the brain compared to WT mice. This suggests that stress responsiveness is altered in AS which could lead to anxiety symptoms.
Collapse
Affiliation(s)
- Eva M. G. Viho
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| | - A. Mattijs Punt
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ben Distel
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - René Houtman
- Precision Medicine Lab, 5349 AB Oss, The Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
9
|
Duis J, Nespeca M, Summers J, Bird L, Bindels‐de Heus KG, Valstar MJ, de Wit MY, Navis C, ten Hooven‐Radstaake M, van Iperen‐Kolk BM, Ernst S, Dendrinos M, Katz T, Diaz‐Medina G, Katyayan A, Nangia S, Thibert R, Glaze D, Keary C, Pelc K, Simon N, Sadhwani A, Heussler H, Wheeler A, Woeber C, DeRamus M, Thomas A, Kertcher E, DeValk L, Kalemeris K, Arps K, Baym C, Harris N, Gorham JP, Bohnsack BL, Chambers RC, Harris S, Chambers HG, Okoniewski K, Jalazo ER, Berent A, Bacino CA, Williams C, Anderson A. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol Genet Genomic Med 2022; 10:e1843. [PMID: 35150089 PMCID: PMC8922964 DOI: 10.1002/mgg3.1843] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurogenetic disorder present in approximately 1/12,000 individuals and characterized by developmental delay, cognitive impairment, motor dysfunction, seizures, gastrointestinal concerns, and abnormal electroencephalographic background. AS is caused by absent expression of the paternally imprinted gene UBE3A in the central nervous system. Disparities in the management of AS are a major problem in preparing for precision therapies and occur even in patients with access to experts and recognized clinics. AS patients receive care based on collective provider experience due to limited evidence-based literature. We present a consensus statement and comprehensive literature review that proposes a standard of care practices for the management of AS at a critical time when therapeutics to alter the natural history of the disease are on the horizon. METHODS We compiled the key recognized clinical features of AS based on consensus from a team of specialists managing patients with AS. Working groups were established to address each focus area with committees comprised of providers who manage >5 individuals. Committees developed management guidelines for their area of expertise. These were compiled into a final document to provide a framework for standardizing management. Evidence from the medical literature was also comprehensively reviewed. RESULTS Areas covered by working groups in the consensus document include genetics, developmental medicine, psychology, general health concerns, neurology (including movement disorders), sleep, psychiatry, orthopedics, ophthalmology, communication, early intervention and therapies, and caregiver health. Working groups created frameworks, including flowcharts and tables, to help with quick access for providers. Data from the literature were incorporated to ensure providers had review of experiential versus evidence-based care guidelines. CONCLUSION Standards of care in the management of AS are keys to ensure optimal care at a critical time when new disease-modifying therapies are emerging. This document is a framework for providers of all familiarity levels.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics & Inherited Metabolic DiseaseSection of Pediatrics, Special CareDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Nespeca
- Department of NeurologyRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Jane Summers
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynne Bird
- Department of PediatricsClinical Genetics / DysmorphologyUniversity of California, San DiegoRady Children’s Hospital San DiegoSan DiegoCaliforniaUSA
| | - Karen G.C.B. Bindels‐de Heus
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. J. Valstar
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands
| | - Marie‐Claire Y. de Wit
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of Neurology and Pediatric NeurologyErasmus MCRotterdamThe Netherlands
| | - C. Navis
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of ENT (Speech & Language Pathology)Erasmus MCRotterdamThe Netherlands
| | - Maartje ten Hooven‐Radstaake
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bianca M. van Iperen‐Kolk
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands,Department of Physical TherapyErasmus MCRotterdamThe Netherlands
| | - Susan Ernst
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Melina Dendrinos
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Terry Katz
- Developmental PediatricsDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Gloria Diaz‐Medina
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Akshat Katyayan
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Srishti Nangia
- Department of PediatricsDivision of Child NeurologyWeill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ronald Thibert
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Daniel Glaze
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Christopher Keary
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Karine Pelc
- Department of NeurologyHôpital Universitaire des Enfants Reine FabiolaUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicole Simon
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Anjali Sadhwani
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Helen Heussler
- UQ Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Anne Wheeler
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Caroline Woeber
- Audiology, Speech & Learning ServicesChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Margaret DeRamus
- Department of PsychiatryCarolina Institute for Developmental DisabilitiesUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Amy Thomas
- New York League for Early Learning William O'connor SchoolNew YorkNew YorkUSA
| | | | - Lauren DeValk
- Occupational TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Kristen Kalemeris
- Department of Pediatric RehabilitationMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Kara Arps
- Department of Physical TherapyChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Carol Baym
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Nicole Harris
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - John P. Gorham
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArboMichiganUSA
| | - Brenda L. Bohnsack
- Division of OphthalmologyDepartment of OphthalmologyAnn & Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineAnn ArboMichiganUSA
| | - Reid C. Chambers
- Department of Orthopedic Surgery Nationwide Children’s HospitalColumbusOhioUSA
| | - Sarah Harris
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Henry G. Chambers
- Orthopedic SurgerySan Diego Department of Pediatric OrthopedicsUniversity of CaliforniaRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Katherine Okoniewski
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | | | - Allyson Berent
- Foundation for Angelman Syndrome TherapeuticsChicagoIllinoisUSA
| | - Carlos A. Bacino
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Charles Williams
- Raymond C. Philips UnitDivision of Genetics and MetabolismDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Anne Anderson
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
10
|
Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022; 12:e2468. [PMID: 34985196 PMCID: PMC8865162 DOI: 10.1002/brb3.2468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or loss of UBE3A and marked by intellectual disability, ataxia, autism-like symptoms, and other atypical behaviors. One route to treatment may lie in the role that environment plays early in postnatal life. Environmental enrichment (EE) is one manipulation that has shown therapeutic potential in preclinical models of many brain disorders, including neurodevelopmental disorders. Here, we examined whether postweaning EE can rescue behavioral phenotypes in Ube3a maternal deletion mice (AS mice), and whether any improvements are sex-dependent. METHODS Male and female mice (C57BL/6J Ube3atm1Alb mice and wild-type (WT) littermates; ≥10 mice/group) were randomly assigned to standard housing (SH) or EE at weaning. EE had a larger footprint, a running wheel, and a variety of toys that promoted foraging, burrowing, and climbing. Following 6 weeks of EE, animals were submitted to a battery of tests that reliably elicit behavioral deficits in AS mice, including rotarod, open field, marble burying, and forced swim; weights were also monitored. RESULTS In male AS-EE mice, we found complete restoration of motor coordination, marble burying, and forced swim behavior to the level of WT-SH mice. We also observed a complete normalization of exploratory distance traveled in the open field, but we found no rescue of vertical behavior or center time. AS-EE mice also had weights comparable to WT-SH mice. Intriguingly, in the female AS-EE mice, we found a failure of EE to rescue the same behavioral deficits relative to female WT-SH mice. CONCLUSIONS Environmental enrichment is an effective route to correcting the most penetrant phenotypes in male AS mice but not female AS mice. This finding has important implications for the translatability of early behavioral intervention for AS patients, most importantly the potential dependency of treatment response on sex.
Collapse
Affiliation(s)
- Jameson A. Cosgrove
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Lauren K. Kelly
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Elizabeth A. Kiffmeyer
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Alexander D. Kloth
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| |
Collapse
|
11
|
Grebe SC, Limon DL, McNeel MM, Guzick A, Peters SU, Tan WH, Sadhwani A, Bacino CA, Bird LM, Samaco RC, Berry LN, Goodman WK, Schneider SC, Storch EA. Anxiety in Angelman Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2022; 127:1-10. [PMID: 34979033 PMCID: PMC8803540 DOI: 10.1352/1944-7558-127.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/20/2021] [Indexed: 06/14/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder most commonly caused by the impaired expression of the maternal UBE3A gene on chromosome 15. Though anxiety has been identified as a frequently present characteristic in AS, there are limited studies examining anxiety in this population. Studies of anxiety in other neurodevelopmental disorders have found disorder specific symptoms of anxiety and age specific displays of anxiety symptoms. However, there is a consistent challenge in identifying anxiety in people with neurodevelopmental disorders given the lack of measurement instruments specifically designed for this population. Given the limited information about AS and anxiety, the aims of the current project were to (a) examine symptoms of anxiety in children with AS and (b) determine the correlates of anxiety in children with AS. Participants included 42 adult caregivers of youth with AS in the AS Natural History study who completed the Developmental Behavior Checklist (DBC). The results found that 26% of the sample demonstrated elevated symptoms of anxiety and established a relationship between elevated anxiety in youth with AS and higher levels of irritability, hyperactivity, self-absorbed behaviors, and disruptive/antisocial behaviors. Findings from this research provide a foundation for tailoring evidence-based assessments and treatments for youth with AS and anxiety.
Collapse
Affiliation(s)
- Stacey C Grebe
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Danica L Limon
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Morgan M McNeel
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Andrew Guzick
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | | | - Wen-Hann Tan
- Wen-Hann Tan and Anjali Sadhwani, Boston Children's Hospital
| | - Anjali Sadhwani
- Wen-Hann Tan and Anjali Sadhwani, Boston Children's Hospital
| | - Carlos A Bacino
- Carlos A. Bacino, Baylor College of Medicine and Texas Children's Hospital
| | - Lynne M Bird
- Lynne M. Bird, University of California and Boston Children's Hospital
| | | | - Leandra N Berry
- Leandra N. Berry, Baylor College of Medicine and Texas Children's Hospital
| | | | | | - Eric A Storch
- Sophie C. Schneider and Eric A. Storch, Baylor College of Medicine
| |
Collapse
|
12
|
Keary CJ, Mullett JE, Nowinski L, Wagner K, Walsh B, Saro HK, Erhabor G, Thibert RL, McDougle CJ, Ravichandran CT. Parent Description of Anxiety in Angelman Syndrome. J Autism Dev Disord 2021; 52:3612-3625. [PMID: 34417655 DOI: 10.1007/s10803-021-05238-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/17/2023]
Abstract
Anxiety is being increasingly identified in Angelman syndrome (AS). Qualitative questions and quantitative assessments were used to evaluate for anxiety in 50 subjects with AS. In-person evaluations assessed behaviors concerning for anxiety and circumstances wherein they occurred. Caregivers completed anxiety and other behavioral rating scales. Caregiver responses were categorized and compared to items from anxiety rating scales. The most common behavioral manifestation of anxiety was "aggression." The most common circumstance was "separation from caregiver/parent." Subjects had elevated scores on anxiety, irritability and hyperactivity scales with lower mean scores among subjects with a maternal deletion. The Pediatric Anxiety Rating Scale best captured behaviors described by caregivers. Existing anxiety scales should be adapted for use in AS.
Collapse
Affiliation(s)
- Christopher J Keary
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA. .,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Lisa Nowinski
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Karyn Wagner
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Briana Walsh
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA
| | - Gillian Erhabor
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ronald L Thibert
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Caitlin T Ravichandran
- Lurie Center for Autism, Massachusetts General Hospital, One Maguire Road, Lexington, MA, 02421, USA.,McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Curtis M, Baribeau D, Walker S, Carter M, Costain G, Lamoureux S, Liston E, Marshall CR, Reuter MS, Snell M, Summers J, Vorstman J, Jobling RK. A novel intronic variant in UBE3A identified by genome sequencing in a patient with an atypical presentation of Angelman syndrome. Am J Med Genet A 2020; 182:2145-2151. [PMID: 32652832 DOI: 10.1002/ajmg.a.61740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by loss or deficient expression of UBE3A on the maternally inherited allele. In 10-15% of individuals with a clinical diagnosis of AS, a molecular diagnosis cannot be established with conventional testing. We describe a 13-year-old male with an atypical presentation of AS, who was found to have a novel, maternally inherited, intronic variant in UBE3A (c.3-12T>A) using genome sequencing (GS). Targeted sequencing of RNA isolated from blood confirmed the creation of a new acceptor splice site. These GS results ended a six-year diagnostic odyssey and revealed a 50% recurrence risk for the unaffected parents. This case illustrates a previously unreported splicing variant causing AS. Intronic variants identifiable by GS may account for a proportion of individuals who are suspected of having well-known genetic disorders despite negative prior genetic testing.
Collapse
Affiliation(s)
- Meredith Curtis
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Baribeau
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Carter
- Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Gregory Costain
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eriskay Liston
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,CGEn, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meaghan Snell
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane Summers
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebekah K Jobling
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Adams D, Roche L, Heussler H. Parent perceptions, beliefs, and fears around genetic treatments and cures for children with Angelman syndrome. Am J Med Genet A 2020; 182:1716-1724. [PMID: 32449301 DOI: 10.1002/ajmg.a.61631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 01/21/2023]
Abstract
Genetic therapies have shown recent promise in alleviating some of the cognitive issues associated with some genetic disorders; however, these therapies may come with significant health and socio-ethical concerns, particularly when they involve child participants. Little is known about what parents of children with genetic disorders think about genetic therapies, or about their knowledge of how genetic-based therapy might treat their child's symptoms. Forty-two parents of children with Angelman syndrome (AS) and 27 parents of a mixed etiology comparison group completed an online survey reporting on their perceptions of, and priorities for, genetic therapy. Almost all parents of children with AS (95%) and the comparison group (89%) agreed that treatments aiming to reduce symptoms associated with their child's syndrome were positive. However, significantly more parents of children with AS (95%) than the comparison group (56%) felt that genetic treatment trials aiming to "cure" their child should be a research priority. AS parent priorities for the focus of clinical trials were neurology/seizures, communication skills, and motor skills/mobility. For the comparison group, the priorities were IQ, immune response, and expressive speech. Parents of both groups did not want treatments to change their child's personality or their happiness. Global assumptions cannot be made about targets for therapy between syndromes, about parental understanding of genetics, or about research evidence across syndromes. This study highlights the need for true family and patient engagement in all stages of the research design and treatment evaluation.
Collapse
Affiliation(s)
- Dawn Adams
- Autism Centre of Excellence, Griffith University, Brisbane, Queensland, Australia
| | - Laura Roche
- Autism Centre of Excellence, Griffith University, Brisbane, Queensland, Australia
| | - Helen Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Children's Health Queensland, Brisbane, Queensland, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|