1
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation via Hexosamine Biosynthetic Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309211. [PMID: 39119859 PMCID: PMC11481188 DOI: 10.1002/advs.202309211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Institute for Interdisciplinary ResearchPDBEB – Doctoral Programme in Experimental Biology and BiomedicineUniversity of CoimbraCoimbra3060Portugal
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Kip D. Zimmerman
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Sobha Puppala
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Jeannie Chan
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Hillary F. Huber
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
| | - Ge Li
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Avinash Y. L. Jadhav
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Benlian Wang
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
| | - Cun Li
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science CenterSan AntonioTX78229USA
| | - Thomas C. Register
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Paulo J. Oliveira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life‐Course Health Research CenterDepartment of Animal ScienceUniversity of WyomingLaramieWY82071USA
| | - Michael Olivier
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
| | - Susana P. Pereira
- CNC‐UCCenter for Neuroscience and Cell BiologyUniversity of CoimbraCoimbra3060Portugal
- CIBBCenter for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbra3060Portugal
- Laboratory of Metabolism and Exercise (LaMetEx)Research Centre in Physical ActivityHealth and Leisure (CIAFEL)Laboratory for Integrative and Translational Research in Population Health (ITR)Faculty of SportsUniversity of PortoPorto4050Portugal
| | - Laura A. Cox
- Center for Precision MedicineWake Forest University Health SciencesWinston‐SalemNC27157USA
- Section on Molecular MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC27157USA
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTX78245USA
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC27157USA
| |
Collapse
|
2
|
Adekunbi DA, Yang B, Huber HF, Riojas AM, Moody AJ, Li C, Olivier M, Nathanielsz PW, Clarke GD, Cox LA, Salmon AB. Perinatal maternal undernutrition in baboons modulates hepatic mitochondrial function but not metabolites in aging offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592246. [PMID: 38746316 PMCID: PMC11092655 DOI: 10.1101/2024.05.02.592246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H2O2) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H2O2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
| | - Bowen Yang
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Angelica M Riojas
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Alexander J Moody
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffery D Clarke
- Research Imaging Institute, Long School of Medicine, The University of Texas Health Science Center at San Antonio, Ant Texas, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
3
|
Lubrano C, Parisi F, Cetin I. Impact of Maternal Environment and Inflammation on Fetal Neurodevelopment. Antioxidants (Basel) 2024; 13:453. [PMID: 38671901 PMCID: PMC11047368 DOI: 10.3390/antiox13040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
During intrauterine life, external stimuli including maternal nutrition, lifestyle, socioeconomic conditions, anxiety, stress, and air pollution can significantly impact fetal development. The human brain structures begin to form in the early weeks of gestation and continue to grow and mature throughout pregnancy. This review aims to assess, based on the latest research, the impact of environmental factors on fetal and neonatal brain development, showing that oxidative stress and inflammation are implied as a common factor for most of the stressors. Environmental insults can induce a maternal inflammatory state and modify nutrient supply to the fetus, possibly through epigenetic mechanisms, leading to significant consequences for brain morphogenesis and neurological outcomes. These risk factors are often synergic and mutually reinforcing. Fetal growth restriction and preterm birth represent paradigms of intrauterine reduced nutrient supply and inflammation, respectively. These mechanisms can lead to an increase in free radicals and, consequently, oxidative stress, with well-known adverse effects on the offspring's neurodevelopment. Therefore, a healthy intrauterine environment is a critical factor in supporting normal fetal brain development. Hence, healthcare professionals and clinicians should implement effective interventions to prevent and reduce modifiable risk factors associated with an increased inflammatory state and decreased nutrient supply during pregnancy.
Collapse
Affiliation(s)
- Chiara Lubrano
- Nutritional Sciences, Doctoral Programme (PhD), Università degli Studi di Milano, 20157 Milan, Italy;
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Parisi
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Irene Cetin
- Department of Mother, Child and Neonate, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy;
| |
Collapse
|
4
|
Estrella CAS, Gatford KL, Xiang R, Javadmanesh A, Ghanipoor-Samami M, Nattrass GS, Shuaib E, McAllister MM, Beckman I, Thomsen DA, Clifton VL, Owens JA, Roberts CT, Hiendleder S, Kind KL. Asymmetric growth-limiting development of the female conceptus. Front Endocrinol (Lausanne) 2024; 14:1306513. [PMID: 38362586 PMCID: PMC10867182 DOI: 10.3389/fendo.2023.1306513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction Sex differences in prenatal growth may contribute to sex-dependent programming effects on postnatal phenotype. Methods We integrated for the first time phenotypic, histomorphological, clinico-chemical, endocrine and gene expression analyses in a single species, the bovine conceptus at mid-gestation. Results We demonstrate that by mid-gestation, before the onset of accelerated growth, the female conceptus displays asymmetric lower growth compared to males. Female fetuses were smaller with lower ponderal index and organ weights than males. However, their brain:body weight, brain:liver weight and heart:body weight ratios were higher than in males, indicating brain and heart 'sparing'. The female placenta weighed less and had lower volumes of trophoblast and fetal connective tissue than the male placenta. Female umbilical cord vessel diameters were smaller, and female-specific relationships of body weight and brain:liver weight ratios with cord vessel diameters indicated that the umbilico-placental vascular system creates a growth-limiting environment where blood flow is redistributed to protect brain and heart growth. Clinico-chemical indicators of liver perfusion support this female-specific growth-limiting phenotype, while lower insulin-like growth factor 2 (IGF2) gene expression in brain and heart, and lower circulating IGF2, implicate female-specific modulation of key endocrine mediators by nutrient supply. Conclusion This mode of female development may increase resilience to environmental perturbations in utero and contribute to sex-bias in programming outcomes including susceptibility to non-communicable diseases.
Collapse
Affiliation(s)
- Consuelo Amor S. Estrella
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kathryn L. Gatford
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ruidong Xiang
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ali Javadmanesh
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Mani Ghanipoor-Samami
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Greg S. Nattrass
- South Australian Research and Development Institute, Livestock Systems, Roseworthy, SA, Australia
| | - Entesar Shuaib
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Milton M. McAllister
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ian Beckman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Dana A. Thomsen
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Vicki L. Clifton
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Julie A. Owens
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Deakin University, Geelong, VIC, Australia
| | - Claire T. Roberts
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Flinders University, College of Medicine and Public Health, Adelaide, SA, Australia
| | - Stefan Hiendleder
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Karen L. Kind
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Epigenetics and Genetics Group and Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
5
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567640. [PMID: 38014295 PMCID: PMC10680868 DOI: 10.1101/2023.11.17.567640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y. L. Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas C. Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susana P. Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Puppala S, Chan J, Zimmerman KD, Hamid Z, Ampong I, Huber HF, Li G, Jadhav AYL, Li C, Nathanielsz PW, Olivier M, Cox LA. Multi-omics Analysis of Aging Liver Reveals Changes in Endoplasmic Stress and Degradation Pathways in Female Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554149. [PMID: 37662261 PMCID: PMC10473634 DOI: 10.1101/2023.08.21.554149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The liver is critical for functions that support metabolism, immunity, digestion, detoxification, and vitamin storage. Aging is associated with severity and poor prognosis of various liver diseases such as nonalcoholic fatty liver disease (NAFLD). Previous studies have used multi-omic approaches to study liver diseases or to examine the effects of aging on the liver. However, to date, no studies have used an integrated omics approach to investigate aging-associated molecular changes in the livers of healthy female nonhuman primates. The goal of this study was to identify molecular changes associated with healthy aging in the livers of female baboons ( Papio sp., n=35) by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. To integrate omics data, we performed unbiased weighted gene co-expression network analysis (WGCNA), and the results revealed 3 modules containing 3,149 genes and 33 proteins were positively correlated with age, and 2 modules containing 37 genes and 216 proteins were negatively correlated with age. Pathway enrichment analysis showed that unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were positively associated with age, whereas xenobiotic metabolism and melatonin and serotonin degradation pathways were negatively associated with age. The findings of our study suggest that UPR and a reduction in reactive oxygen species generated from serotonin degradation could protect the liver from oxidative stress during the aging process in healthy female baboons.
Collapse
|
7
|
Multi-Omics Analysis Reveals the Potential Effects of Maternal Dietary Restriction on Fetal Muscle Growth and Development. Nutrients 2023; 15:nu15041051. [PMID: 36839409 PMCID: PMC9964303 DOI: 10.3390/nu15041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In terms of fetal muscle growth, development, and health, maternal nutrition is a crucial influence, although the exact biochemical mechanism by which this occurs is still not fully understood. To examine the potential impacts of maternal dietary restriction on fetal muscle development, the sheep maternal dietary restriction model was developed for this study. In our study, 12 pregnant ewes were evenly split into two experimental groups and fed either 75% or 100% of a maternal nutrient. In addition, a multi-omics analysis was used to study the embryonic longissimus dorsis on gestational days (GD) 85 and 135. The fetal weight at GD 135 was significantly below normal due to the maternal restricted diet (p < 0.01). When fetuses were exposed to the dietary deficit, 416 mRNAs and 40 proteins were significantly changed. At GD 85, the multi-omics analysis revealed that maternal dietary restriction led to a significant up-regulation of the cell cycle regulator CDK2 gene in the cellular senescence signaling pathway, and the results of the qRT-PCR were similar to the multi-omics analysis, which showed that SIX1, PAX7, the cell cycle factors CDK4 and CDK6, and the BCL-2 apoptosis factor were up-regulated and several skeletal muscle marker genes, such as MYF5 and MyoD were down-regulated. At GD 135, maternal dietary restriction blocks the muscle fiber differentiation and maturation. The multi-omics analysis revealed that the TEAD1 gene was in the Hippo signaling pathway, the muscle marker genes MYF5 and MyoG were significantly down-regulated, and the TEAD1 binding of the down-regulated VGLL3 gene might be potential mechanisms affecting myofiber differentiation and maturation. Knocking down the CDK2 gene could inhibit the proliferation of primary embryonic myoblasts, and the expression levels of cell cycle regulatory factors CDK4 and CDK6 were significantly changed. Under low nutrient culture conditions, the number of myoblasts decreased and the expression of CDK2, CDK6, MYF5, PAX7 and BCL-2 changed, which was in perfect agreement with the multi-omics analysis. All of the findings from our study helped to clarify the potential effects of maternal dietary restriction on fetal muscle growth and development. They also provided a molecular foundation for understanding the molecular regulatory mechanisms of maternal nutrition on fetal muscle growth and development, as well as for the development of new medications and the management of related metabolic diseases.
Collapse
|
8
|
Mask E, Hodara VL, Callery JE, Parodi LM, Obregon-Perko V, Yagi S, Glenn J, Frost P, Clemmons E, Patterson JL, Cox LA, Giavedoni LD. Molecular Approaches for the Validation of the Baboon as a Nonhuman Primate Model for the Study of Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:880860. [PMID: 35493734 PMCID: PMC9046911 DOI: 10.3389/fcimb.2022.880860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.
Collapse
Affiliation(s)
- Emma Mask
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Vida L. Hodara
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica E. Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Laura M. Parodi
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, United States
| | - Jeremy Glenn
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Patrice Frost
- Southwest National Primate Research Center, San Antonio, TX, United States
| | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, United States
| | | | - Laura A. Cox
- Southwest National Primate Research Center, San Antonio, TX, United States,Center for Precision Medicine, Wake Forest Health Sciences University, Winston Salem, NC, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States,Southwest National Primate Research Center, San Antonio, TX, United States,*Correspondence: Luis D. Giavedoni,
| |
Collapse
|
9
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
10
|
Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction. Clin Sci (Lond) 2021; 135:1103-1126. [PMID: 33899910 DOI: 10.1042/cs20201339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.
Collapse
|
11
|
Wang D, Wu X, Lu D, Li Y, Zhang P. The Melatonin and Enriched Environment Ameliorated Low Protein-Induced Intrauterine Growth Retardation by IGF-1 And mtor Signaling Pathway and Autophagy Inhibition in Rats. Curr Mol Med 2021; 21:246-256. [PMID: 32713334 DOI: 10.2174/1566524020666200726221735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Aim: The present study investigated whether melatonin (MEL) and enriched environment (EE) might protect against intrauterine growth retardation (IUGR) in rats. METHODS Sprague-Dawley rats were randomly allocated to 3 groups: control (C), model (M) and EE+MEL group. Animals were housed in an enriched environment (EE+MEL group) or remained in a standard environment (C group, M group). IUGR rat model was built by feeding a low protein diet during pregnancy. MEL was administered by gavaging. At day 1 post-birth, the baseline characteristics and serum biochemical parameters, morphology of liver and small intestine, enzyme activities, and mRNA expression levels of fetal rats were determined. The autophagy marker LC3 and Beclin1 were determined by western blot analysis. RESULTS EE+MEL markedly improved the baseline characteristics, hepatic and intestinal morphology of IUGR fetuses. In addition, the lactase activities in the fetal intestine were markedly increased by the EE+MEL. The levels of serum somatostatin (SST), Growth hormone (GH), GH releasing hormone (GHRH), Insulin-like Growth Factor 1 (IGF-1), triiodothyronine (T3), and tetraiodothyronine (T4) were found to be recovered by EE+MEL. In addition, the EE+MEL significantly ameliorated the mRNA expression of SST, GHRH, and GHRH receptor (GHRHR), GH, GHR, IGF-1, and IGF-1 receptor (IGF1R), IGF binding protein-1 (IGFBP1), mammalian target of rapamycin (mTOR), S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) in fetuses. In IUGR fetal livers, LC3 and Beclin1 were found to be increased at birth, while LC3 and Beclin1 were observed to be significantly decreased in the EE+MEL group. CONCLUSION EE+MEL could improve fetal rats' baseline characteristics, serum biochemical parameters, birth weight, intestinal and hepatic morphology and enzyme activities. These effects could be explained by the activation of the IGF-1/IGFBP1 and IGF-1/mTOR/S6K1/4EBP1 signaling pathway and autophagy inhibition.
Collapse
Affiliation(s)
- Dan Wang
- College of Human Kinesiology, Shenyang Sport University, 36 Jinqiansong East Road Sujiatun District, Shenyang, 110102, Liaoning, China
| | - Xiao Wu
- Department of basic medical, HE's University, Shenyang, Liaoning 110163, China
| | - Dan Lu
- College of clinical, HE's University, Shenyang, Liaoning 110163, China
| | - Yan Li
- Experimental Teaching Center of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang , Liaoning 110016, China
| | - Peng Zhang
- Department of basic medical, HE's University, Shenyang, Liaoning 110163, China
| |
Collapse
|
12
|
Nathanielsz PW, Huber HF, Li C, Clarke GD, Kuo AH, Zambrano E. The nonhuman primate hypothalamo-pituitary-adrenal axis is an orchestrator of programming-aging interactions: role of nutrition. Nutr Rev 2020; 78:48-61. [PMID: 33196092 PMCID: PMC7667468 DOI: 10.1093/nutrit/nuaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Developmental programming alters life-course multi-organ function and significantly affects life-course health. Recently, interest has developed in how programming may influence the rate of aging. This review describes interactions of nutrition and programming-aging interactions in hypothalamo-pituitary-adrenal (HPA) development and function from fetal development to old age. A full picture of these interactions requires data on levels of HPA activity relating to the hypothalamic, adrenal cortical, circulating blood, and peripheral cortisol metabolism. Data are provided from studies on our baboon, nonhuman primate model both across the normal life course and in offspring of maternal baboons who were moderately undernourished by a global 30% diet reduction during pregnancy and lactation. Sex differences in offspring outcomes in response to similar challenges are described. The data clearly show programming of increased HPA axis activity by moderate maternal undernutrition. Increased postnatal circulating cortisol concentrations are related to accelerated aging of the brain and cardiovascular systems. Future studies should address peripheral cortisol production and the influence of aging advantage in females. These data support the view that the HPA is an orchestrator of interactions of programming-aging mechanisms.
Collapse
Affiliation(s)
- Peter W Nathanielsz
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Hillary F Huber
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
| | - Cun Li
- Texas Pregnancy & Life-course Health Center, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Geoffrey D Clarke
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Anderson H Kuo
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Radiology, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán
| |
Collapse
|
13
|
Huber HF, Jenkins SL, Li C, Nathanielsz PW. Strength of nonhuman primate studies of developmental programming: review of sample sizes, challenges, and steps for future work. J Dev Orig Health Dis 2020; 11:297-306. [PMID: 31566171 PMCID: PMC7103515 DOI: 10.1017/s2040174419000539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonhuman primate (NHP) studies are crucial to biomedical research. NHPs are the species most similar to humans in lifespan, body size, and hormonal profiles. Planning research requires statistical power evaluation, which is difficult to perform when lacking directly relevant preliminary data. This is especially true for NHP developmental programming studies, which are scarce. We review the sample sizes reported, challenges, areas needing further work, and goals of NHP maternal nutritional programming studies. The literature search included 27 keywords, for example, maternal obesity, intrauterine growth restriction, maternal high-fat diet, and maternal nutrient reduction. Only fetal and postnatal offspring studies involving tissue collection or imaging were included. Twenty-eight studies investigated maternal over-nutrition and 33 under-nutrition; 23 involved macaques and 38 baboons. Analysis by sex was performed in 19; minimum group size ranged from 1 to 8 (mean 4.7 ± 0.52, median 4, mode 3) and maximum group size from 3 to 16 (8.3 ± 0.93, 8, 8). Sexes were pooled in 42 studies; minimum group size ranged from 2 to 16 (mean 5.3 ± 0.35, median 6, mode 6) and maximum group size from 4 to 26 (10.2 ± 0.92, 8, 8). A typical study with sex-based analyses had group size minimum 4 and maximum 8 per sex. Among studies with sexes pooled, minimum group size averaged 6 and maximum 8. All studies reported some significant differences between groups. Therefore, studies with group sizes 3-8 can detect significance between groups. To address deficiencies in the literature, goals include increasing age range, more frequently considering sex as a biological variable, expanding topics, replicating studies, exploring intergenerational effects, and examining interventions.
Collapse
Affiliation(s)
- Hillary F. Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Susan L. Jenkins
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W. Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
14
|
Kirigiti MA, Frazee T, Bennett B, Arik A, Blundell P, Bader L, Bagley J, Frias AE, Sullivan EL, Roberts CT, Kievit P. Effects of pre- and postnatal protein restriction on maternal and offspring metabolism in the nonhuman primate. Am J Physiol Regul Integr Comp Physiol 2020; 318:R929-R939. [PMID: 32130027 DOI: 10.1152/ajpregu.00150.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Women in low- and middle-income countries frequently consume a protein-deficient diet during pregnancy and breastfeeding. The effects of gestational malnutrition on fetal and early postnatal development can have lasting adverse effects on offspring metabolism. Expanding on previous studies in rodent models, we utilized a nonhuman primate model of gestational and early-life protein restriction (PR) to evaluate effects on the organ development and glucose metabolism of juvenile offspring. Offspring were born to dams that had consumed a control diet containing 26% protein or a PR diet containing 13% protein. Offspring were maintained on the PR diet and studied [body and serum measurements, intravenous glucose tolerance tests (ivGTTs), and dual-energy X-ray absorptiometry scans] up to 7 mo of age, at which time tissues were collected for analysis. PR offspring had age-appropriate body weight and were euglycemic but exhibited elevated fasting insulin and reduced initial, but increased total, insulin secretion during an ivGTT at 6 mo of age. No changes were detected in pancreatic islets of PR juveniles; however, PR did induce changes, including reduced kidney size, and changes in liver, adipose tissue, and muscle gene expression in other peripheral organs. Serum osteocalcin was elevated and bone mineral content and density were reduced in PR juveniles, indicating a significant impact of PR on early postnatal bone development.
Collapse
Affiliation(s)
- Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tim Frazee
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Baylin Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Anam Arik
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Peter Blundell
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Lindsay Bader
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jennifer Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Antonio E Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
15
|
Li C, Jenkins S, Huber HF, Nathanielsz PW. Effect of maternal baboon (Papio sp.) dietary mismatch in pregnancy and lactation on post-natal offspring early life phenotype. J Med Primatol 2019; 48:226-235. [PMID: 31025367 PMCID: PMC6610582 DOI: 10.1111/jmp.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-human primate models of developmental programing by maternal mismatch between pregnancy and lactation diets are needed for translation to human programing outcomes. We present baboon offspring morphometry from birth to 3 years, and blood cortisol and adrenocorticotropin (ACTH) from 2 to 24 months. METHODS Control mothers ate chow; mismatch mothers ate 30% less than controls during pregnancy and high-fat high-energy diet through lactation. RESULTS Mismatch mothers lost weight during pregnancy. At birth, there were trends toward lower weight in mismatch offspring of both sexes (P = 0.06). From 0-3 years, catch-up growth occurred. Mismatch offspring male and female body weight increased faster than controls (P < 0.001). Mismatch female offspring showed greater increase in BMI (P < 0.001) and abdominal circumference (P = 0.008) vs controls. ACTH and cortisol slopes from 2 to 24 months of age were similar between groups in both sexes. Cortisol and ACTH increased after weaning in all groups. CONCLUSIONS Mismatch produces sexually dimorphic post-natal growth phenotypes.
Collapse
Affiliation(s)
- Cun Li
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan Jenkins
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Hillary F. Huber
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
16
|
Li C, Jenkins S, Considine MM, Cox LA, Gerow KG, Huber HF, Nathanielsz PW. Effect of maternal obesity on fetal and postnatal baboon (Papio species) early life phenotype. J Med Primatol 2019; 48:90-98. [PMID: 30569595 PMCID: PMC6598713 DOI: 10.1111/jmp.12396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-human primate models of developmental programming by maternal obesity (MO) are needed for translation to human programming outcomes. We present baboon offspring (F1) morphometry, blood cortisol, and adrenocorticotropic hormone (ACTH) from 0.9 gestation to 0-2 years. METHODS Control mothers ate chow; MO mothers ate high-fat high-energy diet pre-pregnancy through lactation. RESULTS Maternal obesity mothers weighed more than controls pre-pregnancy. Maternal obesity gestational weight gain was lower with no correlation with fetal or placenta weights. At 0.9 gestation, MO and control F1 morphometry and ACTH were similar. MO-F1 0.9 gestation male cortisol was lower, rising slower from 0-2 years vs control-F1. At birth, male MO-F1 and control-F1 weights were similar, but growth from 0-2 years was steeper in MO-F1; newborn female MO-F1 weighed more than control-F1 but growth from 0-2 years was similar. ACTH did not change in either sex. CONCLUSIONS Maternal obesity produced sexually dimorphic fetal and postnatal growth and hormonal phenotypes.
Collapse
Affiliation(s)
- Cun Li
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan Jenkins
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - McKenna M. Considine
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Laura A. Cox
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, Wyoming, USA
| | - Hillary F. Huber
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-course Health Center, Department of Animal Sciences, University of Wyoming, Laramie, Wyoming, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
17
|
Kuo AH, Li C, Huber HF, Clarke GD, Nathanielsz PW. Intrauterine growth restriction results in persistent vascular mismatch in adulthood. J Physiol 2018; 596:5777-5790. [PMID: 29098705 PMCID: PMC6265527 DOI: 10.1113/jp275139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Intrauterine growth restriction (IUGR) increases offspring risk of chronic diseases later in life, including cardiovascular dysfunction. Our prior studies suggest biventricular cardiac dysfunction and vascular impairment in baboons who were IUGR at birth because of moderate maternal nutrient reduction. The current study reveals changes in artery sizes, distensibility, and blood flow pattern in young adult IUGR baboons, which may contribute to cardiac stress. The pattern of abnormality observed suggests that vascular redistribution seen with IUGR in fetal life may continue into adulthood. ABSTRACT Maternal nutrient reduction induces intrauterine growth restriction (IUGR), increasing risks of chronic diseases later in life, including cardiovascular dysfunction. Using ultrasound, we determined regional blood flow, blood vessel sizes, and distensibility in IUGR baboons (8 males, 8 females, 8.8 years, similar to 35 human years) and controls (12 males, 12 females, 9.5 years). The measured blood vessels were larger in size in the males compared to females before but not after normalization to body surface area. Smaller IUGR normalized blood vessel sizes were observed in the femoral and external iliac arteries but not the brachial or common carotid arteries and not correlated significantly with birth weight. Mild decrease in distensibility in the IUGR group was seen in the iliac but not the carotid arteries without between-sex differences. In IUGR baboons there was increased carotid arterial blood flow velocity during late systole and diastole. Overall, our findings support the conclusion that region specific vascular and haemodynamic changes occur with IUGR, which may contribute to the occurrence of later life cardiac dysfunction. The pattern of alteration observed suggests vascular redistribution efforts in response to challenges in the perinatal period may persist into adulthood. Further studies are needed to determine the life course progression of these changes.
Collapse
Affiliation(s)
- Anderson H. Kuo
- Department of Radiology and Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Cun Li
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Southwest National Primate Research CenterSan AntonioTXUSA
| | | | - Geoffrey D. Clarke
- Department of Radiology and Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Southwest National Primate Research CenterSan AntonioTXUSA
| | - Peter W. Nathanielsz
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Southwest National Primate Research CenterSan AntonioTXUSA
| |
Collapse
|
18
|
Huber HF, Considine MM, Jenkins S, Li C, Nathanielsz PW. Reproductive cycling in adult baboons (Papio species) that were intrauterine growth restricted at birth implies normal fertility but increased psychosocial stress. J Med Primatol 2018; 47:427-429. [PMID: 29956833 PMCID: PMC6342511 DOI: 10.1111/jmp.12356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2018] [Indexed: 01/29/2023]
Abstract
We investigated menstrual cycles in intrauterine growth restricted (IUGR, 7-10 years, n = 8) and age-matched control (n = 10) baboons. Cycle duration and plasma anti-Mullerian hormone were similar. IUGR spent more days per cycle swollen and had elevated early morning fasted serum cortisol, suggesting normal fertility in the presence of increased psychosocial stress.
Collapse
Affiliation(s)
| | | | - Susan Jenkins
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Cun Li
- Animal Science, University of Wyoming, Laramie, WY, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Animal Science, University of Wyoming, Laramie, WY, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
19
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
20
|
Kuo AH, Li C, Mattern V, Huber HF, Comuzzie A, Cox L, Schwab M, Nathanielsz PW, Clarke GD. Sex-dimorphic acceleration of pericardial, subcutaneous, and plasma lipid increase in offspring of poorly nourished baboons. Int J Obes (Lond) 2018; 42:1092-1096. [PMID: 29463919 PMCID: PMC6019612 DOI: 10.1038/s41366-018-0008-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
Abstract
Developmental programming by reduced maternal nutrition alters function in multiple offspring physiological systems, including lipid metabolism. We have shown that intrauterine growth restriction (IUGR) leads to offspring cardiovascular dysfunction with an accelerated aging phenotype in our nonhuman primate, baboon model. We hypothesized age-advanced pericardial fat and blood lipid changes. In pregnancy and lactation, pregnant baboons ate ad lib (control) or 70% ad lib diet (IUGR). We studied baboon offspring pericardial lipid deposition with magnetic resonance imaging at 5-6 years (human equivalent 20-24 years), skinfold thickness, and serum lipid profile at 8-9 years (human equivalent 32-36 years), comparing values with a normative life-course baboon cohort, 4-23 years. Increased pericardial fat deposition occurred in IUGR males but not females. Female but not male total cholesterol, low-density lipoprotein, and subcutaneous fat were increased with a trend of triglycerides increase. When comparing IUGR changes to values in normal older baboons, the increase in male apical pericardial fat was equivalent to advancing age by 6 years and the increase in female low-density lipoprotein to an increase of 3 years. We conclude that reduced maternal diet accelerates offspring lipid changes in a sex-dimorphic manner. The interaction between programming and accelerated lipogenesis warrants further investigation.
Collapse
Affiliation(s)
- Anderson H Kuo
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Vicki Mattern
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | | | - Laura Cox
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Matthias Schwab
- Hans Berger Department for Neurology, University Hospital, Jena, Germany
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Geoffrey D Clarke
- Department of Radiology and Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| |
Collapse
|
21
|
Salmon AB, Dorigatti J, Huber HF, Li C, Nathanielsz PW. Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. GeroScience 2018; 40:269-278. [PMID: 29802507 PMCID: PMC6060193 DOI: 10.1007/s11357-018-0024-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
Compelling data exist for programming of chronic later-life diseases and longevity by perinatal developmental programming challenges. Understanding mechanisms by which life course health trajectory and longevity are set is fundamental to understanding aging. Appropriate approaches are needed to determine programming effects on cellular function. We have developed a baboon model in which control mothers eat ad libitum while a second group eat 70% of the global diet fed controls, leading to male and female offspring intrauterine growth restriction (IUGR). We have shown that IUGR suffer from acceleration of several age-related physiological declines. Here, we report on a skin-derived fibroblast model with potential relevance for mechanistic studies on how IUGR impacts aging. Fibroblasts were cultured from the skin biopsies taken from adult baboons from control and IUGR cohorts. IUGR-derived fibroblasts grew in culture less well than controls and those derived from male, but not female, IUGR baboons had a significant reduction in maximum respiration rate compared to control-derived fibroblasts. We also show that relative levels of several mitochondrial protein subunits, including NDUFB8 and cytochrome c oxidase subunit IV, were reduced in IUGR-derived fibroblasts even after serial passaging in culture. The lower levels of electron transport system components provide potential mechanisms for accelerated life course aging in the setting of programmed IUGR. This observation fits with the greater sensitivity of males compared with females to many, but not all, outcomes in response to programming challenges. These approaches will be powerful in the determination of programming-aging interactions.
Collapse
Affiliation(s)
- Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Jonathan Dorigatti
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
22
|
Light LEO, Bartlett TQ, Poyas A, Nijland MJ, Huber HF, Li C, Keenan K, Nathanielsz PW. Maternal activity, anxiety, and protectiveness during moderate nutrient restriction in captive baboons (Papio sp.). J Med Primatol 2018; 47:10.1111/jmp.12350. [PMID: 29749628 PMCID: PMC6230519 DOI: 10.1111/jmp.12350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND We hypothesized that maternal nutrient restriction (NR) would increase activity and behavioral indicators of anxiety (self-directed behaviors, SDBs) in captive baboons (Papio sp.) and result in more protective maternal styles. METHODS Our study included 19 adult female baboons. Seven females ate ad libitum (control group), and eight females ate 30% less (NR group) and were observed through pregnancy and lactation. RESULTS Control females engage in higher rates of SDB than NR females overall (P ≤ .018) and during the prenatal period (P ≤ .001) and engage in more aggressive behavior (P ≤ .033). Control females retrieved infants more than NR females during weeks 5-8 postpartum (P ≤ .019). CONCLUSIONS Lower SDB rates among prenatal NR females reduce energy expenditure and increase available resources for fetal development when nutritionally restricted. Higher infant retrieval rates by controls may indicate more infant independence rather than maternal style differences.
Collapse
Affiliation(s)
- Lydia E. O. Light
- Department of Anthropology, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223-0001, USA
- Department of Anthropology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Thad Q. Bartlett
- Department of Anthropology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Annica Poyas
- Department of Anthropology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Mark J. Nijland
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Hillary F. Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Kate Keenan
- Department of Psychiatry, University of Chicago, Chicago, IL
| | - Peter W. Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
- Southwest National Primate Research Center, San Antonio, TX, 78249, USA
| |
Collapse
|
23
|
Huber HF, Li C, Nathanielsz PW. 2D:4D digit ratio is not a biomarker of developmental programming in baboons (Papio hamadryas species). J Med Primatol 2018; 47:78-80. [PMID: 29034475 PMCID: PMC5771970 DOI: 10.1111/jmp.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 01/18/2023]
Abstract
We hypothesized second-to-fourth hand digit ratio (2D:4D) is a biomarker of developmental programming in 3 baboon groups: intrauterine growth restriction (7 females, 8 males), exposure during fetal life to synthetic glucocorticoids (4 females, 5 males), and controls (66 females, 20 males). 2D:4D was similar between sexes and groups.
Collapse
Affiliation(s)
- Hillary F. Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W. Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|