1
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
2
|
De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations. Genet Med 2022; 24:1952-1966. [PMID: 35916866 DOI: 10.1016/j.gim.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.
Collapse
|
3
|
Shen H, Zhang W, Huang Y, He Y, Hu G, Wang L, Peng B, Yi J, Li T, Rong R, Chen X, Liu J, Li W, Ohgi K, Li S, Rosenfeld MG, Liu W. The Dual Function of KDM5C in Both Gene Transcriptional Activation and Repression Promotes Breast Cancer Cell Growth and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004635. [PMID: 33977073 PMCID: PMC8097366 DOI: 10.1002/advs.202004635] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/25/2020] [Indexed: 06/01/2023]
Abstract
Emerging evidence suggested that epigenetic regulators can exhibit both activator and repressor activities in gene transcriptional regulation and disease development, such as cancer. However, how these dual activities are regulated and coordinated in specific cellular contexts remains elusive. Here, it is reported that KDM5C, a repressive histone demethylase, unexpectedly activates estrogen receptor alpha (ERα)-target genes, and meanwhile suppresses type I interferons (IFNs) and IFN-stimulated genes (ISGs) to promote ERα-positive breast cancer cell growth and tumorigenesis. KDM5C-interacting protein, ZMYND8, is found to be involved in both processes. Mechanistically, KDM5C binds to active enhancers and recruits the P-TEFb complex to activate ERα-target genes, while inhibits TBK1 phosphorylation in the cytosol to repress type I IFNs and ISGs. Pharmacological inhibition of both ERα and KDM5C is effective in inhibiting cell growth and tumorigenesis. Taken together, it is revealed that the dual activator and repressor nature of an epigenetic regulator together contributes to cancer development.
Collapse
Affiliation(s)
- Hai‐feng Shen
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Wen‐juan Zhang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Ying Huang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Yao‐hui He
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Guo‐sheng Hu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Lei Wang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Bing‐ling Peng
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Jia Yi
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Ting‐ting Li
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Rui Rong
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Xiao‐yan Chen
- School of Life SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Jun‐yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Wen‐juan Li
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Kenny Ohgi
- Howard Hughes Medical InstituteDepartment of MedicineUniversity of California9500 Gilman Drive La JollaSan DiegoCA92093USA
| | - Shao‐Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsXiamen UniversityXiang'an South RoadXiamenFujian361102China
| | - Michael G. Rosenfeld
- Howard Hughes Medical InstituteDepartment of MedicineUniversity of California9500 Gilman Drive La JollaSan DiegoCA92093USA
| | - Wen Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamenFujian361102China
| |
Collapse
|
4
|
Effects of neuronal drebrin on actin dynamics. Biochem Soc Trans 2021; 49:685-692. [PMID: 33739391 DOI: 10.1042/bst20200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Drebrin is a key regulator of actin cytoskeleton in neuronal cells which is critical for synaptic plasticity, neuritogenesis, and neuronal migration. It is also known to orchestrate a cross-talk between actin and microtubules. Decreased level of drebrin is a hallmark of multiple neurodegenerative disorders such as Alzheimer's disease. Despite its established importance in health and disease, we still have a lot to learn about drebrin's interactome and its effects on cytoskeletal dynamics. This review aims to summarize the recently reported novel effects of drebrin on actin and its regulators. Here I will also reflect on the most recent progress made in understanding of the role of drebrin isoforms and posttranslational modifications on its functionality.
Collapse
|
5
|
Shan Y, Farmer SM, Wray S. Drebrin regulates cytoskeleton dynamics in migrating neurons through interaction with CXCR4. Proc Natl Acad Sci U S A 2021; 118:e2009493118. [PMID: 33414275 PMCID: PMC7826346 DOI: 10.1073/pnas.2009493118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and chemokine receptor type 4 (CXCR4) are regulators of neuronal migration (e.g., GnRH neurons, cortical neurons, and hippocampal granule cells). However, how SDF-1/CXCR4 alters cytoskeletal components remains unclear. Developmentally regulated brain protein (drebrin) stabilizes actin polymerization, interacts with microtubule plus ends, and has been proposed to directly interact with CXCR4 in T cells. The current study examined, in mice, whether CXCR4 under SDF-1 stimulation interacts with drebrin to facilitate neuronal migration. Bioinformatic prediction of protein-protein interaction highlighted binding sites between drebrin and crystallized CXCR4. In migrating GnRH neurons, drebrin, CXCR4, and the microtubule plus-end binding protein EB1 were localized close to the cell membrane. Coimmunoprecipitation (co-IP) confirmed a direct interaction between drebrin and CXCR4 using wild-type E14.5 whole head and a GnRH cell line. Analysis of drebrin knockout (DBN1 KO) mice showed delayed migration of GnRH cells into the brain. A decrease in hippocampal granule cells was also detected, and co-IP confirmed a direct interaction between drebrin and CXCR4 in PN4 hippocampi. Migration assays on primary neurons established that inhibiting drebrin (either pharmacologically or using cells from DBN1 KO mice) prevented the effects of SDF-1 on neuronal movement. Bioinformatic prediction then identified binding sites between drebrin and the microtubule plus end protein, EB1, and super-resolution microscopy revealed decreased EB1 and drebrin coexpression after drebrin inhibition. Together, these data show a mechanism by which a chemokine, via a membrane receptor, communicates with the intracellular cytoskeleton in migrating neurons during central nervous system development.
Collapse
Affiliation(s)
- Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Yap K, Drakew A, Smilovic D, Rietsche M, Paul MH, Vuksic M, Del Turco D, Deller T. The actin-modulating protein synaptopodin mediates long-term survival of dendritic spines. eLife 2020; 9:e62944. [PMID: 33275099 PMCID: PMC7717903 DOI: 10.7554/elife.62944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
Large spines are stable and important for memory trace formation. The majority of large spines also contains synaptopodin (SP), an actin-modulating and plasticity-related protein. Since SP stabilizes F-actin, we speculated that the presence of SP within large spines could explain their long lifetime. Indeed, using 2-photon time-lapse imaging of SP-transgenic granule cells in mouse organotypic tissue cultures we found that spines containing SP survived considerably longer than spines of equal size without SP. Of note, SP-positive (SP+) spines that underwent pruning first lost SP before disappearing. Whereas the survival time courses of SP+ spines followed conditional two-stage decay functions, SP-negative (SP-) spines and all spines of SP-deficient animals showed single-phase exponential decays. This was also the case following afferent denervation. These results implicate SP as a major regulator of long-term spine stability: SP clusters stabilize spines, and the presence of SP indicates spines of high stability.
Collapse
Affiliation(s)
- Kenrick Yap
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Alexander Drakew
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
- Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagrebCroatia
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
- Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagrebCroatia
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|
7
|
Dombroski TCD, Peixoto-Santos JE, Maciel K, Baqui MMA, Velasco TR, Sakamoto AC, Assirati JA, Carlotti CG, Machado HR, Sousa GKD, Hanamura K, Leite JP, Costa da Costa J, Palmini AL, Paglioli E, Neder L, Spreafico R, Shirao T, Garbelli R, Martins AR. Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2020; 61:1581-1594. [PMID: 32662890 DOI: 10.1111/epi.16595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.
Collapse
Affiliation(s)
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista Medical School, UNIFESP, São Paulo, Brazil
| | - Karina Maciel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Americo Ceiki Sakamoto
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Alberto Assirati
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Rubens Machado
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gleice Kelly de Sousa
- Graduate Program of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - João Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaderson Costa da Costa
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Luiz Palmini
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Antonio Roberto Martins
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Institute for Neuroscience and Behavior, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Li Z, Liu H, Li J, Yang Q, Feng Z, Li Y, Yang H, Yu C, Wan J, Liu W, Zhang M. Homer Tetramer Promotes Actin Bundling Activity of Drebrin. Structure 2019; 27:27-38.e4. [DOI: 10.1016/j.str.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022]
|
9
|
Yasuda H, Kojima N, Hanamura K, Yamazaki H, Sakimura K, Shirao T. Drebrin Isoforms Critically Regulate NMDAR- and mGluR-Dependent LTD Induction. Front Cell Neurosci 2018; 12:330. [PMID: 30349460 PMCID: PMC6186840 DOI: 10.3389/fncel.2018.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E) is expressed in the embryonic and early postnatal brain and is replaced by the adult-type (drebrin A) during development. In parallel, NMDA receptor (NMDAR)-dependent long-term depression (LTD) of synaptic transmission, induced by low-frequency stimulation (LFS), is dominant in the immature brain and decreases during development. Here, we report that drebrin regulates NMDAR-dependent and group 1 metabotropic glutamate receptor (mGluR)-dependent LTD induction in the hippocampus. While LFS induced NMDAR-dependent LTD in the developing hippocampus in wild-type (WT) mice, it did not induce LTD in developing drebrin E and A double knockout (DXKO) mice, indicating that drebrin is required for NMDAR-dependent LTD. On the other hand, LFS induced robust LTD dependent on mGluR5, one of group 1 mGluRs, in both developing and adult brains of drebrin A knockout (DAKO) mice, in which drebrin E is expressed throughout development and adulthood. Agonist-induced mGluR-dependent LTD was normal in WT and DXKO mice; however, it was enhanced in DAKO mice. Also, mGluR1, another group 1 mGluR, was involved in agonist-induced mGluR-dependent LTD in DAKO mice. These data suggest that abnormal drebrin E expression in adults promotes group 1 mGluR-dependent LTD induction. Therefore, while drebrin expression is critical for NMDAR-dependent LTD induction, developmental conversion from drebrin E to drebrin A prevents robust group 1 mGluR-dependent LTD.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Faculty of Life Sciences, Toyo University, Itakura, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
10
|
Yamazaki H, Sasagawa Y, Yamamoto H, Bito H, Shirao T. CaMKIIβ is localized in dendritic spines as both drebrin-dependent and drebrin-independent pools. J Neurochem 2018; 146:145-159. [PMID: 29675826 PMCID: PMC6099455 DOI: 10.1111/jnc.14449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Drebrin is a major F-actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin-binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+ /calmodulin-dependent protein kinase II (CaMKIIβ) as a drebrin-binding protein using a yeast two-hybrid system, and investigated the drebrin-CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin-independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post-synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin-binding F-actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshio Sasagawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
11
|
The Structure of the ZMYND8/Drebrin Complex Suggests a Cytoplasmic Sequestering Mechanism of ZMYND8 by Drebrin. Structure 2017; 25:1657-1666.e3. [DOI: 10.1016/j.str.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
|
12
|
Kajita Y, Kojima N, Koganezawa N, Yamazaki H, Sakimura K, Shirao T. Drebrin E regulates neuroblast proliferation and chain migration in the adult brain. Eur J Neurosci 2017; 46:2214-2228. [DOI: 10.1111/ejn.13668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Kajita
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| |
Collapse
|
13
|
Cho C, MacDonald R, Shang J, Cho MJ, Chalifour LE, Paudel HK. Early growth response-1-mediated down-regulation of drebrin correlates with loss of dendritic spines. J Neurochem 2017; 142:56-73. [DOI: 10.1111/jnc.14031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Chulmin Cho
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Ryen MacDonald
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Jijun Shang
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Moon Jeong Cho
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Lorraine E. Chalifour
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
- Department of Medicine; McGill University; Montreal Quebec Canada
| | - Hemant K. Paudel
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
- Department of Medicine; McGill University; Montreal Quebec Canada
| |
Collapse
|
14
|
Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. The role of drebrin in neurons. J Neurochem 2017; 141:819-834. [PMID: 28199019 DOI: 10.1111/jnc.13988] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuta Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
15
|
Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci 2017; 84:85-92. [PMID: 28161364 DOI: 10.1016/j.mcn.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
16
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
17
|
|
18
|
Kojima N. Molecular Cloning of Drebrin: Progress and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:25-36. [DOI: 10.1007/978-4-431-56550-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
20
|
Iyama S, Ono M, Kawai-Nakahara H, Husni RE, Dai T, Shiozawa T, Sakata A, Kohrogi H, Noguchi M. Drebrin: A new oncofetal biomarker associated with prognosis of lung adenocarcinoma. Lung Cancer 2016; 102:74-81. [PMID: 27987592 DOI: 10.1016/j.lungcan.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/26/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES With the aim of searching for novel oncofetal tumor biomarkers of lung adenocarcinoma other than carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP), we developed a strategy involving monoclonal antibodies generated from embryonic tissue of miniature swine. MATERIALS AND METHODS Using immunohistochemistry, we selected suitable hybridoma clones that were reactive against swine fetal lung but not adult lung using tissue microarray loading of human normal lung, lung cancer, and fetal and adult swine tissues. RESULTS The selected clones included several that were uniquely reactive against both swine fetal lung and human lung adenocarcinoma, and protein microarray revealed that the antigen they recognized was "drebrin" (DBN1). We then examined the association between the pattern of drebrin expression and the clinicopathological characteristics of lung adenocarcinoma using surgically resected samples of human lung adenocarcinoma. Two hundred formalin-fixed and paraffin-embedded tumor samples were immunostained for drebrin using clone B246, one of the clones that were reactive against drebrin. The cases were divided into those with strong (n=85) and weak (n=115) drebrin expression. In terms of disease-free survival, cases showing strong drebrin expression had a significantly poorer prognosis than those with weak drebrin expression (p=0.033). CONCLUSION The present findings indicate that "drebrin" is a unique oncofetal protein that can be applied as a new biomarker of lung adenocarcinoma.
Collapse
Affiliation(s)
- Shinji Iyama
- Doctoral Program in Biomedical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Ono
- Department of Pathology, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Hitomi Kawai-Nakahara
- Doctoral Program in Biomedical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryan Edbert Husni
- Doctoral Program in Biomedical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoko Dai
- Doctoral Program in Biomedical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akiko Sakata
- Department of Pathology, Hitachi General Hospital, Ibaraki, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
22
|
The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease. Brain Res Bull 2016; 126:293-299. [PMID: 27365229 DOI: 10.1016/j.brainresbull.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
The drebrin/EB3/Cdk5 intracellular signalling pathway couples actin filaments to dynamic microtubules in cellular settings where cells are changing shape. The pathway has been most intensively studied in neuronal development, particularly neuritogenesis and neuronal migration, and in synaptic plasticity at dendritic spines in mature neurons. Drebrin is an actin filament side-binding and bundling protein that stabilises actin filaments. The end-binding (EB) proteins are microtubule plus-end tracking proteins (+TIPs) that localise to the growing plus-ends of dynamic microtubules and regulate their behavior and the binding of other +TIP proteins. EB3 binds specifically to drebrin when drebrin is bound to actin filaments, for example at the base of a growth cone filopodium, and EB3 is located at the plus-end of a growing microtubule inserting into the filopodium. This interaction therefore forms the basis for coupling dynamic microtubules to actin filaments in growth cones of developing neurons. Appropriate responses to growth cone guidance cues depend on actin filament/microtubule co-ordination in the growth cone, although the role of the drebrin/EB3/Cdk5 pathway in this context has not been directly tested. A similar cytoskeleton coupling pathway operates in dendritic spines in mature neurons where the activity-dependent insertion of dynamic microtubules into dendritic spines is facilitated by drebrin binding to EB3. Microtubule insertion into dendritic spines drives spine maturation during long-term potentiation and therefore has a role in synaptic plasticity and memory formation. In Alzheimer's disease and related chronic neurodegenerative diseases, there is an early and dramatic loss of drebrin from dendritic spines that precedes synapse loss and neurodegeneration and might contribute to a failure of synaptic plasticity and hence to cognitive decline.
Collapse
|
23
|
Ketschek A, Spillane M, Dun XP, Hardy H, Chilton J, Gallo G. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Dev Neurobiol 2016; 76:1092-110. [PMID: 26731339 DOI: 10.1002/dneu.22377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/10/2022]
Abstract
Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA-mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch-inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092-1110, 2016.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, United Kingdom
| | - Holly Hardy
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - John Chilton
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
24
|
Shimizu H, Ishizuka Y, Yamazaki H, Shirao T. Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling. Neuroscience 2015; 305:139-45. [DOI: 10.1016/j.neuroscience.2015.07.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/15/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
|
25
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Chimura T, Launey T, Yoshida N. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo. PLoS One 2015; 10:e0125119. [PMID: 25905636 PMCID: PMC4408054 DOI: 10.1371/journal.pone.0125119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
The level of drebrin, an evolutionarily conserved f-actin-binding protein that regulates synaptic structure and function, is reduced in the brains of patients with chronic neurodegenerative diseases such as Alzheimer’s disease (AD) and Down’s syndrome (DS). It was suggested that excitotoxic neuronal death caused by overactivation of NMDA-type glutamate receptors (NMDARs) occurs in AD and DS; however, the relationship between excitotoxicity and drebrin loss is unknown. Here, we show that drebrin is a novel target of calpain-mediated proteolysis under excitotoxic conditions induced by the overactivation of NMDARs. In cultured rodent neurons, degradation of drebrin was confirmed by the detection of proteolytic fragments, as well as a reduction in the amount of full-length drebrin. Notably, the NMDA-induced degradation of drebrin in mature neurons occurred concomitantly with a loss of f-actin. Furthermore, pharmacological inhibition of f-actin loss facilitated the drebrin degradation, suggesting a functional linkage between f-actin and drebrin degradation. Biochemical analyses using purified drebrin and calpain revealed that calpain degraded drebrin directly in vitro. Furthermore, cerebral ischemia also induced the degradation of drebrin in vivo. These findings suggest that calpain-mediated degradation of drebrin is a fundamental pathology of neurodegenerative diseases mediated by excitotoxicity, regardless of whether they are acute or chronic. Drebrin regulates the synaptic clustering of NMDARs; therefore, degradation of drebrin under excitotoxic conditions may modulate NMDAR-mediated signal transductions, including pro-survival signaling. Overall, the results presented here provide novel insights into the molecular basis of cellular responses to excitotoxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Takahiko Chimura
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Thomas Launey
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Histone deacetylase mediates the decrease in drebrin cluster density induced by amyloid beta oligomers. Neurochem Int 2014; 76:114-21. [DOI: 10.1016/j.neuint.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/05/2023]
|
28
|
Verpelli C, Schmeisser MJ, Sala C. Spikar speaks to spines and nuclei. J Neurochem 2013; 128:473-5. [PMID: 24224762 DOI: 10.1111/jnc.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Chiara Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | |
Collapse
|