1
|
Bolden NC, Pavchinskiy RG, Melikian HE. Dopamine transporter endocytic trafficking: Neuronal mechanisms and potential impact on DA-dependent behaviors. J Neurochem 2025; 169:e16284. [PMID: 39655745 PMCID: PMC11631176 DOI: 10.1111/jnc.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
The dopamine (DA) transporter (DAT) is a major determinant of DAergic neurotransmission, and is a primary target for addictive and therapeutic psychostimulants. Evidence accumulated over decades in cell lines and in vitro preparations revealed that DAT function is acutely regulated by membrane trafficking. Many of these findings have recently been validated in vivo and in situ, and several behavioral and physiological findings raise the possibility that regulated DAT trafficking may impact DA signaling and DA-dependent behaviors. Here we review key DAT trafficking findings across multiple systems, and discuss the cellular mechanisms that mediate DAT trafficking, as well as the endogenous receptors and signaling pathways that drive regulated DAT trafficking. We additionally discuss recent findings that DAT trafficking dysfunction correlates to perturbations in DA signaling and DA-dependent behaviors.
Collapse
Affiliation(s)
- Nicholas C. Bolden
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Rebecca G. Pavchinskiy
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| | - Haley E. Melikian
- Department of Neurobiology, UMASS Chan Medical School, Worcester, MA 01605
- Brudnick Neuropsychiatric Research Institute, UMASS Chan Medical School, Worcester, MA 01605
| |
Collapse
|
2
|
Spicer MM, Weber MA, Luo Z, Yang J, Narayanan NS, Fisher RA. Regulator of G protein signaling 6 (RGS6) in dopamine neurons promotes EtOH seeking, behavioral reward, and susceptibility to relapse. Psychopharmacology (Berl) 2024; 241:2255-2269. [PMID: 38856764 PMCID: PMC11518640 DOI: 10.1007/s00213-024-06631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mesolimbic dopamine (DA) transmission is believed to play a critical role in mediating reward responses to drugs of abuse, including alcohol (EtOH). The neurobiological mechanisms underlying EtOH-seeking behavior and dependence are not fully understood, and abstinence remains the only effective way to prevent alcohol use disorders (AUDs). Here, we developed novel RGS6fl/fl; DAT-iCreER mice to determine the role of RGS6 in DA neurons on EtOH consumption, reward, and relapse behaviors. We found that RGS6 is expressed in DA neurons in both human and mouse ventral tegmental area (VTA), and that RGS6 loss in mice upregulates DA transporter (DAT) expression in VTA DA neuron synaptic terminals. Remarkably, loss of RGS6 in DA neurons significantly reduced EtOH consumption, preference, and reward in a manner indistinguishable from that seen in RGS6-/- mice. Strikingly, RGS6 loss from DA neurons before or after EtOH behavioral reward is established significantly reduced (~ 50%) re-instatement of reward following extinguishment, demonstrating distinct roles of RGS6 in promoting reward and relapse susceptibility to EtOH. These studies identify DA neurons as the locus of RGS6 action in promoting EtOH consumption, preference, reward, and relapse. RGS6 is unique among R7 RGS proteins in promoting rather than suppressing behavioral responses to drugs of abuse and to modulate EtOH behavioral reward. This is a result of RGS6's pre-synaptic actions that we hypothesize promote VTA DA transmission by suppressing GPCR-Gαi/o-DAT signaling in VTA DA neurons. These studies identify RGS6 as a potential therapeutic target for behavioral reward and relapse to EtOH.
Collapse
Affiliation(s)
- Mackenzie M Spicer
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 51 Newton Rd. BSB 2-512, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 169 Newton Rd., Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Matthew A Weber
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 169 Newton Rd., Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Zili Luo
- Department of Pediatrics, University of Iowa Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Jianqi Yang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 51 Newton Rd. BSB 2-512, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 169 Newton Rd., Iowa City, IA, 52242, USA
| | - Nandakumar S Narayanan
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 169 Newton Rd., Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA, 52242, USA
| | - Rory A Fisher
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 51 Newton Rd. BSB 2-512, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 169 Newton Rd., Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Spicer MM, Weber MA, Luo Z, Yang J, Narayanan NS, Fisher RA. Regulator of G protein signaling 6 (RGS6) in ventral tegmental area (VTA) dopamine neurons promotes EtOH seeking, behavioral reward and susceptibility to relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563844. [PMID: 37961154 PMCID: PMC10634791 DOI: 10.1101/2023.10.24.563844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mesolimbic dopamine (DA) transmission is believed to play a critical role in mediating reward responses to drugs of abuse, including alcohol (EtOH). EtOH is the most abused substance worldwide with chronic consumption often leading to the development of dependence and abuse. Unfortunately, the neurobiological mechanisms underlying EtOH-seeking behavior and dependence are not fully understood, and abstinence remains the only effective way to prevent alcohol use disorders (AUDs). Here, we developed novel RGS6 fl/fl ; DAT-iCreER mice to determine the role of RGS6 in VTA DA neurons on EtOH consumption and reward behaviors. We found that RGS6 is expressed in DA neurons in both human and mouse VTA, and that RGS6 loss in mice upregulates DA transporter (DAT) expression in VTA DA neuron synaptic terminals. Remarkably, loss of RGS6 in VTA DA neurons significantly reduced EtOH consumption, preference, and reward in a manner indistinguishable from that seen in RGS6 -/- mice. Strikingly, RGS6 loss from VTA DA neurons before or after EtOH behavioral reward is established significantly reduced (∼50%) re-instatement of reward following extinguishment, demonstrating distinct roles of RGS6 in promoting reward and relapse susceptibility to EtOH. These studies illuminate a critical role of RGS6 in the mesolimbic circuit in promoting EtOH seeking, reward, and reinstatement. We propose that RGS6 functions to promote DA transmission through its function as a negative modulator of GPCR-Gα i/o -DAT signaling in VTA DA neurons. These studies identify RGS6 as a potential therapeutic target for behavioral reward and relapse to EtOH.
Collapse
|
6
|
Wang S, Neel AI, Adams KL, Sun H, Jones SR, Howlett AC, Chen R. Atorvastatin differentially regulates the interactions of cocaine and amphetamine with dopamine transporters. Neuropharmacology 2023; 225:109387. [PMID: 36567004 PMCID: PMC9872521 DOI: 10.1016/j.neuropharm.2022.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The function of the dopamine transporter (DAT) is regulated by membrane cholesterol content. A direct, acute removal of membrane cholesterol by methyl-β-cyclodextrin (MβCD) has been shown to reduce dopamine (DA) uptake and release mediated by the DAT. This is of particular interest because a few widely prescribed statins that lower peripheral cholesterol levels are blood-brain barrier (BBB) penetrants, and therefore could alter DAT function through brain cholesterol modulation. The goal of this study was to investigate the effects of prolonged atorvastatin treatment (24 h) on DAT function in neuroblastoma 2A cells stably expressing DAT. We found that atorvastatin treatment effectively lowered membrane cholesterol content in a concentration-dependent manner. Moreover, atorvastatin treatment markedly reduced DA uptake and abolished cocaine inhibition of DA uptake, independent of surface DAT levels. These deficits induced by atorvastatin treatment were reversed by cholesterol replenishment. However, atorvastatin treatment did not change amphetamine (AMPH)-induced DA efflux. This is in contrast to a small but significant reduction in DA efflux induced by acute depletion of membrane cholesterol using MβCD. This discrepancy may involve differential changes in membrane lipid composition resulting from chronic and acute cholesterol depletion. Our data suggest that the outward-facing conformation of DAT, which favors the binding of DAT blockers such as cocaine, is more sensitive to atorvastatin-induced cholesterol depletion than the inward-facing conformation, which favors the binding of DAT substrates such as AMPH. Our study on statin-DAT interactions may have clinical implications in our understanding of neurological side effects associated with chronic use of BBB penetrant statins.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Anna I Neel
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Kristen L Adams
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Haiguo Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Sara R Jones
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Allyn C Howlett
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Rong Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States.
| |
Collapse
|
7
|
Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE, Lubec G, Melikian HE. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J Biol Chem 2023; 299:102900. [PMID: 36640864 PMCID: PMC9943899 DOI: 10.1016/j.jbc.2023.102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.
Collapse
Affiliation(s)
- Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Tucker L. Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,For correspondence: Haley E. Melikian
| |
Collapse
|
8
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Stewart A, Mayer FP, Gowrishankar R, Davis GL, Areal LB, Gresch PJ, Katamish RM, Peart R, Stilley SE, Spiess K, Rabil MJ, Diljohn FA, Wiggins AE, Vaughan RA, Hahn MK, Blakely RD. Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Mol Psychiatry 2022; 27:4869-4880. [PMID: 36117213 DOI: 10.1038/s41380-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023]
Abstract
Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gwynne L Davis
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Paul J Gresch
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Rania M Katamish
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Rodeania Peart
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha E Stilley
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Keeley Spiess
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian J Rabil
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Angelica E Wiggins
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Maureen K Hahn
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA. .,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
10
|
Hettiarachchi P, Johnson MA. Characterization of D3 Autoreceptor Function in Whole Zebrafish Brain with Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2022; 13:2863-2873. [PMID: 36099546 PMCID: PMC10105970 DOI: 10.1021/acschemneuro.2c00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Zebrafish (Danio rerio) are ideal model organisms for investigating nervous system function, both in health and disease. Nevertheless, functional characteristics of dopamine (DA) release and uptake regulation are still not well-understood in zebrafish. In this study, we assessed D3 autoreceptor function in the telencephalon of whole zebrafish brains ex vivo by measuring the electrically stimulated DA release ([DA]max) and uptake at carbon fiber microelectrodes with fast-scan cyclic voltammetry. Treatment with pramipexole and 7-OH-DPAT, selective D3 autoreceptor agonists, sharply decreased [DA]max. Conversely, SB277011A, a selective D3 antagonist, nearly doubled [DA]max and decreased k, the first-order rate constant for the DA uptake, to about 20% of its original value. Treatment with desipramine, a selective norepinephrine transporter blocker, failed to increase current, suggesting that our electrochemical signal arises solely from the release of DA. Furthermore, blockage of DA uptake with nomifensine-reversed 7-OH-DPAT induced decreases in [DA]max. Collectively, our data show that, as in mammals, D3 autoreceptors regulate DA release, likely by inhibiting uptake. The results of this study are useful in the further development of zebrafish as a model organism for DA-related neurological disorders such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
11
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Wang S, Liu H, Roberts JB, Wiley AP, Marayati BF, Adams KL, Luessen DJ, Eldeeb K, Sun H, Zhang K, Chen R. Prolonged ethanol exposure modulates constitutive internalization and recycling of 5-HT1A receptors. J Neurochem 2022; 160:469-481. [PMID: 34928513 PMCID: PMC8828711 DOI: 10.1111/jnc.15564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Alcohol exposure alters the signaling of the serotoninergic system, which is involved in alcohol consumption, reward, and dependence. In particular, dysregulation of serotonin receptor type 1A (5-HT1AR) is associated with alcohol intake and withdrawal-induced anxiety-like behavior in rodents. However, how ethanol regulates 5-HT1AR activity and cell surface availability remains elusive. Using neuroblastoma 2a cells stably expressing human 5-HT1ARs tagged with hemagglutinin at the N-terminus, we found that prolonged ethanol exposure (18 h) reduced the basal surface levels of 5-HT1ARs in a concentration-dependent manner. This reduction is attributed to both enhanced receptor internalization and attenuated receptor recycling. Moreover, constitutive 5-HT1AR internalization in ethanol naïve cells was blocked by concanavalin A (ConA) but not nystatin, suggesting clathrin-dependent 5-HT1AR internalization. In contrast, constitutive 5-HT1AR internalization in ethanol-treated cells was blocked by nystatin but not by ConA, indicating that constitutive 5-HT1AR internalization switched from a clathrin- to a caveolin-dependent pathway. Dynasore, an inhibitor of dynamin, blocked 5-HT1AR internalization in both vehicle- and ethanol-treated cells. Furthermore, ethanol exposure enhanced the activity of dynamin I via dephosphorylation and reduced myosin Va levels, which may contribute to increased internalization and reduced recycling of 5-HT1ARs, respectively. Our findings suggest that prolonged ethanol exposure not only alters the endocytic trafficking of 5-HT1ARs but also the mechanism by which constitutive 5-HT1AR internalization occurs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Haoran Liu
- Department of Biology, Wake Forest University, Winston Salem, NC 27106
| | - Jonté B. Roberts
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Aidan P. Wiley
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | | | - Kristen L. Adams
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Deborah J. Luessen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Khalil Eldeeb
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546
| | - Haiguo Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Ke Zhang
- Department of Biology, Wake Forest University, Winston Salem, NC 27106
- Center for Molecular Signaling, Wake Forest University, Winston Salem, NC 27106
| | - Rong Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
- Center for Molecular Signaling, Wake Forest University, Winston Salem, NC 27106
| |
Collapse
|
13
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
15
|
Alonso IP, Pino JA, Kortagere S, Torres GE, España RA. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 2021; 46:699-708. [PMID: 33032296 PMCID: PMC8026992 DOI: 10.1038/s41386-020-00879-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) has been implicated in a variety of arousal-related processes including the regulation of motor activity, learning, motivated behavior, psychostimulant abuse, and, more recently, sleep/wake state. We previously demonstrated that DAT uptake regulates fluctuations in extracellular dopamine (DA) in the striatum across the light/dark cycle with DA levels at their highest during the dark phase and lowest during the light phase. Despite this evidence, whether fluctuations in DA uptake across the light/dark cycle are associated with changes in sleep/wake has not been tested. To address this, we employed a combination of sleep/wake recordings, fast scan cyclic voltammetry, and western blotting to examine whether sleep/wake state and/or light/dark phase impact DA terminal neurotransmission in male rats. Further, we assessed whether variations in plasma membrane DAT levels and/or phosphorylation of the threonine 53 site on the DAT accounts for fluctuations in DA neurotransmission. Given the extensive evidence indicating that psychostimulants increase DA through interactions with the DAT, we also examined to what degree the effects of cocaine at inhibiting the DAT vary across sleep/wake state. Results demonstrated a significant association between individual sleep/wake states and DA terminal neurotransmission, with higher DA uptake rate, increased phosphorylation of the DAT, and enhanced cocaine potency observed after periods of sleep. These findings suggest that sleep/wake state influences DA neurotransmission in a manner that is likely to impact a host of DA-dependent processes including a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- I. P. Alonso
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - J. A. Pino
- grid.440631.40000 0001 2228 7602Departamento de Medicina, Facultad de Medicina, Universidad de Atacama, 1532502 Copiapó, Chile
| | - S. Kortagere
- grid.166341.70000 0001 2181 3113Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - G. E. Torres
- grid.254250.40000 0001 2264 7145Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine at the City College of New York, New York, NY 10031 USA
| | - R. A. España
- grid.166341.70000 0001 2181 3113Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
16
|
Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Barroso-Chinea P, Afonso-Oramas D, Febles-Casquero A, Cruz-Muros I, Salas-Hernandez J, Mesa-Infante V, Rodriguez-Nuñez J, Gonzalez-Hernandez T. Prolonged dopamine D 3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. Pharmacol Res 2021; 165:105434. [PMID: 33484816 DOI: 10.1016/j.phrs.2021.105434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The dopamine transporter (DAT) is a membrane glycoprotein in dopaminergic neurons, which modulates extracellular and intracellular dopamine levels. DAT is regulated by different presynaptic proteins, including dopamine D2 (D2R) and D3 (D3R) receptors. While D2R signalling enhances DAT activity, some data suggest that D3R has a biphasic effect. However, despite the extensive therapeutic use of D2R/D3R agonists in neuropsychiatric disorders, this phenomenon has been little studied. In order to shed light on this issue, DAT activity, expression and posttranslational modifications were studied in mice and DAT-D3R-transfected HEK cells. Consistent with previous reports, acute treatment with D2R/D3R agonists promoted DAT recruitment to the plasma membrane and an increase in DA uptake. However, when the treatment was prolonged, DA uptake and total striatal DAT protein declined below basal levels. These effects were inhibited in mice by genetic and pharmacological inactivation of D3R, but not D2R, indicating that they are D3R-dependent. No changes were detected in mesostriatal tyrosine hydroxylase (TH) protein expression and midbrain TH and DAT mRNAs, suggesting that the dopaminergic system is intact and DAT is posttranslationally regulated. The use of immunoprecipitation and cell surface biotinylation revealed that DAT is phosphorylated at serine residues, ubiquitinated and released into late endosomes through a PKCβ-dependent mechanism. In sum, the results indicate that long-term D3R activation promotes DAT down-regulation, an effect that may underlie neuroprotective and antidepressant actions described for some D2R/D3R agonists.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Javier Castro-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Febles-Casquero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Julia Rodriguez-Nuñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
17
|
Dopamine transporter is downregulated and its association with chaperone protein Hsc70 is enhanced by activation of dopamine D 3 receptor. Brain Res Bull 2020; 165:263-271. [PMID: 33049353 DOI: 10.1016/j.brainresbull.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Synaptic dopamine (DA) concentrations are largely determined by the activities of presynaptic D2 and D3 autoreceptors (D2R and D3R) and DA transporter (DAT). Furthermore, the activity of DAT is regulated by phosphorylation events and protein interactions that affect its surface expression. Because DA autoreceptors and DAT coordinately maintain synaptic DA homeostasis, we hypothesized that D3R might crosstalk with DAT to fine-tune synaptic DA concentrations. To test this hypothesis, we established [3H]DA uptake and DAT surface expression assays in hD3/rDAT-double-transfected HEK-293 cells or limbic forebrain synaptosomal preparations. Ropinirole, a preferential D3R agonist, reduced [3H]DA uptake in HEK-hD3/rDAT cells in a dose-dependent manner, an effect which could be blocked by the D2R/D3R antagonist, raclopride. Furthermore, ropinirole also reduced DAT surface expression in limbic forebrain synaptosomes, and this effect could be blocked by raclopride or the internalization inhibitor, concanavalin A. To identify potential mediators of this apparent D3R-DAT crosstalk, DAT-associated proteins were co-immunoprecipitated from limbic forebrain synaptosomes after D3R activation and identified by MALDI-TOF. From this analysis, the Hsc70 chaperone was identified as a DAT-associated protein. Interestingly, ropinirole induced the association of Hsc70/Hsp70 with DAT, and the Hsc70/Hsp70 inhibitor, apoptozole, prevented the ropinirole-induced reduction of DAT surface expression. Together, these results suggest that D3R negatively regulates DAT activity by promoting the association of DAT and Hsc70/Hsp70.
Collapse
|
18
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
19
|
Fagan RR, Kearney PJ, Sweeney CG, Luethi D, Schoot Uiterkamp FE, Schicker K, Alejandro BS, O'Connor LC, Sitte HH, Melikian HE. Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact. J Biol Chem 2020; 295:5229-5244. [PMID: 32132171 PMCID: PMC7170531 DOI: 10.1074/jbc.ra120.012628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals.
Collapse
Affiliation(s)
- Rita R Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Patrick J Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Carolyn G Sweeney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna A-1090, Austria
| | - Florianne E Schoot Uiterkamp
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna A-1090, Austria
| | - Klaus Schicker
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna A-1090, Austria
| | - Brian S Alejandro
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Lauren C O'Connor
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna A-1090, Austria
| | - Haley E Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
20
|
Fagan RR, Kearney PJ, Melikian HE. In Situ Regulated Dopamine Transporter Trafficking: There's No Place Like Home. Neurochem Res 2020; 45:1335-1343. [PMID: 32146647 DOI: 10.1007/s11064-020-03001-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is critical for motivation, reward, movement initiation, and learning. Mechanisms that control DA signaling have a profound impact on these important behaviors, and additionally play a role in DA-related neuropathologies. The presynaptic SLC6 DA transporter (DAT) limits extracellular DA levels by clearing released DA, and is potently inhibited by addictive and therapeutic psychostimulants. Decades of evidence support that the DAT is subject to acute regulation by a number of signaling pathways, and that endocytic trafficking strongly regulates DAT availability and function. DAT trafficking studies have been performed in a variety of model systems, including both in vitro and ex vivo preparations. In this review, we focus on the breadth of DAT trafficking studies, with specific attention to, and comparison of, how context may influence DAT's response to different stimuli. In particular, this overview highlights that stimulated DAT trafficking not only differs between in vitro and ex vivo environments, but also is influenced by both sex and anatomical subregions.
Collapse
Affiliation(s)
- Rita R Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Patrick J Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Haley E Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
21
|
Conditional, inducible gene silencing in dopamine neurons reveals a sex-specific role for Rit2 GTPase in acute cocaine response and striatal function. Neuropsychopharmacology 2020; 45:384-393. [PMID: 31277075 PMCID: PMC6901441 DOI: 10.1038/s41386-019-0457-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) signaling is critical for movement, motivation, and addictive behavior. The neuronal GTPase, Rit2, is enriched in DA neurons (DANs), binds directly to the DA transporter (DAT), and is implicated in several DA-related neuropsychiatric disorders. However, it remains unknown whether Rit2 plays a role in either DAergic signaling and/or DA-dependent behaviors. Here we leveraged the TET-OFF system to conditionally silence Rit2 in Pitx3IRES2-tTA mouse DANs. Following DAergic Rit2 knockdown (Rit2-KD), mice displayed an anxiolytic phenotype, with no change in baseline locomotion. Further, males exhibited increased acute cocaine sensitivity, whereas DAergic Rit2-KD suppressed acute cocaine sensitivity in females. DAergic Rit2-KD did not affect presynaptic TH and DAT protein levels in females, nor was TH was affected in males; however, DAT was significantly diminished in males. Paradoxically, despite decreased DAT levels in males, striatal DA uptake was enhanced, but was not due to enhanced DAT surface expression in either dorsal or ventral striatum. Finally, patch recordings in nucleus accumbens (NAcc) medium spiny neurons (MSNs) revealed reciprocal changes in spontaneous EPSP (sEPSP) frequency in male and female D1+ and D2+ MSNs following DAergic Rit2-KD. In males, sEPSP frequency was decreased in D1+, but not D2+, MSNs, whereas in females sEPSP frequency decreased in D2+, but not D1+, MSNs. Moreover, DAergic Rit2-KD abolished the ability of cocaine to reduce sEPSP frequency in D1+, but not D2+, male MSNs. Taken together, our studies are among the first to acheive AAV-mediated, conditional and inducible DAergic knockdown in vivo. Importantly, our results provide the first evidence that DAergic Rit2 expression differentially impacts striatal function and DA-dependent behaviors in males and females.
Collapse
|
22
|
Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat Commun 2019; 10:4263. [PMID: 31537790 PMCID: PMC6753151 DOI: 10.1038/s41467-019-12264-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/13/2019] [Indexed: 01/19/2023] Open
Abstract
Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short‐term plasticity of dopamine release, using fast‐scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short‐term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+‐gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short‐term plasticity, governing the balance between release‐dependent and independent mechanisms that also show region‐specific gating. Dopamine release in the striatum has important roles in action selection and in disorders such as Parkinson’s disease. The authors here show that short-term plasticity of dopamine release is strongly determined by axonal activation and dopamine transporters.
Collapse
|
23
|
Giguère N, Delignat-Lavaud B, Herborg F, Voisin A, Li Y, Jacquemet V, Anand-Srivastava M, Gether U, Giros B, Trudeau LÉ. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet 2019; 15:e1008352. [PMID: 31449520 PMCID: PMC6730950 DOI: 10.1371/journal.pgen.1008352] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/06/2019] [Accepted: 08/07/2019] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Rare genetic mutations in genes such as Parkin, Pink1, DJ-1, α-synuclein, LRRK2 and GBA are found to be responsible for the disease in about 15% of the cases. A key unanswered question in PD pathophysiology is why would these mutations, impacting basic cellular processes such as mitochondrial function and neurotransmission, lead to selective degeneration of SNc DA neurons? We previously showed in vitro that SNc DA neurons have an extremely high rate of mitochondrial oxidative phosphorylation and ATP production, characteristics that appear to be the result of their highly complex axonal arborization. To test the hypothesis in vivo that axon arborization size is a key determinant of vulnerability, we selectively labeled SNc or VTA DA neurons using floxed YFP viral injections in DAT-cre mice and showed that SNc DA neurons have a much more arborized axon than those of the VTA. To further enhance this difference, which may represent a limiting factor in the basal vulnerability of these neurons, we selectively deleted in mice the DA D2 receptor (D2-cKO), a key negative regulator of the axonal arbour of DA neurons. In these mice, SNc DA neurons have a 2-fold larger axonal arborization, release less DA and are more vulnerable to a 6-OHDA lesion, but not to α-synuclein overexpression when compared to control SNc DA neurons. This work adds to the accumulating evidence that the axonal arborization size of SNc DA neurons plays a key role in their vulnerability in the context of PD. Parkinson’s disease motor symptoms have been linked to age-dependent degeneration of a class of neurons in the brain that release the chemical messenger dopamine. The reason for the selective loss of these neurons represents a key unsolved mystery. One hypothesis is that the neurons most at risk in this disease are those with the most extensive and complex connectivity in the brain, which would make these cells most dependent on high rates of mitochondrial energy production and expose them to higher rates of oxidative stress. Here we selectively deleted in dopamine neurons a key gene providing negative feedback control of the axonal arbor size of these neurons, in the objective of producing mice in which dopamine neurons have more extensive connectivity. We found that deletion of the dopamine D2 receptor gene in dopamine neurons leads to dopamine neurons with a longer and more complex axonal domain. We also found that in these mice, dopamine neurons in a region of the brain called the substantia nigra show increased vulnerability to a neurotoxin often used to model Parkinson’s disease in rodents. Our findings provide support for the hypothesis that the scale of a neuron’s connectivity directly influences its vulnerability to cellular stressors that trigger Parkinson’s disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Benoît Delignat-Lavaud
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aurore Voisin
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Yuan Li
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Vincent Jacquemet
- Department of pharmacology and physiology, Research Center of the Hôpital de Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Madhu Anand-Srivastava
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Giros
- Department of Psychiatry, McGill University Faculty of Medicine, Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Louis-Éric Trudeau
- Departments of pharmacology and physiology, Department of neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Patrussi L, Capitani N, Baldari CT. Abnormalities in chemokine receptor recycling in chronic lymphocytic leukemia. Cell Mol Life Sci 2019; 76:3249-3261. [PMID: 30830241 PMCID: PMC11105227 DOI: 10.1007/s00018-019-03058-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
In addition to their modulation through de novo expression and degradation, surface levels of chemokine receptors are tuned by their ligand-dependent recycling to the plasma membrane, which ensures that engaged receptors become rapidly available for further rounds of signaling. Dysregulation of this process contributes to the pathogenesis of chronic lymphocytic leukemia (CLL) by enhancing surface expression of chemokine receptors, thereby favoring leukemic cell accumulation in the protective niche of lymphoid organs. In this review, we summarize our current understanding of the process of chemokine receptor recycling, focusing on the impact of its dysregulation in CLL.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
25
|
Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight 2019; 5:126769. [PMID: 31120439 DOI: 10.1172/jci.insight.126769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.
Collapse
Affiliation(s)
- Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katelin E Ahlers-Dannen
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mackenzie M Spicer
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program of Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Zestos AG, Carpenter C, Kim Y, Low MJ, Kennedy RT, Gnegy ME. Ruboxistaurin Reduces Cocaine-Stimulated Increases in Extracellular Dopamine by Modifying Dopamine-Autoreceptor Activity. ACS Chem Neurosci 2019; 10:1960-1969. [PMID: 30384585 DOI: 10.1021/acschemneuro.8b00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cocaine is a highly abused drug, and cocaine addiction affects millions of individuals worldwide. Cocaine blocks normal uptake function at the dopamine transporter (DAT), thus increasing extracellular dopamine. Currently, no chemical therapies are available to treat cocaine abuse. Previous works showed that the selective inhibitors of protein kinase Cβ (PKCβ), enzastaurin and ruboxistaurin, attenuate dopamine overflow and locomotion stimulated by another psychostimulant drug, amphetamine. We now test if ruboxistaurin similarly affects cocaine action. Perfusion of 1 μM ruboxistaurin directly into the core of the nucleus accumbens via retrodialysis reduced cocaine-stimulated increases in dopamine overflow, measured using microdialysis sampling, with simultaneous reductions in locomotor behavior. Because cocaine activity is highly regulated by dopamine autoreceptors, we examined whether ruboxistaurin was acting at the level of the D2 autoreceptor. Perfusion of 5 μM raclopride, a selective D2-like receptor antagonist, before addition of ruboxistaurin, abrogated the effect of ruboxistaurin on cocaine-stimulated dopamine overflow and hyperlocomotion. Further, ruboxistaurin was inactive against cocaine-stimulated locomotor activity in mice with a genetic deletion in D2 receptors as compared to wild-type mice. In contrast, blockade or deletion of dopamine D2 receptors did not abolish the attenuating effect of ruboxistaurin on amphetamine-stimulated activities. Therefore, the inhibition of PKCβ reduces dopamine overflow and locomotor activity stimulated by both cocaine and amphetamine, but the mechanism of action differs for each stimulant. These data suggest that inhibition of PKCβ would serve as a target to reduce the abuse of either amphetamine or cocaine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry and Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | | | | | | | | | | |
Collapse
|
27
|
van Gaalen MM, Schlumbohm C, Folgering JH, Adhikari S, Bhattacharya C, Steinbach D, Stratford RE. Development of a Semimechanistic Pharmacokinetic-Pharmacodynamic Model Describing Dextroamphetamine Exposure and Striatal Dopamine Response in Rats and Nonhuman Primates following a Single Dose of Dextroamphetamine. J Pharmacol Exp Ther 2019; 369:107-120. [PMID: 30733244 DOI: 10.1124/jpet.118.254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
Acute central nervous system exposure to dextroamphetamine (d-amphetamine) elicits a multitude of effects, including dual action on the dopamine transporter (DAT) to increase extracellular dopamine, and induction of a negative feedback response to limit the dopamine increase. A semimechanistic pharmacokinetic and pharmacodynamic (PK/PD) model with consideration of these multiple effects as a basis was developed. Integrated pharmacokinetics of d-amphetamine in plasma, brain extracellular fluid (ECF) via microdialysis, and cerebrospinal fluid were characterized using a population approach. This PK model was then linked to an indirect-response pharmacodynamic model using as a basis the measurement of extracellular striatal dopamine, also via microdialysis. In both rats and nonhuman primates (NHPs), d-amphetamine stimulation of dopamine outflow (reverse transport) through DAT was primarily responsible for the dose-linear increase in dopamine. As well, in both species a moderator function was needed to account for loss of the dopamine response in the presence of a relatively sustained d-amphetamine ECF exposure, presumptive of an acute tolerance response. PK/PD model structure was consistent between species; however, there was a 10-fold faster return to baseline dopamine in NHPs in response to an acute d-amphetamine challenge. These results suggest preservation from rodents to NHPs regarding the mechanism by which amphetamine increases extracellular dopamine, but a faster system response in NHPs to tolerate this increase. This microdialysis-based PK/PD model suggests greater value in directing preclinical discovery of novel approaches that modify reverse transport stimulation to treat amphetamine abuse. General value regarding insertion of an NHP model in paradigm rodent-to-human translational research is also suggested.
Collapse
Affiliation(s)
- Marcel M van Gaalen
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Christina Schlumbohm
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Joost H Folgering
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Saugat Adhikari
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Chandrali Bhattacharya
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Douglas Steinbach
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| | - Robert E Stratford
- Charles River Laboratories Germany GmbH, Göttingen, Germany (M.M.v.G., C.S.); Charles River Laboratories Den Bosch BV, 's-Hertogenbosch, The Netherlands (J.F.); Duquesne School of Pharmacy and Graduate School of Pharmaceutical Sciences, Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburgh, Pennsylvania (S.A., C.B., D.S., R.E.S.)
| |
Collapse
|
28
|
Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 2018; 43:2165-2179. [PMID: 30022062 PMCID: PMC6135777 DOI: 10.1038/s41386-018-0133-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and β2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to β1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Chestnut Hill Hospital, Philadelphia, PA, USA
| | - Adrienne Hezghia
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Cenido
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Region-Specific Regulation of Presynaptic Dopamine Homeostasis by D 2 Autoreceptors Shapes the In Vivo Impact of the Neuropsychiatric Disease-Associated DAT Variant Val559. J Neurosci 2018; 38:5302-5312. [PMID: 29739866 DOI: 10.1523/jneurosci.0055-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 12/21/2022] Open
Abstract
Disruptions of dopamine (DA) signaling contribute to a broad spectrum of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), addiction, bipolar disorder, and schizophrenia. Despite evidence that risk for these disorders derives from heritable variation in DA-linked genes, a better understanding is needed of the molecular and circuit context through which gene variation drives distinct disease traits. Previously, we identified the DA transporter (DAT) variant Val559 in subjects with ADHD and established that the mutation supports anomalous DAT-mediated DA efflux (ADE). Here, we demonstrate that region-specific contributions of D2 autoreceptors (D2AR) to presynaptic DA homeostasis dictate the consequences of Val559 expression in adolescent male mice. We show that activation of D2ARs in the WT dorsal striatum (DS), but not ventral striatum (VS), increases DAT phosphorylation and surface trafficking. In contrast, the activity of tyrosine hydroxylase (TH) is D2AR-dependent in both regions. In the DS but not VS of Val559 mice, tonic activation of D2ARs drives a positive feedback loop that promotes surface expression of efflux-prone DATs, raising extracellular DA levels and overwhelming DAT-mediated DA clearance capacity. Whereas D2ARs that regulate DAT are tonically activated in the Val559 DS, D2ARs that regulate TH become desensitized, allowing maintenance of cytosolic DA needed to sustain ADE. Together with prior findings, our results argue for distinct D2AR pools that regulate DA synthesis versus DA release and inactivation and offer a clear example of how the penetrance of gene variation can be limited to a subset of expression sites based on differences in intersecting regulatory networks.SIGNIFICANCE STATEMENT Altered dopamine (DA) signaling has been linked to multiple neuropsychiatric disorders. In an effort to understand and model disease-associated DAergic disturbances, we previously screened the DA transporter (DAT) in subjects with attention-deficit hyperactivity disorder (ADHD) and identified multiple, functionally impactful, coding variants. One of these variants, Val559, supports anomalous DA efflux (ADE) and in transgenic mice leads to changes in locomotor patterns, psychostimulant sensitivity, and impulsivity. Here, we show that the penetrance of Val559 ADE is dictated by region-specific differences in how presynaptic D2-type autoreceptors (D2ARs) constrain DA signaling, biasing phenotypic effects to dorsal striatal projections. The Val559 model illustrates how the impact of genetic variation underlying neuropsychiatric disorders can be shaped by the differential engagement of synaptic regulatory mechanisms.
Collapse
|
30
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
31
|
Won JH, Kim SK, Shin IC, Ha HC, Jang JM, Back MJ, Kim DK. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase. Cell Signal 2018; 44:171-187. [DOI: 10.1016/j.cellsig.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022]
|
32
|
Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J Neurosci 2017; 38:484-497. [PMID: 29175958 DOI: 10.1523/jneurosci.2604-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cocaine abuse disrupts dopamine system function, and reduces cocaine inhibition of the dopamine transporter (DAT), which results in tolerance. Although tolerance is a hallmark of cocaine addiction and a DSM-V criterion for substance abuse disorders, the molecular adaptations producing tolerance are unknown, and testing the impact of DAT changes on drug taking behaviors has proven difficult. In regard to treatment, amphetamine has shown efficacy in reducing cocaine intake; however, the mechanisms underlying these effects have not been explored. The goals of this study were twofold; we sought to (1) identify the molecular mechanisms by which cocaine exposure produces tolerance and (2) determine whether amphetamine-induced reductions in cocaine intake are connected to these mechanisms. Using cocaine self-administration and fast-scan cyclic voltammetry in male rats, we show that low-dose, continuous amphetamine treatment, during self-administration or abstinence, completely reversed cocaine tolerance. Amphetamine treatment also reversed escalated cocaine intake and decreased motivation to obtain cocaine as measured in a behavioral economics task, thereby linking tolerance to multiple facets of cocaine use. Finally, using fluorescence resonance energy transfer imaging, we found that cocaine tolerance is associated with the formation of DAT-DAT complexes, and that amphetamine disperses these complexes. In addition to extending our basic understanding of DATs and their role in cocaine reinforcement, we serendipitously identified a novel therapeutic target: DAT oligomer complexes. We show that dispersion of oligomers is concomitant with reduced cocaine intake, and propose that pharmacotherapeutics aimed at these complexes may have potential for cocaine addiction treatment.SIGNIFICANCE STATEMENT Tolerance to cocaine's subjective effects is a cardinal symptom of cocaine addiction and a DSM-V criterion for substance abuse disorders. However, elucidating the molecular adaptions that produce tolerance and determining its behavioral impact have proven difficult. Using cocaine self-administration in rats, we link tolerance to cocaine effects at the dopamine transporter (DAT) with aberrant cocaine-taking behaviors. Further, tolerance was associated with multi-DAT complexes, which formed after cocaine exposure. Treatment with amphetamine deconstructed DAT complexes, reversed tolerance, and decreased cocaine seeking. These data describe the behavioral consequence of cocaine tolerance, provide a putative mechanism for its development, and suggest that compounds that disperse DAT complexes may be efficacious treatments for cocaine addiction.
Collapse
|
33
|
The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach. J Neurosci 2017; 37:9438-9452. [PMID: 28847807 DOI: 10.1523/jneurosci.3885-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/17/2017] [Accepted: 08/19/2017] [Indexed: 01/28/2023] Open
Abstract
Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT's plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT's postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings.SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT's postendocytic fate.
Collapse
|
34
|
Budygin EA, Oleson EB, Lee YB, Blume LC, Bruno MJ, Howlett AC, Thompson AC, Bass CE. Acute Depletion of D2 Receptors from the Rat Substantia Nigra Alters Dopamine Kinetics in the Dorsal Striatum and Drug Responsivity. Front Behav Neurosci 2017; 10:248. [PMID: 28154530 PMCID: PMC5243821 DOI: 10.3389/fnbeh.2016.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/19/2016] [Indexed: 01/20/2023] Open
Abstract
Recent studies have used conditional knockout mice to selectively delete the D2 autoreceptor; however, these approaches result in global deletion of D2 autoreceptors early in development. The present study takes a different approach using RNA interference (RNAi) to knockdown the expression of the D2 receptors (D2R) in the substantia nigra (SN), including dopaminergic neurons, which project primarily to the dorsal striatum (dStr) in adult rats. This approach restricts the knockdown primarily to nigrostriatal pathways, leaving mesolimbic D2 autoreceptors intact. Analyses of dopamine (DA) kinetics in the dStr reveal a decrease in DA transporter (DAT) function in the knockdown rats, an effect not observed in D2 autoreceptor knockout mouse models. SN D2 knockdown rats exhibit a behavioral phenotype characterized by persistent enhancement of locomotor activity in a familiar open field, reduced locomotor responsiveness to high doses of cocaine and the ability to overcome haloperidol-induced immobility on the bar test. Together these results demonstrate that presynaptic D2R can be depleted from specific neuronal populations and implicates nigrostriatal D2R in different behavioral responses to psychotropic drugs.
Collapse
Affiliation(s)
- Evgeny A Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston Salem, NC, USA; Institute of Translational Biomedicine, St. Petersburg State UniversitySt. Petersburg, Russia
| | - Erik B Oleson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston Salem, NC, USA
| | - Yun Beom Lee
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| | - Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston Salem, NC, USA
| | - Michael J Bruno
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston Salem, NC, USA
| | - Alexis C Thompson
- Research Institute on Addictions, University at Buffalo Buffalo, NY, USA
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo Buffalo, NY, USA
| |
Collapse
|
35
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
36
|
McGinnis MM, Siciliano CA, Jones SR. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter. J Neurochem 2016; 138:821-9. [PMID: 27393374 DOI: 10.1111/jnc.13732] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/20/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Cocaine is a commonly abused central nervous system stimulant that enhances dopamine (DA) neurotransmission through its ability to block dopamine transporters (DATs). Recent evidence suggests there may be an interaction between DATs and D2/D3 autoreceptors that modulates cocaine's effects. The purpose of this study was to explore how D2/D3 autoreceptors modulate the ability of cocaine to inhibit DA uptake through DATs on pre-synaptic DA terminals. Using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from male and female C57BL/6J mice, we first sought to examine the effects of global autoreceptor blockade using the non-selective D2/D3 autoreceptor antagonist, raclopride. We found that the ability of cocaine to inhibit DA uptake was increased by raclopride and that this effect was consistent across sexes. Furthermore, using D2 (L-741,626) or D3 (SB-277011-A) autoreceptor selective antagonists, we discovered that blockade of D3, but not D2, autoreceptors was responsible for the increased cocaine potency. Alterations in cocaine potency were attributable to alterations in uptake inhibition, rather than cocaine effects on vesicular DA release, suggesting that these results may be a product of a functional D3/DAT interaction apart from the canonical inhibitory actions of D3 autoreceptors on DA release. In addition, application of D2 (sumanirole) and D3 (PD 128907) autoreceptor-specific agonists had inverse effects, whereby D2 autoreceptor activation decreased cocaine potency and D3 autoreceptor activation had no effect. Together, these data show that DA autoreceptors dynamically regulate cocaine potency at the DAT, which is important for understanding cocaine's rewarding and addictive properties. We propose a model whereby presynaptic dopamine autoreceptors dynamically modulate cocaine potency through two separate mechanisms. We demonstrate that D2 agonists decrease cocaine potency, whereas D3 antagonists increase cocaine potency, likely through an allosteric mechanism outside of their canonical actions on dopamine release. These findings give important and novel insight into the contribution of D2/D3 autoreceptors to dopamine transporter function.
Collapse
Affiliation(s)
- Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Cody A Siciliano
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
37
|
Zestos AG, Mikelman SR, Kennedy RT, Gnegy ME. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux. ACS Chem Neurosci 2016; 7:757-66. [PMID: 26996926 DOI: 10.1021/acschemneuro.6b00028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Sarah R. Mikelman
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Robert T. Kennedy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Margaret E. Gnegy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| |
Collapse
|
38
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
39
|
Luderman KD, Chen R, Ferris MJ, Jones SR, Gnegy ME. Protein kinase C beta regulates the D₂-like dopamine autoreceptor. Neuropharmacology 2015; 89:335-41. [PMID: 25446677 DOI: 10.1016/j.neuropharm.2014.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
The focus of this study was the regulation of the D2-like dopamine autoreceptor (D2 autoreceptor) by protein kinase Cβ, a member of the protein kinase C (PKC) family. Together with the dopamine transporter, the D2 autoreceptor regulates the level of extracellular dopamine and thus dopaminergic signaling. PKC regulates neuronal signaling via several mechanisms, including desensitizing autoreceptors to increase the release of several different neurotransmitters. Here, using both PKCβ(-/-) mice and specific PKCβ inhibitors, we demonstrated that a lack of PKCβ activity enhanced the D2 autoreceptor-stimulated decrease in dopamine release following both chemical and electrical stimulations. Inhibition of PKCβ increased surface localization of D2R in mouse striatal synaptosomes, which could underlie the greater sensitivity to quinpirole following inhibition of PKCβ. PKCβ(-/-) mice displayed greater sensitivity to the quinpirole-induced suppression of locomotor activity, demonstrating that the regulation of the D2 autoreceptor by PKCβ is physiologically significant. Overall, we have found that PKCβ downregulates the D2 autoreceptor, providing an additional layer of regulation for dopaminergic signaling. We propose that in the absence of PKCβ activity, surface D2 autoreceptor localization and thus D2 autoreceptor signaling is increased, leading to less dopamine in the extracellular space and attenuated dopaminergic signaling.
Collapse
Affiliation(s)
- Kathryn D Luderman
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5632, USA.
| | | | | | | | | |
Collapse
|
40
|
Regulator of G protein signaling 6 is a critical mediator of both reward-related behavioral and pathological responses to alcohol. Proc Natl Acad Sci U S A 2015; 112:E786-95. [PMID: 25646431 DOI: 10.1073/pnas.1418795112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alcohol is the most commonly abused drug worldwide, and chronic alcohol consumption is a major etiological factor in the development of multiple pathological sequelae, including alcoholic cardiomyopathy and hepatic cirrhosis. Here, we identify regulator of G protein signaling 6 (RGS6) as a critical regulator of both alcohol-seeking behaviors and the associated cardiac and hepatic morbidities through two mechanistically divergent signaling actions. RGS6(-/-) mice consume less alcohol when given free access and are less susceptible to alcohol-induced reward and withdrawal. Antagonism of GABA(B) receptors or dopamine D2 receptors partially reversed the reduction in alcohol consumption in RGS6(-/-) animals. Strikingly, dopamine transporter inhibition completely restored alcohol seeking in mice lacking RGS6. RGS6 deficiency was associated with alterations in the expression of genes controlling dopamine (DA) homeostasis and a reduction in DA levels in the striatum. Taken together, these data implicate RGS6 as an essential regulator of DA bioavailability. RGS6 deficiency also provided dramatic protection against cardiac hypertrophy and fibrosis, hepatic steatosis, and gastrointestinal barrier dysfunction and endotoxemia when mice were forced to consume alcohol. Although RGS proteins canonically function as G-protein regulators, RGS6-dependent, alcohol-mediated toxicity in the heart, liver, and gastrointestinal tract involves the ability of RGS6 to promote reactive oxygen species-dependent apoptosis, an action independent of its G-protein regulatory capacity. We propose that inhibition of RGS6 might represent a viable means to reduce alcohol cravings and withdrawal in human patients, while simultaneously protecting the heart and liver from further damage upon relapse.
Collapse
|
41
|
Castro-Hernández J, Afonso-Oramas D, Cruz-Muros I, Salas-Hernández J, Barroso-Chinea P, Moratalla R, Millan MJ, González-Hernández T. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiol Dis 2014; 74:325-35. [PMID: 25511804 DOI: 10.1016/j.nbd.2014.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/14/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022] Open
Abstract
The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists.
Collapse
Affiliation(s)
- Javier Castro-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Rosario Moratalla
- Departamento de Biología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de investigación Biomédica en Red sobre enfermedades neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Spain
| | - Mark J Millan
- Pole of Innovation in Neuropsychopharmacology, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Tomás González-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain; Centro de investigación Biomédica en Red sobre enfermedades neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
42
|
Wesseling H, Rahmoune H, Tricklebank M, Guest PC, Bahn S. A Targeted Multiplexed Proteomic Investigation Identifies Ketamine-Induced Changes in Immune Markers in Rat Serum and Expression Changes in Protein Kinases/Phosphatases in Rat Brain. J Proteome Res 2014; 14:411-21. [DOI: 10.1021/pr5009493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hendrik Wesseling
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | - Hassan Rahmoune
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | - Mark Tricklebank
- Ely Lilly
and
Co. Ltd, Erl Wood Manor, Sunninghill
Road, Windelesham, Surrey GU20 6PH, United Kingdom
| | - Paul C. Guest
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | - Sabine Bahn
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
- Department
of Neuroscience, Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
43
|
Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, Coon H, Sakrikar D, Veenstra-VanderWeele JM, Blakely RD, Sutcliffe J, Matthies HJG, Erreger K, Galli A. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry 2014; 4:e464. [PMID: 25313507 PMCID: PMC4350523 DOI: 10.1038/tp.2014.90] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission, including ADHD, bipolar disorder, and now ASD. These findings provide valuable insight into a new cellular phenotype (altered hDAT trafficking) supporting dysregulated DA function in these disorders. They also provide a novel potential target (PKCβ) for therapeutic interventions in individuals with ASD.
Collapse
Affiliation(s)
- E Bowton
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Saunders
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - I A Reddy
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - N G Campbell
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P J Hamilton
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L K Henry
- Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA
| | - H Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - D Sakrikar
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J M Veenstra-VanderWeele
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R D Blakely
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Sutcliffe
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H J G Matthies
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,N-PISA Neuroscience Program In Substance Abuse, Vanderbilt University Medical Center, Nashville, TN, USA,Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 465 21st Avenue South, MRB3, Room 7124, Nashville, TN 37232, USA E-mail: or
| | - K Erreger
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,N-PISA Neuroscience Program In Substance Abuse, Vanderbilt University Medical Center, Nashville, TN, USA,Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 465 21st Avenue South, MRB3, Room 7124, Nashville, TN 37232, USA E-mail: or
| | - A Galli
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA,N-PISA Neuroscience Program In Substance Abuse, Vanderbilt University Medical Center, Nashville, TN, USA,Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 465 21st Avenue South, MRB3, Room 7130A, Nashville, TN 37232, USA. E-mail:
| |
Collapse
|
44
|
Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int J Mol Sci 2014; 15:5884-906. [PMID: 24717411 PMCID: PMC4013602 DOI: 10.3390/ijms15045884] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/15/2014] [Accepted: 03/25/2014] [Indexed: 01/17/2023] Open
Abstract
Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum. Dopamine D2 receptor antagonists and dopamine transporter (DAT) inhibitors protect against neurotoxicity of the drug by decreasing intracellular dopamine content and, consequently, dopamine autoxidation and production of reactive oxygen species. In vitro, amphetamines regulate D2 receptor and DAT functions via regulation of their intracellular trafficking. No data exists on axonal transport of both proteins and there is limited data on their interactions in vivo. The aim of the present investigation was to examine synaptosomal levels of presynaptic D2 autoreceptor and DAT after two different regimens of METH and to determine whether METH affects the D2 autoreceptor-DAT interaction in the rat striatum. We found that, as compared to saline controls, administration of single high-dose METH decreased D2 autoreceptor immunoreactivity and increased DAT immunoreactivity in rat striatal synaptosomes whereas binge high-dose METH increased immunoreactivity of D2 autoreceptor and had no effect on DAT immunoreactivity. Single METH had no effect on D2 autoreceptor-DAT interaction whereas binge METH increased the interaction between the two proteins in the striatum. Our results suggest that METH can affect axonal transport of both the D2 autoreceptor and DAT in an interaction-dependent and -independent manner.
Collapse
|
45
|
Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int 2014; 73:71-88. [PMID: 24704795 DOI: 10.1016/j.neuint.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022]
Abstract
The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.
Collapse
|
46
|
Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton. J Neurosci 2013; 33:17836-46. [PMID: 24198373 DOI: 10.1523/jneurosci.3284-13.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms.
Collapse
|
47
|
Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 2013; 38:2385-92. [PMID: 23719505 PMCID: PMC3799057 DOI: 10.1038/npp.2013.136] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 01/07/2023]
Abstract
The dopamine transporter (DAT) is responsible for terminating dopamine (DA) signaling and is the primary site of cocaine's reinforcing actions. Cocaine self-administration has been shown previously to result in changes in cocaine potency at the DAT. To determine whether the DAT changes associated with self-administration are due to differences in intake levels or temporal patterns of cocaine-induced DAT inhibition, we manipulated cocaine access to produce either continuous or intermittent elevations in cocaine brain levels. Long-access (LgA, 6 h) and short-access (ShA, 2 h) continuous self-administration produced similar temporal profiles of cocaine intake that were sustained throughout the session; however, LgA had greater intake. ShA and intermittent-access (IntA, 6 h) produced the same intake, but different temporal profiles, with 'spiking' brain levels in IntA compared with constant levels in ShA. IntA consisted of 5-min access periods alternating with 25-min timeouts, which resulted in bursts of high responding followed by periods of no responding. DA release and uptake, as well as the potency of cocaine for DAT inhibition, were assessed by voltammetry in the nucleus accumbens slices following control, IntA, ShA, and LgA self-administration. Continuous-access protocols (LgA and ShA) did not change DA parameters, but the 'spiking' protocol (IntA) increased both release and uptake of DA. In addition, high continuous intake (LgA) produced tolerance to cocaine, while 'spiking' (IntA) produced sensitization, relative to ShA and naive controls. Thus, intake and pattern can both influence cocaine potency, and tolerance seems to be produced by high intake, while sensitization is produced by intermittent temporal patterns of intake.
Collapse
|
48
|
Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 2013; 34:489-96. [PMID: 23968642 DOI: 10.1016/j.tips.2013.07.005] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/17/2022]
Abstract
The dopamine (DA) transporter (DAT) controls the spatial and temporal dynamics of DA neurotransmission by driving reuptake of extracellular transmitter into presynaptic neurons. Many diseases such as depression, bipolar disorder, Parkinson's disease (PD), and attention deficit hyperactivity disorder (ADHD) are associated with abnormal DA levels, implicating DAT as a factor in their etiology. Medications used to treat these disorders and many addictive drugs target DAT and enhance dopaminergic signaling by suppressing transmitter reuptake. We now understand that the transport and binding properties of DAT are regulated by complex and overlapping mechanisms that provide neurons with the ability to modulate DA clearance in response to physiological demands. These processes are controlled by endogenous signaling pathways and affected by exogenous transporter ligands, demonstrating their importance for normal neurotransmission, drug abuse, and disease treatments. Increasing evidence supports the disruption of these mechanisms in DA disorders, implicating dysregulation of transport in disease etiologies and suggesting these processes as potential points for therapeutic manipulation of DA availability.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | | |
Collapse
|