1
|
Marullo C, Croci L, Giupponi I, Rivoletti C, Zuffetti S, Bettegazzi B, Cremona O, Giunti P, Ambrosi A, Casoni F, Consalez GG, Codazzi F. Altered Ca2+ responses and antioxidant properties in Friedreich's ataxia-like cerebellar astrocytes. J Cell Sci 2025; 138:jcs263446. [PMID: 39648860 PMCID: PMC11828468 DOI: 10.1242/jcs.263446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder characterized by severe neurological signs, affecting the peripheral and central nervous system, caused by reduced frataxin protein (FXN) levels. Although several studies have highlighted cellular dysfunctions in neurons, there is limited information on the effects of FXN depletion in astrocytes and on the potential non-cell autonomous mechanisms affecting neurons in FRDA. In this study, we generated a model of FRDA cerebellar astrocytes to unveil phenotypic alterations that might contribute to cerebellar atrophy. We treated primary cerebellar astrocytes with an RNA interference-based approach, to achieve a reduction of FXN comparable to that observed in individuals with FRDA. These FRDA-like astrocytes display some typical features of the disease, such as an increase of oxidative stress and a depletion of glutathione content. Moreover, FRDA-like astrocytes exhibit decreased Ca2+ responses to purinergic stimuli. Our findings shed light on cellular changes caused by FXN downregulation in cerebellar astrocytes, likely impairing their complex interaction with neurons. The potentially impaired ability to provide neuronal cells with glutathione or to release neuromodulators in a Ca2+-dependent manner could affect neuronal function, contributing to neurodegeneration.
Collapse
Affiliation(s)
- Chiara Marullo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Iris Giupponi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Rivoletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sofia Zuffetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ottavio Cremona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Filippo Casoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Gian Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Franca Codazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Lai Y, Diaz N, Armbrister R, Agoulnik I, Liu Y. DNA Base Damage Repair Crosstalks with Chromatin Structures to Contract Expanded GAA Repeats in Friedreich's Ataxia. Biomolecules 2024; 14:809. [PMID: 39062522 PMCID: PMC11274795 DOI: 10.3390/biom14070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Trinucleotide repeat (TNR) expansion is the cause of over 40 neurodegenerative diseases, including Huntington's disease and Friedreich's ataxia (FRDA). There are no effective treatments for these diseases due to the poor understanding of molecular mechanisms underlying somatic TNR expansion and contraction in neural systems. We and others have found that DNA base excision repair (BER) actively modulates TNR instability, shedding light on the development of effective treatments for the diseases by contracting expanded repeats through DNA repair. In this study, temozolomide (TMZ) was employed as a model DNA base damaging agent to reveal the mechanisms of the BER pathway in modulating GAA repeat instability at the frataxin (FXN) gene in FRDA neural cells and transgenic mouse mice. We found that TMZ induced large GAA repeat contraction in FRDA mouse brain tissue, neurons, and FRDA iPSC-differentiated neural cells, increasing frataxin protein levels in FRDA mouse brain and neural cells. Surprisingly, we found that TMZ could also inhibit H3K9 methyltransferases, leading to open chromatin and increasing ssDNA breaks and recruitment of the key BER enzyme, pol β, on the repeats in FRDA neural cells. We further demonstrated that the H3K9 methyltransferase inhibitor BIX01294 also induced the contraction of the expanded repeats and increased frataxin protein in FRDA neural cells by opening the chromatin and increasing the endogenous ssDNA breaks and recruitment of pol β on the repeats. Our study provides new mechanistic insight illustrating that inhibition of H3K9 methylation can crosstalk with BER to induce GAA repeat contraction in FRDA. Our results will open a new avenue for developing novel gene therapy by targeting histone methylation and the BER pathway for repeat expansion diseases.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (Y.L.); (N.D.)
| | - Nicole Diaz
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (Y.L.); (N.D.)
| | - Rhyisa Armbrister
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (R.A.); (I.A.)
| | - Irina Agoulnik
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (R.A.); (I.A.)
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (Y.L.); (N.D.)
- Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (R.A.); (I.A.)
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
3
|
Mishra P, Sivakumar A, Johnson A, Pernaci C, Warden AS, El-Hachem LR, Hansen E, Badell-Grau RA, Khare V, Ramirez G, Gillette S, Solis AB, Guo P, Coufal N, Cherqui S. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons. Front Pharmacol 2024; 15:1323491. [PMID: 38420191 PMCID: PMC10899513 DOI: 10.3389/fphar.2024.1323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Anusha Sivakumar
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Carla Pernaci
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Anna S. Warden
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Lilas Rony El-Hachem
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Rafael A. Badell-Grau
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Sydney Gillette
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Angelyn B. Solis
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Peng Guo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Nicole Coufal
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Bouchard C, Gérard C, Yanyabé SGF, Majeau N, Aloui M, Buisson G, Yameogo P, Couture V, Tremblay JP. Finding an Appropriate Mouse Model to Study the Impact of a Treatment for Friedreich Ataxia on the Behavioral Phenotype. Genes (Basel) 2023; 14:1654. [PMID: 37628705 PMCID: PMC10454134 DOI: 10.3390/genes14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a GAA repeat in the intron 1 of the frataxin gene (FXN) leading to a lower expression of the frataxin protein. The YG8sR mice are Knock-Out (KO) for their murine frataxin gene but contain a human frataxin transgene derived from an FRDA patient with 300 GAA repeats. These mice are used as a FRDA model but even with a low frataxin concentration, their phenotype is mild. We aimed to find an optimized mouse model with a phenotype comparable to the human patients to study the impact of therapy on the phenotype. We compared two mouse models: the YG8sR injected with an AAV. PHP.B coding for a shRNA targeting the human frataxin gene and the YG8-800, a new mouse model with a human transgene containing 800 GAA repeats. Both mouse models were compared to Y47R mice containing nine GAA repeats that were considered healthy mice. Behavior tests (parallel rod floor apparatus, hanging test, inverted T beam, and notched beam test) were carried out from 2 to 11 months and significant differences were noticed for both YG8sR mice injected with an anti-FXN shRNA and the YG8-800 mice compared to healthy mice. In conclusion, YG8sR mice have a slight phenotype, and injecting them with an AAV-PHP.B expressing an shRNA targeting frataxin does increase their phenotype. The YG8-800 mice have a phenotype comparable to the human ataxic phenotype.
Collapse
Affiliation(s)
- Camille Bouchard
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Catherine Gérard
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Solange Gni-fiene Yanyabé
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Nathalie Majeau
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Malek Aloui
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
| | - Gabrielle Buisson
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
| | - Pouiré Yameogo
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Vanessa Couture
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| |
Collapse
|
5
|
Wang D, Ho ES, Cotticelli MG, Xu P, Napierala JS, Hauser LA, Napierala M, Himes BE, Wilson RB, Lynch DR, Mesaros C. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia. J Lipid Res 2022; 63:100255. [PMID: 35850241 PMCID: PMC9399481 DOI: 10.1016/j.jlr.2022.100255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and β-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.
Collapse
Affiliation(s)
- Dezhen Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine S Ho
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill S Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Lauren A Hauser
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Sivakumar A, Cherqui S. Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Front Genome Ed 2022; 4:903139. [PMID: 35663795 PMCID: PMC9157421 DOI: 10.3389/fgeed.2022.903139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.
Collapse
Affiliation(s)
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Wang Q, Jia S, Wang D, Chen X, Kalvakolanu DV, Zheng H, Wei X, Wen N, Liang H, Guo B, Zhang L. A Combination of BRD4 and HDAC3 Inhibitors Synergistically Suppresses Glioma Stem Cell Growth by Blocking GLI1/IL6/STAT3 Signaling Axis. Mol Cancer Ther 2020; 19:2542-2553. [PMID: 32999044 DOI: 10.1158/1535-7163.mct-20-0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Glioma stem cells (GSC) are essential for tumor maintenance, invasiveness, and recurrence. Using a global epigenetic screening with an shRNA library, we identified HDAC3 as an essential factor for GSC stemness. Here, we demonstrated that GSCs poorly respond to an HDAC3 inhibitor, RGFP966 (HDAC3i), owing to the production of IL6 and STAT3 activation. To enhance GSC sensitivity to HDAC3i, we explored whether cotreatment with a BRD4 inhibitor, JQ1 (BRD4i), in GSCs produced a better antitumor effect. BRD4i synergistically inhibits GSC growth in association with HDAC3i. HDAC3 inhibition upregulated the acetylation of H3K27, which allowed the recruitment of BRD4 to the GLI1 gene promoter and induced its expression. GLI1, a transcription factor, turned on the expression of IL6, which led to the activation of STAT3 signaling pathways. However, BRD4i inhibited transcription of the GLI1 gene, thereby blocking the GLI1/IL6/STAT3 pathway. In vivo, the HDAC3i/BRD4i combination caused stronger tumor growth suppression than either drug alone. Thus, HDAC3i/BRD4i might provide promising therapies for GBM.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ding Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland
| | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Naiyan Wen
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hang Liang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Sherzai M, Valle A, Perry N, Kalef-Ezra E, Al-Mahdawi S, Pook M, Anjomani Virmouni S. HMTase Inhibitors as a Potential Epigenetic-Based Therapeutic Approach for Friedreich's Ataxia. Front Genet 2020; 11:584. [PMID: 32582297 PMCID: PMC7291394 DOI: 10.3389/fgene.2020.00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disorder caused by a homozygous GAA repeat expansion mutation in intron 1 of the frataxin gene (FXN), which instigates reduced transcription. As a consequence, reduced levels of frataxin protein lead to mitochondrial iron accumulation, oxidative stress, and ultimately cell death; particularly in dorsal root ganglia (DRG) sensory neurons and the dentate nucleus of the cerebellum. In addition to neurological disability, FRDA is associated with cardiomyopathy, diabetes mellitus, and skeletal deformities. Currently there is no effective treatment for FRDA and patients die prematurely. Recent findings suggest that abnormal GAA expansion plays a role in histone modification, subjecting the FXN gene to heterochromatin silencing. Therefore, as an epigenetic-based therapy, we investigated the efficacy and tolerability of two histone methyltransferase (HMTase) inhibitor compounds, BIX0194 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), to specifically target and reduce H3K9me2/3 and H3K27me3 levels, respectively, in FRDA fibroblasts. We show that a combination treatment of BIX0194 and GSK126, significantly increased FXN gene expression levels and reduced the repressive histone marks. However, no increase in frataxin protein levels was observed. Nevertheless, our results are still promising and may encourage to investigate HMTase inhibitors with other synergistic epigenetic-based therapies for further preliminary studies.
Collapse
Affiliation(s)
- Mursal Sherzai
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Adamo Valle
- Energy Metabolism and Nutrition, Research Institute of Health Sciences (IUNICS) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain.,Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Nicholas Perry
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Ester Kalef-Ezra
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
9
|
Pathak D, Srivastava AK, Padma MV, Gulati S, Rajeswari MR. Quantitative Proteomic and Network Analysis of Differentially Expressed Proteins in PBMC of Friedreich's Ataxia (FRDA) Patients. Front Neurosci 2019; 13:1054. [PMID: 31680804 PMCID: PMC6802492 DOI: 10.3389/fnins.2019.01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by an expanded (GAA) trinucleotide repeat in the FXN gene. The extended repeats expansion results in reduced transcription and, thereby, decreased expression of the mitochondrial protein, frataxin. Given the ongoing drug trials, identification of reliable and easily accessible biomarkers for monitoring disease progression and therapeutic intervention is a foremost requirement. In this study, comparative proteomic profiling of PBMC proteins from FRDA patients and age- and gender-matched healthy controls was done using 2D-Differential in-Gel Electrophoresis (2D-DIGE). Protein–protein interaction (PPI) was analyzed using BioGRID and STRING pathway analysis tools. Using biological variance analysis (BVA) and LC/MS, we found eight differentially expressed proteins with fold change ≥1.5; p ≤ 0.05. Based on their cellular function, the identified proteins showed a strong pathological role in neuroinflammation, cardiomyopathy, compromised glucose metabolism, and iron transport, which are the major clinical manifestations of FRDA. Protein–protein network analysis of differentially expressed proteins with frataxin further supports their involvement in the pathophysiology of FRDA. Considering their crucial role in the cardiac and neurological complications, respectively, the two down-regulated proteins, actin α cardiac muscle 1 (ACTC1) and pyruvate dehydrogenase E1 component subunit β (PDHE1), are suggested as potential prognostic markers for FRDA.
Collapse
Affiliation(s)
- Deepti Pathak
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Achal Kumar Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - M V Padma
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Sheffali Gulati
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| |
Collapse
|
10
|
Shen X, Beasley S, Putman JN, Li Y, Prakash TP, Rigo F, Napierala M, Corey DR. Efficient electroporation of neuronal cells using synthetic oligonucleotides: identifying duplex RNA and antisense oligonucleotide activators of human frataxin expression. RNA (NEW YORK, N.Y.) 2019; 25:1118-1129. [PMID: 31151992 PMCID: PMC6800520 DOI: 10.1261/rna.071290.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/23/2019] [Indexed: 05/08/2023]
Abstract
Oligonucleotide drugs are experiencing greater success in the clinic, encouraging the initiation of new projects. Resources are insufficient to develop every potentially important project, and persuasive experimental data using cell lines close to disease target tissue is needed to prioritize candidates. Friedreich's ataxia (FRDA) is a devastating and currently incurable disease caused by insufficient expression of the enzyme frataxin (FXN). We have previously shown that synthetic nucleic acids can activate FXN expression in human patient-derived fibroblast cells. We chose to further test these compounds in induced pluripotent stem cell-derived neuronal progenitor cells (iPSC-NPCs). Here we describe methods to deliver oligonucleotides and duplex RNAs into iPSC-NPCs using electroporation. Activation of FXN expression is potent, easily reproducible, and potencies parallel those determined using patient-derived fibroblast cells. A duplex RNA and several antisense oligonucleotides (ASOs) with different combinations of 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), and constrained ethyl (cEt) were active, providing multiple starting points for further development and highlighting improved potency as an important goal for preclinical development. Our data support the conclusion that ASO-mediated activation of FXN is a feasible approach for treating FRDA and that electroporation is a robust method for introducing ASOs to modulate gene expressions in neuronal cells.
Collapse
Affiliation(s)
- Xiulong Shen
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | - Jennifer N Putman
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, Alabama 35294, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California 92010, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, Alabama 35294, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
11
|
Ferreira GC, Oberstaller J, Fonseca R, Keller TE, Adapa SR, Gibbons J, Wang C, Liu X, Li C, Pham M, Dayhoff Ii GW, Duong LM, Reyes LT, Laratelli LE, Franz D, Fatumo S, Bari AG, Freischel A, Fiedler L, Dokur O, Sharma K, Cragun D, Busby B, Jiang RHY. Iron Hack - A symposium/hackathon focused on porphyrias, Friedreich's ataxia, and other rare iron-related diseases. F1000Res 2019; 8:1135. [PMID: 31824661 PMCID: PMC6894363 DOI: 10.12688/f1000research.19140.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Basic and clinical scientific research at the University of South Florida (USF) have intersected to support a multi-faceted approach around a common focus on rare iron-related diseases. We proposed a modified version of the National Center for Biotechnology Information’s (NCBI) Hackathon-model to take full advantage of local expertise in building “Iron Hack”, a rare disease-focused hackathon. As the collaborative, problem-solving nature of hackathons tends to attract participants of highly-diverse backgrounds, organizers facilitated a symposium on rare iron-related diseases, specifically porphyrias and Friedreich’s ataxia, pitched at general audiences. Methods: The hackathon was structured to begin each day with presentations by expert clinicians, genetic counselors, researchers focused on molecular and cellular biology, public health/global health, genetics/genomics, computational biology, bioinformatics, biomolecular science, bioengineering, and computer science, as well as guest speakers from the American Porphyria Foundation (APF) and Friedreich’s Ataxia Research Alliance (FARA) to inform participants as to the human impact of these diseases. Results: As a result of this hackathon, we developed resources that are relevant not only to these specific disease-models, but also to other rare diseases and general bioinformatics problems. Within two and a half days, “Iron Hack” participants successfully built collaborative projects to visualize data, build databases, improve rare disease diagnosis, and study rare-disease inheritance. Conclusions: The purpose of this manuscript is to demonstrate the utility of a hackathon model to generate prototypes of generalizable tools for a given disease and train clinicians and data scientists to interact more effectively.
Collapse
Affiliation(s)
- Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, MDC 7, Tampa, FL, 33612, USA
| | - Jenna Oberstaller
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Renée Fonseca
- Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Thomas E Keller
- University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Justin Gibbons
- Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Chang Li
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Minh Pham
- Center for Urban Transportation Research, University of South Florida, 4202 E. Fowler Avenue, CUT100, Tampa, FL, 33620, USA
| | - Guy W Dayhoff Ii
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Linh M Duong
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL, 33612, USA.,Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Luis Tañón Reyes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Ave, ISA 2015 Tampa, FL, 33620, USA
| | - Luciano Enrique Laratelli
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Douglas Franz
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Segun Fatumo
- MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda
| | - Atm Golam Bari
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| | | | - Lindsey Fiedler
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL, 33612, USA
| | - Omkar Dokur
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| | | | - Deborah Cragun
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Ben Busby
- National Library of Medicine, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA
| | - Rays H Y Jiang
- Global and Planetary Health, College of Public Health, University of South Florida, USF Genomics Program, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
12
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|
13
|
Nachun D, Gao F, Isaacs C, Strawser C, Yang Z, Dokuru D, Van Berlo V, Sears R, Farmer J, Perlman S, Lynch DR, Coppola G. Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich's ataxia patients. Hum Mol Genet 2019; 27:2965-2977. [PMID: 29790959 PMCID: PMC6097013 DOI: 10.1093/hmg/ddy198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptional changes in Friedreich's ataxia (FRDA), a rare and debilitating recessive Mendelian neurodegenerative disorder, have been studied in affected but inaccessible tissues-such as dorsal root ganglia, sensory neurons and cerebellum-in animal models or small patient series. However, transcriptional changes induced by FRDA in peripheral blood, a readily accessible tissue, have not been characterized in a large sample. We used differential expression, association with disability stage, network analysis and enrichment analysis to characterize the peripheral blood transcriptome and identify genes that were differentially expressed in FRDA patients (n = 418) compared with both heterozygous expansion carriers (n = 228) and controls (n = 93 739 individuals in total), or were associated with disease progression, resulting in a disease signature for FRDA. We identified a transcriptional signature strongly enriched for an inflammatory innate immune response. Future studies should seek to further characterize the role of peripheral inflammation in FRDA pathology and determine its relevance to overall disease progression.
Collapse
Affiliation(s)
- Daniel Nachun
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fuying Gao
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles Isaacs
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Zhongan Yang
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deepika Dokuru
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria Van Berlo
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Renee Sears
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David R Lynch
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal 2018; 2:NS20180060. [PMID: 32714592 PMCID: PMC7373238 DOI: 10.1042/ns20180060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and consequently, ATP production abnormalities. Based on the involvement of such processes in FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) production as a key component of the mechanism. With further study, a variety of other events appear to be involved, including abnormalities of mitochondrially related metabolism and dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on free radical damage, but also on control of metabolic abnormalities and correction of mitochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers possibilities for treatment of this disorder.
Collapse
|
15
|
Shen X, Kilikevicius A, O'Reilly D, Prakash TP, Damha MJ, Rigo F, Corey DR. Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. Bioorg Med Chem Lett 2018; 28:2850-2855. [PMID: 30076049 PMCID: PMC6129981 DOI: 10.1016/j.bmcl.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.
Collapse
Affiliation(s)
- Xiulong Shen
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States
| | - Audrius Kilikevicius
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States
| | - Daniel O'Reilly
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, United States
| | - David R Corey
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| |
Collapse
|
16
|
Roy AR, Ahmed A, DiStefano PV, Chi L, Khyzha N, Galjart N, Wilson MD, Fish JE, Delgado-Olguín P. The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. J Biol Chem 2018; 293:8449-8461. [PMID: 29610276 PMCID: PMC5986204 DOI: 10.1074/jbc.m117.814699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.
Collapse
Affiliation(s)
- Anna R Roy
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abdalla Ahmed
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lijun Chi
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| | - Paul Delgado-Olguín
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
17
|
McGinty RJ, Puleo F, Aksenova AY, Hisey JA, Shishkin AA, Pearson EL, Wang ET, Housman DE, Moore C, Mirkin SM. A Defective mRNA Cleavage and Polyadenylation Complex Facilitates Expansions of Transcribed (GAA) n Repeats Associated with Friedreich's Ataxia. Cell Rep 2018; 20:2490-2500. [PMID: 28877480 DOI: 10.1016/j.celrep.2017.08.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023] Open
Abstract
Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich's ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here, we describe a method for the rapid, genome-wide identification of trans modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1) of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAA)n repeat expansions but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal an interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02421, USA
| | - Franco Puleo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Anna Y Aksenova
- Department of Biology, Tufts University, Medford, MA 02421, USA; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA 02421, USA
| | - Alexander A Shishkin
- Department of Biology, Tufts University, Medford, MA 02421, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Erika L Pearson
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Eric T Wang
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | - David E Housman
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Claire Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
18
|
Rummey C, Kichula E, Lynch DR. Clinical trial design for Friedreich ataxia - Where are we now and what do we need? Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1449638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christian Rummey
- Departments of Neurology and Pediatrics, Clinical Data Science GmbH, Basel, Switzerland
| | - Elizabeth Kichula
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R. Lynch
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Progress in the treatment of Friedreich ataxia. Neurol Neurochir Pol 2018; 52:129-139. [PMID: 29499876 DOI: 10.1016/j.pjnns.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 11/19/2022]
Abstract
Friedreich ataxia (FRDA) is a progressive neurological disorder affecting approximately 1 in 29,000 individuals of European descent. At present, there is no approved pharmacological treatment for this condition however research into treatment of FRDA has advanced considerably over the last two decades since the genetic cause was identified. Current proposed treatment strategies include decreasing oxidative stress, increasing cellular frataxin, improving mitochondrial function as well as modulating frataxin controlled metabolic pathways. Genetic and cell based therapies also hold great promise. Finally, physical therapies are being explored as a means of maximising function in those affected by FRDA.
Collapse
|
20
|
Abstract
Epigenetics is a growing field of knowledge that is changing our understanding of pathologic processes. For many cerebellar disorders, recent discoveries of epigenetic mechanisms help us to understand their pathophysiology. In this chapter, a short explanation of each epigenetic mechanism (including methylation, histone modification, and miRNA) is followed by references to those cerebellar disorders in which relevant epigenetic advances have been made. The importance of normal timing and distribution of methylation during neurodevelopment is explained. Abnormal methylation and altered gene expression in the developing cerebellum have been related to neurodevelopmental disorders such as autism, Rett syndrome, and fragile X syndrome. DNA packaging by histones is another important epigenetic mechanism in cerebellar functioning. Current knowledge of histone abnormalities in cerebellar diseases such as Friedreich ataxia and spinocerebellar ataxias is reviewed, including implications for new therapeutic approaches to these degenerative diseases. Finally, micro RNAs, the third mechanism to modulate DNA expression, and their role in normal cerebellar development and disease are described. Understanding how genetic and epigenetic mechanisms interact not only in normal cerebellar development but also in disease is a great challenge. However, such understanding will lead to promising new therapeutic possibilities as is already occurring in other areas of medicine.
Collapse
Affiliation(s)
- Mercedes Serrano
- Pediatric Neurology Department and Pediatric Institute for Genetic Medicine and Rare Diseases, Hospital Sant Joan de Déu; and Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
21
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
22
|
Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH. Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. eLife 2017; 6:e30054. [PMID: 29257745 PMCID: PMC5736353 DOI: 10.7554/elife.30054] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
23
|
Schmitt HM, Schlamp CL, Nickells RW. Targeting HDAC3 Activity with RGFP966 Protects Against Retinal Ganglion Cell Nuclear Atrophy and Apoptosis After Optic Nerve Injury. J Ocul Pharmacol Ther 2017; 34:260-273. [PMID: 29211617 DOI: 10.1089/jop.2017.0059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE HDAC3 regulates nuclear atrophy as an early response to axonal injury in retinal ganglion cells (RGCs) following optic nerve crush (ONC). Since conditional knockout of Hdac3 prevents nuclear atrophy post ONC, HDAC3 selective inhibition with RGFP966 through localized and systemic dosing of RGFP966 is necessary for application to acute and chronic models of optic nerve injury. METHODS C57BL/6 mice were injected intravitreally with 1-10 μM RGFP966 immediately following ONC, and retinas were analyzed at 5, 7, and 14 days for metrics of nuclear atrophy and cell loss. Mice were similarly assessed after intraperitoneal (IP) injections with RGFP966 doses of 2-10 mg/kg, and eyes were harvested at 5, 14, and 28 days after ONC. H&E and BrdU staining were used to analyze toxicity to off-target tissues after 14 days of daily treatment with RGFP966. RESULTS A single intravitreal injection of RGFP966 prevented histone deacetylation, heterochromatin formation, apoptosis, and DNA damage at 5 and 7 days post ONC. After IP injection, RGFP966 bioavailability in the retina reached peak concentration within 1 h after injection and then rapidly declined. A single IP injection of 2-10 mg/kg RGFP966, significantly prevented histone deacetylation. Repeated IP injections of 2 mg/kg RGFP966 over the course of 2 and 4 weeks post ONC prevented RGC loss. There were no significant toxic or antiproliferative effects to off-target tissues in mice treated daily for 14 days with RGFP966. CONCLUSION Inhibition of HDAC3 activity with systemic dosing of RGFP966 prevents apoptosis-related histone deacetylation and attenuates RGC loss after acute optic nerve injury.
Collapse
Affiliation(s)
- Heather M Schmitt
- 1 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,2 Cellular and Molecular Pathology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Cassandra L Schlamp
- 1 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Robert W Nickells
- 1 Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
24
|
Jayaraman A, Soni A, Prabhakar BS, Holterman M, Jayaraman S. The epigenetic drug Trichostatin A ameliorates experimental autoimmune encephalomyelitis via T cell tolerance induction and impaired influx of T cells into the spinal cord. Neurobiol Dis 2017; 108:1-12. [PMID: 28736194 DOI: 10.1016/j.nbd.2017.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 11/15/2022] Open
Abstract
Multiple sclerosis is a T cell mediated chronic demyelinating disease of the central nervous system. Although currently available therapies reduce relapses, they do not facilitate tolerization of myelin antigen-specific T lymphocytes to ensure prolonged protection against multiple sclerosis. Here, we show that treatment of NOD mice with the histone deacetylase inhibitor, Trichostatin A affords robust protection against myelin peptide induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Protection was accompanied by histone hyperacetylation, and reduced inflammation and axonal damage in the spinal cord. Drug treatment diminished the generation of CD4+ memory T cells and induced tolerance in CD4+ T cells recognizing the immunizing myelin peptide. During the early immunization period, CD4+ T cells producing GM-CSF+IFN-γ, GM-CSF+IL-17A, as well as those expressing both IL-17A+IFN-γ (double-producers) were detected in the secondary lymphoid organs followed by the appearance of cells producing IFN-γ and GM-CSF. On the other hand, IFN-γ producing Th1 cells appear first in the spinal cord followed by cells producing IL-17A and GM-CSF. Treatment with Trichostatin A substantially reduced the frequencies of all T cells secreting various lymphokines both in the periphery and in the spinal cord. These data indicate that epigenetic modifications induced by histone hyperacetylation facilitates T cell tolerance induction in the periphery leading to reduced migration of T cells to the spinal cord and mitigation of neuronal damage and improved clinical outcome. These results suggest that epigenetic modulation of the genome may similarly offer benefits to multiple sclerosis patients via abrogating the function of encephalitogenic T lymphocytes without exerting severe side effects associated with currently used disease-modifying therapies.
Collapse
Affiliation(s)
- Arathi Jayaraman
- Dept. of Surgery, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Advait Soni
- Dept. of Surgery, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bellur S Prabhakar
- Dept. of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark Holterman
- Dept. of Surgery, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sundararajan Jayaraman
- Dept. of Surgery, University of Illinois College of Medicine, Chicago, IL 60612, USA; Dept. of Microbiology & Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Polak U, Li Y, Butler JS, Napierala M. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming. Stem Cells Dev 2016; 25:1788-1800. [PMID: 27615158 PMCID: PMC5155629 DOI: 10.1089/scd.2016.0147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.
Collapse
Affiliation(s)
- Urszula Polak
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
26
|
Tamarit J, Obis È, Ros J. Oxidative stress and altered lipid metabolism in Friedreich ataxia. Free Radic Biol Med 2016; 100:138-146. [PMID: 27296838 DOI: 10.1016/j.freeradbiomed.2016.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
Friedreich ataxia is a genetic disease caused by the deficiency of frataxin, a mitochondrial protein. Frataxin deficiency impacts in the cell physiology at several levels. One of them is oxidative stress with consequences in terms of protein dysfunctions and metabolic alterations. Among others, alterations in lipid metabolism have been observed in several models of the disease. In this review we summarize the current knowledge of the molecular basis of the disease, the relevance of oxidative stress and the therapeutic strategies based on reduction of mitochondrial reactive oxygen species production. Finally, we will focus the interest in alterations of lipid metabolism as a consequence of mitochondrial dysfunction and describe the therapeutic approaches based on targeting lipid metabolism.
Collapse
Affiliation(s)
- Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Èlia Obis
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, Lleida, Spain.
| |
Collapse
|
27
|
Aranca TV, Jones TM, Shaw JD, Staffetti JS, Ashizawa T, Kuo SH, Fogel BL, Wilmot GR, Perlman SL, Onyike CU, Ying SH, Zesiewicz TA. Emerging therapies in Friedreich's ataxia. Neurodegener Dis Manag 2016; 6:49-65. [PMID: 26782317 DOI: 10.2217/nmt.15.73] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, progressive neurodegenerative disease that typically affects teenagers and young adults. Therapeutic strategies and disease insight have expanded rapidly over recent years, leading to hope for the FRDA population. There is currently no US FDA-approved treatment for FRDA, but advances in research of its pathogenesis have led to clinical trials of potential treatments. This article reviews emerging therapies and discusses future perspectives, including the need for more precise measures for detecting changes in neurologic symptoms as well as a disease-modifying agent.
Collapse
Affiliation(s)
- Tanya V Aranca
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Tracy M Jones
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Jessica D Shaw
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Joseph S Staffetti
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida Department of Neurology, FL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, NY, USA
| | - Brent L Fogel
- Department of Neurology, Neurogenetics Program, David Geffen School of Medicine, University of California, CA, USA
| | | | - Susan L Perlman
- Ataxia and Huntington Disease Center of Excellence, University of California, CA, US
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University school of Medicine MD, USA
| | - Sarah H Ying
- Department of Neurology, Johns Hopkins University School of Medicine, MD, USA.,Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, MD, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, MD, USA
| | - Theresa A Zesiewicz
- University of South Florida Ataxia Research Center, Department of Neurology, FL, USA.,James A. Haley Veterans' Hospital, FL, USA
| |
Collapse
|
28
|
Costantini A, Laureti T, Pala MI, Colangeli M, Cavalieri S, Pozzi E, Brusco A, Salvarani S, Serrati C, Fancellu R. Long-term treatment with thiamine as possible medical therapy for Friedreich ataxia. J Neurol 2016; 263:2170-2178. [PMID: 27488863 DOI: 10.1007/s00415-016-8244-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/13/2023]
Abstract
Thiamine (vitamin B1) is a cofactor of fundamental enzymes of cell energetic metabolism; its deficiency causes disorders affecting both the peripheral and central nervous system. Previous studies reported low thiamine levels in cerebrospinal fluid and pyruvate dehydrogenase dysfunction in Friedreich ataxia (FRDA). We investigated the effect of long-term treatment with thiamine in FRDA, evaluating changes in neurological symptoms, echocardiographic parameters, and plasma FXN mRNA levels. Thirty-four consecutive FRDA patients have been continuously treated with intramuscular thiamine 100 mg twice a week and have been assessed with the Scale for the Assessment and Rating of Ataxia (SARA) at baseline, after 1 month, and then every 3 months during treatment. Thiamine administration ranged from 80 to 930 days and was effective in improving total SARA scores from 26.6 ± 7.7 to 21.5 ± 6.2 (p < 0.02). Moreover, deep tendon reflexes reappeared in 57 % of patients with areflexia at baseline, and swallowing improved in 63 % of dysphagic patients. Clinical improvement was stable in all patients, who did not show worsening even after 2 years of treatment. In a subgroup of 13 patients who performed echocardiogram before and during treatment, interventricular septum thickness reduced significantly (p < 0.02). Frataxin mRNA blood levels were modestly increased in one-half of treated patients. We suppose that a focal thiamine deficiency may contribute to a selective neuronal damage in the areas involved in FRDA. Further studies are mandatory to evaluate thiamine role on FXN regulation, to exclude placebo effect, to verify our clinical results, and to confirm restorative and neuroprotective action of thiamine in FRDA.
Collapse
Affiliation(s)
- Antonio Costantini
- Department of Neurological Rehabilitation, "Villa Immacolata" Clinic, Strada Sammartinese 65A, 01100, Viterbo, Italy
| | - Tiziana Laureti
- Department of Economics and Management, University of Tuscia, Via del Paradiso 47, 01100, Viterbo, Italy
| | - Maria Immacolata Pala
- Department of Neurological Rehabilitation, "Villa Immacolata" Clinic, Strada Sammartinese 65A, 01100, Viterbo, Italy
| | - Marco Colangeli
- University Studies Abroad Consortium, University of Tuscia, Via Santa Maria in Gradi 4, 01100, Viterbo, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Sandro Salvarani
- Unit of Neurology, ASL3 Villa Scassi Hospital, Corso O. Scassi 1, 16149, Genoa, Italy
| | - Carlo Serrati
- Unit of Neurology, IRCCS San Martino University Hospital IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Roberto Fancellu
- Unit of Neurology, ASL3 Villa Scassi Hospital, Corso O. Scassi 1, 16149, Genoa, Italy. .,Unit of Neurology, IRCCS San Martino University Hospital IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
29
|
Yalon M, Tuval-Kochen L, Castel D, Moshe I, Mazal I, Cohen O, Avivi C, Rosenblatt K, Aviel-Ronen S, Schiby G, Yahalom J, Amariglio N, Pfeffer R, Lawrence Y, Toren A, Rechavi G, Paglin S. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations. PLoS One 2016; 11:e0155711. [PMID: 27196668 PMCID: PMC4873128 DOI: 10.1371/journal.pone.0155711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis) show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR). However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi), become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi)). Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG)–a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF) 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.
Collapse
Affiliation(s)
- Michal Yalon
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Liron Tuval-Kochen
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Castel
- Neufeld Cardiac Research Institute, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Itai Moshe
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Inbal Mazal
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Osher Cohen
- Department of Surgery, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | | | - Sarit Aviel-Ronen
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering, New York 10021, United States of America
| | - Ninette Amariglio
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Raphael Pfeffer
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Shoshana Paglin
- Cancer Research Center, Sheba Medical Center, Ramat-Gan 52621, Israel
- * E-mail:
| |
Collapse
|
30
|
Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun 2016; 7:10606. [PMID: 26842135 PMCID: PMC4742999 DOI: 10.1038/ncomms10606] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression.
Collapse
Affiliation(s)
- Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| |
Collapse
|
31
|
Nageshwaran S, Festenstein R. Epigenetics and Triplet-Repeat Neurological Diseases. Front Neurol 2015; 6:262. [PMID: 26733936 PMCID: PMC4685448 DOI: 10.3389/fneur.2015.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 11/30/2015] [Indexed: 01/15/2023] Open
Abstract
The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.
Collapse
Affiliation(s)
- Sathiji Nageshwaran
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| | - Richard Festenstein
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| |
Collapse
|
32
|
Abstract
SAHA (vorinostat, Merck) is a famous clinical drug for zinc-containing histone deacetylase (HDAC) targets against cancer and several other human disorders, whose inhibition mechanism (namely the protonation mechanism) upon binding to HDAC has been debated for more than ten years. It is very challenging to verify experimentally and is still controversial theoretically. The popular "Class-dependent" (namely "Tyr-dependent") hypothesis is that the deprotonation of SAHA is mostly regulated by the conserved Tyr308 in class I HDAC while it is replaced by the His843 in class IIa HDAC. Herein, by elaborate QM(DFT)/MM MD simulations, we exclude the prevalent "Class-dependent" mechanism and advance a novel "Metal-dependent" mechanism, where the remote second metal site (K(+) in most HDAC and Ca(2+) in HDAC2) determines the protonation of SAHA. This proof-of-principle "Metal-dependent" mechanism opens up a new avenue to utilize the second metal site for isoform-selective inhibitor design.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | | | | |
Collapse
|
33
|
GAA triplet-repeats cause nucleosome depletion in the human genome. Genomics 2015; 106:88-95. [DOI: 10.1016/j.ygeno.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
34
|
Zhou J, Li M, Chen N, Wang S, Luo HB, Zhang Y, Wu R. Computational design of a time-dependent histone deacetylase 2 selective inhibitor. ACS Chem Biol 2015; 10:687-92. [PMID: 25546141 PMCID: PMC4372102 DOI: 10.1021/cb500767c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Development of isoform-selective
histone deacetylase (HDAC) inhibitors is of great biological and medical
interest. Among 11 zinc-dependent HDAC isoforms, it is particularly
challenging to achieve isoform inhibition selectivity between HDAC1
and HDAC2 due to their very high structural similarities. In this
work, by developing and applying a novel de novo reaction-mechanism-based
inhibitor design strategy to exploit the reactivity difference, we
have discovered the first HDAC2-selective inhibitor, β-hydroxymethyl
chalcone. Our bioassay experiments show that this new compound has
a unique time-dependent selective inhibition on HDAC2, leading to
about 20-fold isoform-selectivity against HDAC1. Furthermore, our
ab initio QM/MM molecular dynamics simulations, a state-of-the-art
approach to study reactions in biological systems, have elucidated
how the β-hydroxymethyl chalcone can achieve the distinct time-dependent
inhibition toward HDAC2.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Min Li
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shenglong Wang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Hai-Bin Luo
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
35
|
Crook JM, Wallace G, Tomaskovic-Crook E. The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Rev Neurother 2015; 15:295-304. [PMID: 25664599 DOI: 10.1586/14737175.2015.1013096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Collapse
Affiliation(s)
- Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | |
Collapse
|
36
|
Zhou J, Xie H, Liu Z, Luo HB, Wu R. Structure–Function Analysis of the Conserved Tyrosine and Diverse π-Stacking among Class I Histone Deacetylases: A QM (DFT)/MM MD Study. J Chem Inf Model 2014; 54:3162-71. [DOI: 10.1021/ci500513n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hujun Xie
- School
of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035 Zhejiang, P.R. China
| | - Zhihong Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| |
Collapse
|
37
|
Chutake YK, Lam C, Costello WN, Anderson M, Bidichandani SI. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol 2014; 76:522-8. [PMID: 25112975 PMCID: PMC4191993 DOI: 10.1002/ana.24249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/05/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is caused by an expanded GAA triplet-repeat (GAA-TR) mutation in the FXN gene. Patients are typically homozygous for expanded alleles containing 100 to 1,300 triplets, and phenotypic severity is significantly correlated with the length of the shorter of the 2 expanded alleles. Patients have a severe deficiency of FXN transcript, which is predominantly caused by epigenetic silencing of the FXN promoter. We sought to determine whether the severity of FXN promoter silencing is related to the length of the expanded GAA-TR mutation in FRDA. METHODS Patient-derived lymphoblastoid cell lines bearing a range of expanded alleles (200-1,122 triplets) were evaluated for FXN transcript levels by quantitative reverse transcriptase polymerase chain reaction. FXN promoter function was directly measured by quantitative analysis of transcriptional initiation via metabolic labeling of newly synthesized transcripts in living cells. RESULTS FXN transcriptional deficiency was significantly correlated with the length of the shorter of the 2 expanded alleles, which was noted both upstream (R(2) = 0.84, p = 0.014) and downstream (R(2) = 0.89, p = 0.002) of the expanded GAA-TR mutation, suggesting that FXN promoter silencing in FRDA is related to repeat length. A bilinear regression model revealed that length dependence was strongest when the shorter of the 2 expanded alleles contained <400 triplets. Direct measurement of FXN promoter activity in patients with expanded alleles containing <400 versus >400 triplets in the shorter of the 2 expanded alleles revealed a significantly greater deficiency in individuals with longer GAA-TR alleles (p < 0.05). INTERPRETATION FXN promoter silencing in FRDA is dependent on the length of the expanded GAA-TR mutation.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Whitney N. Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Michael Anderson
- Department of Biostatistics & Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, OK 73104
| | - Sanjay I. Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| |
Collapse
|
38
|
Affiliation(s)
- David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Shan B, Xu C, Zhang Y, Xu T, Gottesfeld JM, Yates JR. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich's ataxia patient iPSC-derived neural stem cells. J Proteome Res 2014; 13:4558-66. [PMID: 24933366 PMCID: PMC4227551 DOI: 10.1021/pr500514r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Members
of the 2-aminobenzamide class of histone deacetylase (HDAC) inhibitors
show promise as therapeutics for the neurodegenerative diseases Friedreich’s
ataxia (FRDA) and Huntington’s disease (HD). While it is clear
that HDAC3 is one of the important targets of the 2-aminobenzamide
HDAC inhibitors, inhibition of other class I HDACs (HDACs 1 and 2)
may also be involved in the beneficial effects of these compounds
in FRDA and HD, and other HDAC interacting proteins may be impacted
by the compound. To this end, we synthesized activity-based profiling
probe (ABPP) versions of one of our HDAC inhibitors (compound 106),
and in the present study we used a quantitative proteomic method coupled
with multidimensional protein identification technology (MudPIT) to
identify the proteins captured by the ABPP 106 probe. Nuclear proteins
were extracted from FRDA patient iPSC-derived neural stem cells, and
then were reacted with control and ABPP 106 probe. After reaction,
the bound proteins were digested on the beads, and the peptides were
modified using stable isotope-labeled formaldehyde to form dimethyl
amine. The selectively bound proteins determined by mass spectrometry
were subjected to functional and pathway analysis. Our findings suggest
that the targets of compound 106 are involved not only in transcriptional
regulation but also in posttranscriptional processing of mRNA.
Collapse
Affiliation(s)
- Bing Shan
- Department of Chemical Physiology, ‡Department of Cell and Molecular biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
40
|
Dhamija R, Kirmani S. A 7-year-old girl with hypertrophic cardiomyopathy and progressive scoliosis. Semin Pediatr Neurol 2014; 21:67-71. [PMID: 25149925 DOI: 10.1016/j.spen.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a 7 year old girl who was evaluated for progressive thoracolumbar scoliosis and hypertrophic cardiomyopathy. Neurological examination was found to be abnormal and significant for absent reflexes and weakness distally in lower extremities and positive Romberg sign. Electromyogram showed length-dependent, axonal, sensorimotor polyneuropathy. Frataxin levels were low at 3ng/mL. Molecular testing for Friedreich ataxia showed significantly expanded GAA repeats at 799 (abnormal >67 GAA repeats) on one allele and a heterozygous disease causing mutation, c.317T>C (p.Leu106Ser) on the other allele, confirming the diagnosis. A review of Friedreich ataxia is provided in the case report.
Collapse
Affiliation(s)
| | - Salman Kirmani
- Department of Medical Genetics, Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Abstract
OPINION STATEMENT Ataxia can originate from many genetic defects, but also from nongenetic causes. To be able to provide treatment, the first step is to establish the right diagnosis. Once the cause of the ataxia is defined, some specific treatments may be available. For example, the nongenetic ataxias that arise from vitamin deficiencies can improve following treatment. In most cases, however, therapies do not cure the disease and are purely symptomatic. Physiotherapy and occupational therapy are effective in all type of ataxias and often remain the most efficient treatment option for these patients to maximize their quality of life.
Collapse
|
42
|
Lai Y, Beaver JM, Lorente K, Melo J, Ramjagsingh S, Agoulnik IU, Zhang Z, Liu Y. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia. PLoS One 2014; 9:e93464. [PMID: 24691413 PMCID: PMC3972099 DOI: 10.1371/journal.pone.0093464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jill M. Beaver
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Karla Lorente
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jonathan Melo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Shyama Ramjagsingh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- * E-mail: (ZZ); (YL)
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail: (ZZ); (YL)
| |
Collapse
|
43
|
Schulz JB, Pandolfo M. 150 years of Friedreich ataxia: from its discovery to therapy. J Neurochem 2013; 126 Suppl 1:1-3. [PMID: 24024236 DOI: 10.1111/jnc.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|