1
|
Wang Q, Liu G, Duan Y, Duo D, Zhu J, Li X. Exploring cytochrome P450 under hypoxia: potential pharmacological significance in drug metabolism and protection against high-altitude diseases. Drug Metab Dispos 2025; 53:100026. [PMID: 40023572 DOI: 10.1016/j.dmd.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 03/04/2025] Open
Abstract
High-altitude hypoxia affects the human respiratory, central nervous, cardiovascular, and endocrine systems. These outcomes affect the expression of cytochrome P450 (CYP), the most important family of metabolic enzymes in the body that is involved in the metabolism of both exogenous and endogenous substances (such as arachidonic acid, vitamins, and steroids). Hypoxia influences CYP expression and activity, mediating changes in drug and endogenous substance metabolism, with endogenous metabolites playing a significant role in controlling high-altitude diseases. However, the mechanisms regulating CYP changes under hypoxic conditions and the effects of CYP changes on drug and endogenous metabolism remain unclear. We explored how changes in CYP expression and activity during hypoxia affect the metabolism of drugs and endogenous substances, such as arachidonic acid, vitamins, and steroid hormones, and how CYPs are controlled by nuclear receptors, epigenetic modifications, cytokines, and gut microbiota during hypoxia. Special attention will also be given to the complex role of CYP and its metabolites in the pathophysiology of high-altitude diseases to provide valuable insights for plateau medicine research. SIGNIFICANCE STATEMENT: Cytochrome P450 is a class of monooxygenases that metabolize xenobiotics and endogenous substances. Hypoxia affects the expression and activity of cytochrome P450, and this in turn affects the metabolism of drugs and endogenous substances, leading to altered clinical efficacy and the development of hypoxia-associated diseases. A comprehensive understanding of the changes and regulatory mechanisms of cytochrome P450 under hypoxic conditions can improve therapeutic protocols in hypoxic environments and provide new ideas for the targeted treatment of hypoxic diseases.
Collapse
Affiliation(s)
- Qian Wang
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Junbo Zhu
- Medical College of Qinghai University, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| |
Collapse
|
2
|
Linnerbauer M, Lößlein L, Vandrey O, Peter A, Han Y, Tsaktanis T, Wogram E, Needhamsen M, Kular L, Nagel L, Zissler J, Andert M, Meszaros L, Hanspach J, Zuber F, Naumann UJ, Diebold M, Wheeler MA, Beyer T, Nirschl L, Cirac A, Laun FB, Günther C, Winkler J, Bäuerle T, Jagodic M, Hemmer B, Prinz M, Quintana FJ, Rothhammer V. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology. Nat Immunol 2024; 25:432-447. [PMID: 38409259 PMCID: PMC10907300 DOI: 10.1038/s41590-024-01756-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Emile Wogram
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lisa Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Julia Zissler
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Marie Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lisa Meszaros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Finnja Zuber
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
3
|
Hart DA. Are secondary effects of bisphosphonates on the vascular system of bone contributing to increased risk for atypical femoral fractures in osteoporosis? Bioessays 2023; 45:e2200206. [PMID: 36807308 DOI: 10.1002/bies.202200206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis (OP) is a bone disease which affects a number of post-menopausal females and puts many at risk for fractures. A large number of patients are taking bisphosphonates (BPs) to treat their OP and a rare complication is the development of atypical femoral fractures (AFF). No real explanations for the mechanisms underlying the basis for development of where AFF develop while on BPs has emerged. The present hypothesis will discuss the possibility that part of the risk for an AFF is a secondary effect of BPs on a subset of vascular cells in a genetically at-risk population, leading to localized deregulation of the endothelial cell (EC)-bone cell-matrix units in nutrient channels/canals of the femur and increased risk for AFF. This concept of targeting ECs is consistent with location of AFF in the femur, the bilateral risk for occurrence of AFF, and the requirement for long term exposure to the drugs.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Liu G, Bai X, Yang J, Duan Y, Zhu J, Xiangyang L. Relationship between blood-brain barrier changes and drug metabolism under high-altitude hypoxia: obstacle or opportunity for drug transport? Drug Metab Rev 2023; 55:107-125. [PMID: 36823775 DOI: 10.1080/03602532.2023.2180028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The blood-brain barrier is essential for maintaining the stability of the central nervous system and is also crucial for regulating drug metabolism, changes of blood-brain barrier's structure and function can influence how drugs are delivered to the brain. In high-altitude hypoxia, the central nervous system's function is drastically altered, which can cause disease and modify the metabolism of drugs in vivo. Changes in the structure and function of the blood-brain barrier and the transport of the drug across the blood-brain barrier under high-altitude hypoxia, are regulated by changes in brain microvascular endothelial cells, astrocytes, and pericytes, either regulated by drug metabolism factors such as drug transporters and drug-metabolizing enzymes. This article aims to review the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier as well as the effects of changes in the blood-brain barrier on drug metabolism. We also hypothesized and explore the regulation and potential mechanisms of the blood-brain barrier and associated pathways, such as transcription factors, inflammatory factors, and nuclear receptors, in regulating drug transport under high-altitude hypoxia.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Li Xiangyang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
5
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
6
|
Salminen A. Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell Signal 2022; 99:110445. [PMID: 35988806 DOI: 10.1016/j.cellsig.2022.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The ambient oxygen level, many environmental toxins, and the rays of ultraviolet light (UV) provide a significant risk for the maintenance of organismal homeostasis. The aryl hydrocarbon receptors (AhR) represent a complex sensor system not only for environmental toxins and UV radiation but also for many endogenous ligands, e.g., L-tryptophan metabolites. The AhR signaling system is evolutionarily conserved and AhR homologs existed as many as 600 million years ago. The ancient atmosphere demanded the evolution of an oxygen-sensing system, i.e., hypoxia-inducible transcription factors (HIF) and their prolyl hydroxylase regulators (PHD). Given that both signaling systems have important roles in embryogenesis, it seems that they have been involved in the evolution of multicellular organisms. The evolutionary origin of the aging process is unknown although it is most likely associated with the evolution of multicellularity. Intriguingly, there is compelling evidence that while HIF-1α signaling extends the lifespan, that of AhR promotes many age-related degenerative processes, e.g., it increases oxidative stress, inhibits autophagy, promotes cellular senescence, and aggravates extracellular matrix degeneration. In contrast, HIF-1α signaling stimulates autophagy, inhibits cellular senescence, and enhances cell proliferation. Interestingly, there is a clear antagonism between the AhR and HIF-1α signaling pathways. For instance, (i) AhR and HIF-1α factors heterodimerize with the same factor, ARNT/HIF-1β, leading to their competition for DNA-binding, (ii) AhR and HIF-1α signaling exert antagonistic effects on autophagy, and (iii) co-chaperone p23 exhibits specific functions in the signaling of AhR and HIF-1α factors. One might speculate that it is the competition between the AhR and HIF-1α signaling pathways that is a driving force in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
7
|
Lee LYH, Oldham WM, He H, Wang R, Mulhern R, Handy DE, Loscalzo J. Interferon-γ Impairs Human Coronary Artery Endothelial Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid Oxidation. Circulation 2021; 144:1612-1628. [PMID: 34636650 DOI: 10.1161/circulationaha.121.053960] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial cells depend on glycolysis for much of their energy production. Impaired endothelial glycolysis has been associated with various vascular pathobiologies, including impaired angiogenesis and atherogenesis. IFN-γ (interferon-γ)-producing CD4+ and CD8+ T lymphocytes have been identified as the predominant pathological cell subsets in human atherosclerotic plaques. Although the immunologic consequences of these cells have been extensively evaluated, their IFN-γ-mediated metabolic effects on endothelial cells remain unknown. The purpose of this study was to determine the metabolic consequences of the T-lymphocyte cytokine, IFN-γ, on human coronary artery endothelial cells. METHODS The metabolic effects of IFN-γ on primary human coronary artery endothelial cells were assessed by unbiased transcriptomic and metabolomic analyses combined with real-time extracellular flux analyses and molecular mechanistic studies. Cellular phenotypic correlations were made by measuring altered endothelial intracellular cGMP content, wound-healing capacity, and adhesion molecule expression. RESULTS IFN-γ exposure inhibited basal glycolysis of quiescent primary human coronary artery endothelial cells by 20% through the global transcriptional suppression of glycolytic enzymes resulting from decreased basal HIF1α (hypoxia-inducible factor 1α) nuclear availability in normoxia. The decrease in HIF1α activity was a consequence of IFN-γ-induced tryptophan catabolism resulting in ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF1β sequestration by the kynurenine-activated AHR (aryl hydrocarbon receptor). In addition, IFN-γ resulted in a 23% depletion of intracellular nicotinamide adenine dinucleotide in human coronary artery endothelial cells. This altered glucose metabolism was met with concomitant activation of fatty acid oxidation, which augmented its contribution to intracellular ATP balance by >20%. These metabolic derangements were associated with adverse endothelial phenotypic changes, including decreased basal intracellular cGMP, impaired endothelial migration, and a switch to a proinflammatory state. CONCLUSIONS IFN-γ impairs endothelial glucose metabolism by altered tryptophan catabolism destabilizing HIF1, depletes nicotinamide adenine dinucleotide, and results in a metabolic shift toward increased fatty acid oxidation. This work suggests a novel mechanistic basis for pathological T lymphocyte-endothelial interactions in atherosclerosis mediated by IFN-γ, linking endothelial glucose, tryptophan, and fatty acid metabolism with the nicotinamide adenine dinucleotide balance and ATP generation and their adverse endothelial functional consequences.
Collapse
Affiliation(s)
- Laurel Yong-Hwa Lee
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - William M Oldham
- Division of Pulmonary and Critical Care (W.M.O.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Huamei He
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ruisheng Wang
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ryan Mulhern
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Diane E Handy
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Dayton JR, Yuan Y, Pacumio LP, Dorflinger BG, Yoo SC, Olson MJ, Hernández-Suárez SI, McMahon MM, Cruz-Orengo L. Expression of IL-20 Receptor Subunit β Is Linked to EAE Neuropathology and CNS Neuroinflammation. Front Cell Neurosci 2021; 15:683687. [PMID: 34557075 PMCID: PMC8452993 DOI: 10.3389/fncel.2021.683687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit β (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1β showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.
Collapse
Affiliation(s)
- Jacquelyn R Dayton
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Yinyu Yuan
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Lisa P Pacumio
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Bryce G Dorflinger
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Samantha C Yoo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Mariah J Olson
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Sara I Hernández-Suárez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Bayer School of Natural and Environmental Sciences, Duquesne University of the Holy Spirit, Pittsburgh, PA, United States
| | - Moira M McMahon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
10
|
Gorczyca L, Du J, Bircsak KM, Wen X, Vetrano AM, Aleksunes LM. Low oxygen tension differentially regulates the expression of placental solute carriers and ABC transporters. FEBS Lett 2020; 595:811-827. [PMID: 32978975 DOI: 10.1002/1873-3468.13937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023]
Abstract
Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1. Similar upregulation of MRP1 and downregulation of MRP5 and BCRP were observed in explants, whereas uptake transporters were decreased or unchanged. Furthermore, a screening of transcriptional regulators of transporters revealed that hypoxia leads to a decrease in the mRNA levels of aryl hydrocarbon receptor, nuclear factor erythroid 2-related factor 2, and retinoid x receptor alpha in both human placental models. These data suggest that transporter expression is differentially regulated by oxygen concentration across experimental human placental models.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Jianyao Du
- China Pharmaceutical University, Nanjing, China
| | - Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anna M Vetrano
- Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
11
|
Sharma P, Tulsawani R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci Rep 2020; 10:8944. [PMID: 32488040 PMCID: PMC7265456 DOI: 10.1038/s41598-020-65812-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 05/11/2020] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress due to hypobaric hypoxia at extreme altitudes causes severe neuronal damage and irreversible cognitive loss. Owing to contraindications of current drug therapies, the aim of the study was to investigate memory enhancing potential of aqueous extract of Ganoderma lucidum (GLAQ) and underlying neuroprotective mechanism using rat hypobaric hypoxia test model. Rats exposed to hypobaric hypoxia showed deranged spatial memory in morris water maze test with hippocampal damage and vasogenic cerebral edema. All these changes were prevented with GLAQ treatment. Blood and biochemical analysis revealed activation of hypoxic ventilatory response, red blood cells induction, reversal of electrolyte and redox imbalance, and restoration of cellular bioenergetic losses in GLAQ treated animals. Notably, GLAQ treatment ameliorated levels of neurotransmitters (catecholamines, serotonin, glutamate), prevented glucocorticoid and α-synuclein surge, improved neuroplasticity by upregulating CREB/p-CREB/BDNF expression via ERK1/ERK2 induction. Further, restoration of nuclear factor erythroid 2-related factor with stabilization of hypoxia inducible factors and inflammatory markers were evidenced in GLAQ treated rats which was additionally established in gene reporter array using an alternative HT22 cell test model. Conclusively, our studies provide novel insights into systemic to molecular level protective mechanism by GLAQ in combating hypobaric hypoxia induced oxidative stress and memory impairment.
Collapse
Affiliation(s)
- Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
12
|
Fine JM, Kosyakovsky J, Baillargeon AM, Tokarev JV, Cooner JM, Svitak AL, Faltesek KA, Frey WH, Hanson LR. Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav 2020; 10:e01536. [PMID: 31960628 PMCID: PMC7066355 DOI: 10.1002/brb3.1536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Intranasal deferoxamine (IN DFO) has been shown to decrease memory loss and have beneficial impacts across several models of neurologic disease and injury, including rodent models of Alzheimer's and Parkinson's disease. METHODS In order to assess the mechanism of DFO, determine its ability to improve memory from baseline in the absence of a diseased state, and assess targeting ability of intranasal delivery, we treated healthy mice with IN DFO (2.4 mg) or intraperitoneal (IP) DFO and compared behavioral and biochemical changes with saline-treated controls. Mice were treated 5 days/week for 4 weeks and subjected to behavioral tests 30 min after dosing. RESULTS We found that IN DFO, but not IP DFO, significantly enhanced working memory in the radial arm water maze, suggesting that IN administration is more efficacious as a targeted delivery route to the brain. Moreover, the ability of DFO to improve memory from baseline in healthy mice suggests a non-disease-specific mechanism of memory improvement. IN DFO treatment was accompanied by decreased GSK-3β activity and increased HIF-1α activity. CONCLUSIONS These pathways are suspected in DFO's ability to improve memory and perhaps represent a component of the common mechanism through which DFO enacts beneficial change in models of neurologic disease and injury.
Collapse
Affiliation(s)
- Jared M Fine
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob Kosyakovsky
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - Julian V Tokarev
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Jacob M Cooner
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Aleta L Svitak
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | | | - William H Frey
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| | - Leah R Hanson
- Neuroscience Research at HealthPartners Institute, Saint Paul, MN, USA
| |
Collapse
|
13
|
Zhang Y, Ding X, Miao C, Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol 2019; 19:127. [PMID: 31288745 PMCID: PMC6617648 DOI: 10.1186/s12871-019-0788-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background The levels of tight junction proteins (TJs), especially occludin, correlate with blood-brain barrier (BBB) disruption caused by inflammation in central nervous system (CNS). It has been reported that propofol, the most commonly used anesthetic, could inhibit inflammation response in CNS. In this study, we investigated the effects of tumor necrosis factor-α (TNF-α) and propofol on occludin expression in human cerebral microvascular endothelial cell line, D3 clone (hCMEC/D3 cells), and explored the underlying mechanisms. Methods The hCMEC/D3 cells were treated with propofol, followed by TNF-α. The expression and phosphorylation of Hif-1α, VEGF, VEGFR-2, ERK, p38MAPK and occludin were measured by Western blot analysis. The cell viability of hCMEC/D3 cells was measured by cell counting kit-8. Results TNF-α (10 ng/ml, 4 h) significantly decreased the expression of occludin, which was attenuated by propofol (25 μM). TNF-α induced Hif-1α/VEGF/VEGFR-2/ERK signaling pathway, while propofol could inhibit it. TNF-α induced the phosphorylation of p38MAPK, while propofol had no effect on it. In addition, the inhibitors of Hif-1α, VEGFR-2, and ERK could reduce the effect of TNF-α on occludin expression. Conclusion TNF-α could decrease the expression of occludin via activating Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway, which was attenuated by propofol. Electronic supplementary material The online version of this article (10.1186/s12871-019-0788-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaowei Ding
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Ding Y, Wang R, Zhang J, Zhao A, Lu H, Li W, Wang C, Yuan X. Potential Regulation Mechanisms of P-gp in the Blood-Brain Barrier in Hypoxia. Curr Pharm Des 2019; 25:1041-1051. [PMID: 31187705 DOI: 10.2174/1381612825666190610140153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The blood-brain barrier (BBB) is a barrier of the central nervous system (CNS), which can restrict the free exchange of substances, such as toxins and drugs, between cerebral interstitial fluid and blood, keeping the relative physiological stabilization. The brain capillary endothelial cells, one of the structures of the BBB, have a variety of ATP-binding cassette transporters (ABC transporters), among which the most widely investigated is Pglycoprotein (P-gp) that can efflux numerous substances out of the brain. The expression and activity of P-gp are regulated by various signal pathways, including tumor necrosis factor-α (TNF-α)/protein kinase C-β (PKC- β)/sphingosine-1-phosphate receptor 1 (S1P), vascular endothelial growth factor (VEGF)/Src kinase, etc. However, it remains unclear how hypoxic signaling pathways regulate the expression and activity of P-gp in brain microvascular endothelial cells. According to previous research, hypoxia affects the expression and activity of the transporter. If the transporter is up-regulated, some drugs enter the brain's endothelial cells and are pumped back into the blood by transporters such as P-gp before they enter the brain tissue, consequently influencing the drug delivery in CNS; if the transporter is down-regulated, the centrally toxic drug would enter the brain tissue and cause serious adverse reactions. Therefore, studying the mechanism of hypoxia-regulating P-gp can provide an important reference for the treatment of CNS diseases with a hypoxia/reoxygenation (H/R) component. This article summarized the mechanism of regulation of P-gp in BBB in normoxia and explored that of hypoxia.
Collapse
Affiliation(s)
- Yidan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Jianchun Zhang
- Pharmacy Department, First Hospital of the Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Chang Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xuechun Yuan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Bastos MF, Kayano ACAV, Silva-Filho JL, Dos-Santos JCK, Judice C, Blanco YC, Shryock N, Sercundes MK, Ortolan LS, Francelin C, Leite JA, Oliveira R, Elias RM, Câmara NOS, Lopes SCP, Albrecht L, Farias AS, Vicente CP, Werneck CC, Giorgio S, Verinaud L, Epiphanio S, Marinho CRF, Lalwani P, Amino R, Aliberti J, Costa FTM. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria. FASEB J 2018; 32:4470-4481. [PMID: 29558201 DOI: 10.1096/fj.201700844r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.
Collapse
Affiliation(s)
- Marcele F Bastos
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Ana Carolina A V Kayano
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - João Luiz Silva-Filho
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - João Conrado K Dos-Santos
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Carla Judice
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Yara C Blanco
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Nathaniel Shryock
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michelle K Sercundes
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luana S Ortolan
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Carolina Francelin
- Department of Functional and Structural Biology, University of Campinas, Campinas, Brazil
| | - Juliana A Leite
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Rafaella Oliveira
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Rosa M Elias
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Stefanie C P Lopes
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil.,Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Letusa Albrecht
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Alessandro S Farias
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| | - Cristina P Vicente
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Selma Giorgio
- Department of Animal Biology, University of Campinas, Campinas, Brazil
| | - Liana Verinaud
- Department of Functional and Structural Biology, University of Campinas, Campinas, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | | | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
| | - Julio Aliberti
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabio T M Costa
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, University of Campinas, Campinas, Brazil
| |
Collapse
|
16
|
Alhouayek M, Gouveia-Figueira S, Hammarström ML, Fowler CJ. Involvement of CYP1B1 in interferon γ-induced alterations of epithelial barrier integrity. Br J Pharmacol 2018; 175:877-890. [PMID: 29232759 DOI: 10.1111/bph.14122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE CYP1B1 and CYP1A1 are important extra-hepatic cytochromes, expressed in the colon and involved in the metabolism of dietary constituents and exogenous compounds. CYP1B1 expression is increased by pro-inflammatory cytokines, and it has been recently implicated in regulation of blood brain barrier function. We investigated its involvement in the increased permeability of the intestinal epithelial barrier observed in inflammatory conditions. EXPERIMENTAL APPROACH Epithelial monolayers formed by human T84 colon carcinoma cells cultured on transwells, were disrupted by incubation with IFNγ (10 ng·mL-1 ). Monolayer integrity was measured using transepithelial electrical resistance. CYP1A1 and CYP1B1 inhibitors or inducers were applied apically. Potential mechanisms of action were investigated using RT-qPCR. KEY RESULTS IFNγ disrupts the barrier integrity of the T84 monolayers and increases CYP1B1 and HIF1α mRNA expression. CYP1B1 induction is inhibited by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate (100 μM) but not by the HIF1α inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (50 μM). Inhibition of CYP1B1 with the selective inhibitor 2,4,3',5'-tetramethoxystilbene (100 nM) partly reverses the effects of IFNγ on epithelial permeability. CONCLUSIONS AND IMPLICATIONS These data suggest that increased expression of CYP1B1 is involved in the effects of IFNγ on epithelial permeability. Inhibition of CYP1B1 counteracts the alterations of epithelial barrier integrity induced by IFNγ and could thus have a therapeutic potential in disorders of intestinal permeability associated with inflammation.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden.,Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - Sandra Gouveia-Figueira
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Aryl hydrocarbon receptor upregulates IL-1β expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Toxicol In Vitro 2017; 41:200-204. [DOI: 10.1016/j.tiv.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022]
|
18
|
Farina F, Lonati E, Brambilla A, Dal Magro R, Milani C, Botto L, Sancini G, Palestini P, Bulbarelli A. Diesel exhaust particles (DEP) pre-exposure contributes to the anti-oxidant response impairment in hCMEC/D3 during post-oxygen and glucose deprivation damage. Toxicol Lett 2017; 274:1-7. [PMID: 28400208 DOI: 10.1016/j.toxlet.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Recently, air pollution has been identified as a significant modifiable risk factor to the increasing stroke burden. Diesel exhaust particles, characterized by high polycyclic aromatic hydrocarbons content, constitute an important component of outdoor air pollution and is known to cause oxidative stress, and could therefore contribute to and exacerbate the effects of ROS in post-ischemic injury. hCMEC/D3 cells have been submitted to 48h treatment with diesel exhaust particles (25μg/ml and 50μg/ml, DEP50) or alternatively to 3h of oxygen and glucose deprivation, followed by 1h of oxygen and glucose restoration. The combined treatment consisted in 48h of diesel exhaust particles (25μg/ml and 50μg/ml, DEP50) followed by 3h of oxygen and glucose deprivation and 1h of restoration. A panel of markers related to oxidative stress and inflammatory responses, such as transcription factors (Nrf2 and HIF-1α), anti-oxidant proteins (HO-1, SOD-1, Hsp70) and proteins potentially inducing further oxidative-stress or inflammation (Cyp1b1, iNOS, COX-2, TNF-α, IL-1α, IL-1β, IL-8, VEGF), have been examined. Data obtained showed that diesel exhaust particles and oxygen and glucose deprivation treatments alone elicited the antioxidants response, each by means of a different transcription factor, while the combined treatment led to a dysregulation of the antioxidant response during ischemic injury reperfusion.
Collapse
Affiliation(s)
- Francesca Farina
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Elena Lonati
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Anna Brambilla
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy
| | - Roberta Dal Magro
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Giulio Sancini
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Paola Palestini
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, Polaris Centre, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Center of Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
19
|
Tornabene E, Brodin B. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier. J Pharm Sci 2016; 105:398-405. [PMID: 26869407 DOI: 10.1016/j.xphs.2015.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain barrier are useful tools to investigate the effects of induced ischemia under controlled conditions. In the present mini review, we aim to give a brief overview of the in vitro models of ischemia. Special focus is given to the expression of uptake and efflux transport pathways in the ischemic and postischemic endothelium. Finally, we will point toward future challenges within the field of in vitro models of brain ischemia.
Collapse
Affiliation(s)
- Erica Tornabene
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
20
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
21
|
Jacob A, Potin S, Chapy H, Crete D, Glacial F, Ganeshamoorthy K, Couraud PO, Scherrmann JM, Declèves X. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Brain Res 2015; 1613:27-36. [DOI: 10.1016/j.brainres.2015.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/28/2023]
|