1
|
Ou J, Zhang J, Alswadeh M, Zhu Z, Tang J, Sang H, Lu K. Advancing osteoarthritis research: the role of AI in clinical, imaging and omics fields. Bone Res 2025; 13:48. [PMID: 40263261 PMCID: PMC12015311 DOI: 10.1038/s41413-025-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with significant clinical and societal impact. Traditional diagnostic methods, including subjective clinical assessments and imaging techniques such as X-rays and MRIs, are often limited in their ability to detect early-stage OA or capture subtle joint changes. These limitations result in delayed diagnoses and inconsistent outcomes. Additionally, the analysis of omics data is challenged by the complexity and high dimensionality of biological datasets, making it difficult to identify key molecular mechanisms and biomarkers. Recent advancements in artificial intelligence (AI) offer transformative potential to address these challenges. This review systematically explores the integration of AI into OA research, focusing on applications such as AI-driven early screening and risk prediction from electronic health records (EHR), automated grading and morphological analysis of imaging data, and biomarker discovery through multi-omics integration. By consolidating progress across clinical, imaging, and omics domains, this review provides a comprehensive perspective on how AI is reshaping OA research. The findings have the potential to drive innovations in personalized medicine and targeted interventions, addressing longstanding challenges in OA diagnosis and management.
Collapse
Affiliation(s)
- Jingfeng Ou
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Jin Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Momen Alswadeh
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jijun Tang
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.
| | - Hongxun Sang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ke Lu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Zhang H, Yang Y, Gao M, Peng J, Li D, Zhu J. Bibliometric analysis of chondrocyte apoptosis in knee osteoarthritis. Medicine (Baltimore) 2024; 103:e40000. [PMID: 39465698 PMCID: PMC11460941 DOI: 10.1097/md.0000000000040000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Apoptosis, a form of programmed cell death, plays a significant role in osteoarthritis; however, bibliometric studies in this field remain scarce. Bibliometrics provides a visual representation of research outcomes and trends, guiding future investigations. METHOD Journal data from January 1, 2013, to December 31, 2023, in this field were obtained from the Web of Science (WOS) core database. Analysis was conducted using VOSviewer and CiteSpace. RESULTS Analysis revealed that over the past decade, 794 articles were published in 299 journals by 4447 authors from 49 countries and 877 institutions. The top contributors were China, the United States, and the United Kingdom. Zhuang Chao emerged as the most prolific author, and "osteoarthritis and cartilage" ranked as the most frequently cited journal. Keyword clustering focused on mechanisms, inflammation, and cartilage. The most-cited article was "chondrocyte apoptosis in the pathogenesis of osteoarthritis" in the "International Journal of Molecular Sciences." Burst word analysis highlighted extracellular matrix, circular RNA, micro RNA, indicating current research hotspots. CONCLUSION Utilizing bibliometrics and visual analysis, we explored the hotspots and trends in the field of chondrocyte apoptosis in osteoarthritis. Extracellular matrix, Circular RNA, Micro RNA, among others, are likely to become future research focal points and frontiers.
Collapse
Affiliation(s)
- Hongxing Zhang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Yao Yang
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Minglei Gao
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiafeng Peng
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Danyang Li
- Department of Second Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Junchen Zhu
- Department of Orthopaedics, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
3
|
Lloyd D. The future of in-field sports biomechanics: wearables plus modelling compute real-time in vivo tissue loading to prevent and repair musculoskeletal injuries. Sports Biomech 2024; 23:1284-1312. [PMID: 34496728 DOI: 10.1080/14763141.2021.1959947] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/20/2021] [Indexed: 01/13/2023]
Abstract
This paper explores the use of biomechanics in identifying the mechanistic causes of musculoskeletal tissue injury and degeneration. It appraises how biomechanics has been used to develop training programmes aiming to maintain or recover tissue health. Tissue health depends on the functional mechanical environment experienced by tissues during daily and rehabilitation activities. These environments are the result of the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing musculoskeletal tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and deformation), which may be enabled by appropriate real-time biofeedback. Recent research shows that biofeedback technologies may increase their quality and effectiveness by integrating a personalised neuromusculoskeletal modelling driven by real-time motion capture and medical imaging. Model personalisation is crucial in obtaining physically and physiologically valid predictions of tissue biomechanics. Model real-time execution is crucial and achieved by code optimisation and artificial intelligence methods. Furthermore, recent work has also shown that laboratory-based motion capture biomechanical measurements and modelling can be performed outside the laboratory with wearable sensors and artificial intelligence. The next stage is to combine these technologies into well-designed easy to use products to guide training to maintain or recover tissue health in the real-world.
Collapse
Affiliation(s)
- David Lloyd
- School of Health Sciences and Social Work, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), in the Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Griffith University, Australia
| |
Collapse
|
4
|
Makkithaya KN, Mazumder N, Wang WH, Chen WL, Chen MC, Lee MX, Lin CY, Yeh YJ, Tsay GJ, Chopperla S, Mahato KK, Kao FJ, Zhuo GY. Investigating cartilage-related diseases by polarization-resolved second harmonic generation (P-SHG) imaging. APL Bioeng 2024; 8:026107. [PMID: 38694891 PMCID: PMC11062753 DOI: 10.1063/5.0196676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024] Open
Abstract
Establishing quantitative parameters for differentiating between healthy and diseased cartilage tissues by examining collagen fibril degradation patterns facilitates the understanding of tissue characteristics during disease progression. These findings could also complement existing clinical methods used to diagnose cartilage-related diseases. In this study, cartilage samples from normal, osteoarthritis (OA), and rheumatoid arthritis (RA) tissues were prepared and analyzed using polarization-resolved second harmonic generation (P-SHG) imaging and quantitative image texture analysis. The enhanced molecular contrast obtained from this approach is expected to aid in distinguishing between healthy and diseased cartilage tissues. P-SHG image analysis revealed distinct parameters in the cartilage samples, reflecting variations in collagen fibril arrangement and organization across different pathological states. Normal tissues exhibited distinct χ33/χ31 values compared with those of OA and RA, indicating collagen type transition and cartilage erosion with chondrocyte swelling, respectively. Compared with those of normal tissues, OA samples demonstrated a higher degree of linear polarization, suggesting increased tissue birefringence due to the deposition of type-I collagen in the extracellular matrix. The distribution of the planar orientation of collagen fibrils revealed a more directional orientation in the OA samples, associated with increased type-I collagen, while the RA samples exhibited a heterogeneous molecular orientation. This study revealed that the imaging technique, the quantitative analysis of the images, and the derived parameters presented in this study could be used as a reference for disease diagnostics, providing a clear understanding of collagen fibril degradation in cartilage.
Collapse
Affiliation(s)
- Kausalya Neelavara Makkithaya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Wei-Hsun Wang
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chi Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Ming-Xin Lee
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Chin-Yu Lin
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Yung-Ju Yeh
- Autoimmune Disease Laboratory, China Medical University Hospital, Taichung 404327, Taiwan
| | | | - Sitaram Chopperla
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
5
|
Wu JP, Yang X, Wang Y, Swift B, Adamson R, Zheng Y, Zhang R, Zhong W, Chen F. High Resolution and Labeling Free Studying the 3D Microstructure of the Pars Tensa-Annulus Unit of Mice. Front Cell Dev Biol 2021; 9:720383. [PMID: 34692679 PMCID: PMC8532514 DOI: 10.3389/fcell.2021.720383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hearing loss is a serious illness affecting people’s normal life enormously. The acoustic properties of a tympanic membrane play an important role in hearing, and highly depend on its geometry, composition, microstructure and connection to the surrounding annulus. While the conical geometry of the tympanic membrane is critical to the sound propagation in the auditory system, it presents significant challenges to the study of the 3D microstructure of the tympanic membrane using traditional 2D imaging techniques. To date, most of our knowledge about the 3D microstructure and composition of tympanic membranes is built from 2D microscopic studies, which precludes an accurate understanding of the 3D microstructure, acoustic behaviors and biology of the tissue. Although the tympanic membrane has been reported to contain elastic fibers, the morphological characteristic of the elastic fibers and the spatial arrangement of the elastic fibers with the predominant collagen fibers have not been shown in images. We have developed a 3D imaging technique for the three-dimensional examination of the microstructure of the full thickness of the tympanic membranes in mice without requiring tissue dehydration and stain. We have also used this imaging technique to study the 3D arrangement of the collagen and elastic fibrillar network with the capillaries and cells in the pars tensa-annulus unit at a status close to the native. The most striking findings in the study are the discovery of the 3D form of the elastic and collagen network, and the close spatial relationships between the elastic fibers and the elongated fibroblasts in the tympanic membranes. The 3D imaging technique has enabled to show the 3D waveform contour of the collagen and elastic scaffold in the conical tympanic membrane. Given the close relationship among the acoustic properties, composition, 3D microstructure and geometry of tympanic membranes, the findings may advance the understanding of the structure—acoustic functionality of the tympanic membrane. The knowledge will also be very helpful in the development of advanced cellular therapeutic technologies and 3D printing techniques to restore damaged tympanic membranes to a status close to the native.
Collapse
Affiliation(s)
- Jian-Ping Wu
- Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaojie Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yilin Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Ben Swift
- College of Computing, Australian National University, Canberra, ACT, Australia
| | - Robert Adamson
- School of Biomedical Engineering, Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
| | - Yongchang Zheng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongli Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Zhong
- School of Mechanical Engineering and Automation, Xihua University, Chengdu, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Brain Research Centre, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Sato T, Takakura A, Lee JW, Tokunaga K, Matsumori H, Takao-Kawabata R, Iimura T. A Quantitative Analysis of Bone Lamellarity and Bone Collagen Linearity Induced by Distinct Dosing and Frequencies of Teriparatide Administration in Ovariectomized Rats and Monkeys. Microscopy (Oxf) 2021; 70:498-509. [PMID: 34100544 PMCID: PMC8633100 DOI: 10.1093/jmicro/dfab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
The lamellar structure of bone, which endows biomechanical rigidity to support the host organism, is observed in mammals, including humans. It is therefore essential to develop a quantitative analysis to evaluate the lamellarity of bone, which would especially be useful for the pharmacological evaluation of anti-osteoporotic drugs. This study applied a current system for the semi-automatic recognition of fluorescence signals to the analysis of un-decalcified bone sections from rat and monkey specimens treated with teriparatide (TPTD). Our analyses on bone formation pattern and collagen topology indicated that TPTD augmented bone lamellarity and bone collagen linearity, which were possibly associated with the recovery of collagen cross-linking, thus endowing bone rigidity.
Collapse
Affiliation(s)
- Takanori Sato
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| | - Aya Takakura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan.,Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka 410-2321, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| | - Kazuaki Tokunaga
- Nikon Corporation, 2-15-3 Konan, Minato-ku, Tokyo 108-6290, Japan
| | - Haruka Matsumori
- Nikon Corporation, 2-15-3 Konan, Minato-ku, Tokyo 108-6290, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka 410-2321, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
7
|
Pijanka JK, Markov PP, Midgett D, Paterson NG, White N, Blain EJ, Nguyen TD, Quigley HA, Boote C. Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head. JOURNAL OF BIOPHOTONICS 2019; 12:e201800376. [PMID: 30578592 PMCID: PMC6506269 DOI: 10.1002/jbio.201800376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 05/17/2023]
Abstract
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two-dimensional discrete Fourier transform (DFT)-based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid-stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide-angle X-ray scattering and application of the presented method to other fibrous tissues.
Collapse
Affiliation(s)
- Jacek K. Pijanka
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Petar P. Markov
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Dan Midgett
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Neil G. Paterson
- Diamond Light Source, Harwell Science and Innovation
Campus, Harwell, UK
| | - Nick White
- Vivat Scientia Bioimaging Labs, School of Optometry and
Visual Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering
Centre, Cardiff University, CF10 3AX, Cardiff, UK
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The
Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Boote
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| |
Collapse
|
8
|
Abstract
Ligaments serve as compliant connectors between hard tissues. In that role, they function under various load regimes and directions. The 3D structure of ligaments is considered to form as a uniform entity that changes due to function. The periodontal ligament (PDL) connects the tooth to the bone and sustains different types of loads in various directions. Using the PDL as a model, employing a fabricated motorized setup in a microCT, we demonstrate that the fibrous network structure within the PDL is not uniform, even before the tooth becomes functional. Utilizing morphological automated segmentation methods, directionality analysis, as well as second harmonic generation imaging, we find high correlation between blood vessel distribution and fiber density. We also show a structural feature in a form of a dense collar around the neck of the tooth as well as a preferred direction of the fibrous network. Finally, we show that the PDL develops as a nonuniform structure, with an architecture designed to sustain specific types of load in designated areas. Based on these findings, we propose that ligaments in general should be regarded as nonuniform entities, structured already at developmental stages for optimal functioning under variable load regimes.
Collapse
|
9
|
Lee AH, Szczesny SE, Santare MH, Elliott DM. Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading. Acta Biomater 2017; 57:363-372. [PMID: 28435080 PMCID: PMC6688648 DOI: 10.1016/j.actbio.2017.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
Abstract
Tendon pathology is associated with damage. While tendon damage is likely initiated by mechanical loading, little is known about the specific etiology. Damage is defined as an irreversible change in the microstructure that alters the macroscopic mechanical parameters. In tendon, the link between mechanical loading and microstructural damage, resulting in macroscopic changes, is not fully elucidated. In addition, tendon damage at the macroscale has been proposed to initiate when tendon is loaded beyond a strain threshold, yet the metrics to define the damage threshold are not determined. We conducted multi-scale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. At the microscale, we observe full recovery of the fibril strain and only partial recovery of the interfibrillar sliding, indicating that the damage initiates at the interfibrillar structures. We show that non-recoverable sliding is a mechanism for tendon damage and is responsible for the macroscale decreased linear modulus and elongated toe-region observed at the fascicle-level, and these macroscale properties are appropriate metrics that reflect tendon damage. We concluded that the inflection point of the stress-strain curve represents the damage threshold and, therefore, may be a useful parameter for future studies. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology. STATEMENT OF SIGNIFICANCE Tendon pathology is associated with mechanically induced damage. Damage, as defined in engineering, is an irreversible change in microstructure that alters the macroscopic mechanical properties. Although microstructural damage and changes to macroscale mechanics are likely, this link to microstructural change was not yet established. We conducted multiscale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. We showed that non-recoverable sliding between collagen fibrils is a mechanism for tendon damage. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology.
Collapse
Affiliation(s)
- Andrea H Lee
- Department of Biomedical Engineering, University of Delaware, United States
| | - Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, United States
| | - Michael H Santare
- Department of Mechanical Engineering, University of Delaware, United States
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|