1
|
Probing the Role of Cysteine Thiyl Radicals in Biology: Eminently Dangerous, Difficult to Scavenge. Antioxidants (Basel) 2022; 11:antiox11050885. [PMID: 35624747 PMCID: PMC9137623 DOI: 10.3390/antiox11050885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Thiyl radicals are exceptionally interesting reactive sulfur species (RSS), but rather rarely considered in a biological or medical context. We here review the reactivity of protein thiyl radicals in aqueous and lipid phases and provide an overview of their most relevant reaction partners in biological systems. We deduce that polyunsaturated fatty acids (PUFAs) are their preferred reaction substrates in lipid phases, whereas protein side chains arguably prevail in aqueous phases. In both cellular compartments, a single, dominating thiyl radical-specific antioxidant does not seem to exist. This conclusion is rationalized by the high reaction rate constants of thiyl radicals with several highly concentrated substrates in the cell, precluding effective interception by antioxidants, especially in lipid bilayers. The intractable reactivity of thiyl radicals may account for a series of long-standing, but still startling biochemical observations surrounding the amino acid cysteine: (i) its global underrepresentation on protein surfaces, (ii) its selective avoidance in aerobic lipid bilayers, especially the inner mitochondrial membrane, (iii) the inverse correlation between cysteine usage and longevity in animals, (iv) the mitochondrial synthesis and translational incorporation of cysteine persulfide, and potentially (v) the ex post introduction of selenocysteine into the genetic code.
Collapse
|
2
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Jiménez-Martin J, Fonseca-Fonseca LA, Hernández-Enseñat D, Nonose Y, Valdés O, Mondelo-Rodriguez A, Ortiz-Miranda Y, Bergado G, Carmenate T, Soto Del Valle RM, Pardo-Andreu G, Outeiro TF, Padrón-Yaquis AS, Martimbianco de Assis A, O Souza D, Nuñez-Figueredo Y. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021; 87:70-85. [PMID: 34481871 DOI: 10.1016/j.neuro.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanay Montano-Peguero
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Jeney Ramírez-Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Javier Jiménez-Martin
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand
| | - Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Daniela Hernández-Enseñat
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yasmine Nonose
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Abel Mondelo-Rodriguez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yaquelin Ortiz-Miranda
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Gretchen Bergado
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Tania Carmenate
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | | | - Gilberto Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317, e/ 23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Alejandro Saúl Padrón-Yaquis
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Adriano Martimbianco de Assis
- University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba.
| |
Collapse
|
3
|
Heymans V, Kunath S, Hajieva P, Moosmann B. Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs. Molecules 2021; 26:6743. [PMID: 34771157 PMCID: PMC8586999 DOI: 10.3390/molecules26216743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma), Hela cells (human cervical carcinoma), HEK293 cells (immortalized human kidney), MCF7 cells (human breast carcinoma), and C2C12 cells (mouse myoblast). In contrast, HepG2 cells (human hepatocellular carcinoma) were resistant to toxicity, presumably through their high detoxification capacity for thiol groups. Cytotoxicity was undiminished by hypoxic culture conditions, but substantially lowered after cellular differentiation. Compared to four disparate, clinically used reference compounds in vitro (doxorubicin, actinomycin D, 5-fluorouracil, and hydroxyurea), chain-transfer agents emerged as comparably potent on a molar basis and on a maximum-effect basis. Our results indicate that chain-transfer agents possess a promising baseline profile as cytostatic drugs and should be explored further for anti-tumor chemotherapy.
Collapse
Affiliation(s)
- Victoria Heymans
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (V.H.); (S.K.)
| | - Sascha Kunath
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (V.H.); (S.K.)
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (V.H.); (S.K.)
| |
Collapse
|
4
|
Choudhury R, Bayatti N, Scharff R, Szula E, Tilakaratna V, Udsen MS, McHarg S, Askari JA, Humphries MJ, Bishop PN, Clark SJ. FHL-1 interacts with human RPE cells through the α5β1 integrin and confers protection against oxidative stress. Sci Rep 2021; 11:14175. [PMID: 34239032 PMCID: PMC8266909 DOI: 10.1038/s41598-021-93708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells that underlie the neurosensory retina are essential for the maintenance of photoreceptor cells and hence vision. Interactions between the RPE and their basement membrane, i.e. the inner layer of Bruch's membrane, are essential for RPE cell health and function, but the signals induced by Bruch's membrane engagement, and their contributions to RPE cell fate determination remain poorly defined. Here, we studied the functional role of the soluble complement regulator and component of Bruch's membrane, Factor H-like protein 1 (FHL-1). Human primary RPE cells adhered to FHL-1 in a manner that was eliminated by either mutagenesis of the integrin-binding RGD motif in FHL-1 or by using competing antibodies directed against the α5 and β1 integrin subunits. These short-term experiments reveal an immediate protein-integrin interaction that were obtained from primary RPE cells and replicated using the hTERT-RPE1 cell line. Separate, longer term experiments utilising RNAseq analysis of hTERT-RPE1 cells bound to FHL-1, showed an increased expression of the heat-shock protein genes HSPA6, CRYAB, HSPA1A and HSPA1B when compared to cells bound to fibronectin (FN) or laminin (LA). Pathway analysis implicated changes in EIF2 signalling, the unfolded protein response, and mineralocorticoid receptor signalling as putative pathways. Subsequent cell survival assays using H2O2 to induce oxidative stress-induced cell death suggest hTERT-RPE1 cells had significantly greater protection when bound to FHL-1 or LA compared to plastic or FN. These data show a non-canonical role of FHL-1 in protecting RPE cells against oxidative stress and identifies a novel interaction that has implications for ocular diseases such as age-related macular degeneration.
Collapse
Affiliation(s)
- Rawshan Choudhury
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Nadhim Bayatti
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Richard Scharff
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Ewa Szula
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Viranga Tilakaratna
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Maja Søberg Udsen
- Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Selina McHarg
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
| | - Janet A Askari
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford, UK
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Oxford, UK.
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany.
- University Eye Clinic, Department for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem 2021; 401:213-231. [PMID: 31318686 DOI: 10.1515/hsz-2019-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Kunath S, Schindeldecker M, De Giacomo A, Meyer T, Sohre S, Hajieva P, von Schacky C, Urban J, Moosmann B. Prooxidative chain transfer activity by thiol groups in biological systems. Redox Biol 2020; 36:101628. [PMID: 32863215 PMCID: PMC7365990 DOI: 10.1016/j.redox.2020.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/09/2023] Open
Abstract
Cysteine is arguably the best-studied biological amino acid, whose thiol group frequently participates in catalysis or ligand binding by proteins. Still, cysteine's unusual biological distribution has remained mysterious, being strikingly underrepresented in transmembrane domains and on accessible protein surfaces, particularly in aerobic life forms (“cysteine anomaly”). Noting that lipophilic thiols have been used for decades as radical chain transfer agents in polymer chemistry, we speculated that the rapid formation of thiyl radicals in hydrophobic phases might provide a rationale for the cysteine anomaly. Hence, we have investigated the effects of dodecylthiol and related compounds in isolated biomembranes, cultivated human cells and whole animals (C. elegans). We have found that lipophilic thiols at micromolar concentrations were efficient accelerators, but not inducers of lipid peroxidation, catalyzed fatty acid isomerization to trans-fatty acids, and evoked a massive cellular stress response related to protein and DNA damage. These effects were specific for lipophilic thiols and were absent with thioethers, alcohols or hydrophilic compounds. Catalytic chain transfer activity by thiyl radicals appears to have deeply influenced the structural biology of life as reflected in the cysteine anomaly. Chain transfer agents represent a novel class of biological cytotoxins that selectively accelerate oxidative damage in vivo. Intramembrane thiol groups are prooxidants that promote lipid peroxidation in vivo. Intramembrane thiols also cause protein oxidation, DNA damage and cytotoxicity. Thiol groups in hydrophobic biological environments act as chain transfer catalysts. Thiol groups do not induce radical formation, but accelerate radical propagation. Thiyl radicals are the carriers of biological chain transfer catalysis.
Collapse
Affiliation(s)
- Sascha Kunath
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonio De Giacomo
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Theresa Meyer
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Selina Sohre
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Clemens von Schacky
- Preventive Cardiology, University of Munich, Germany, and Omegametrix GmbH, Martinsried, Germany
| | - Joachim Urban
- Institute for Developmental Biology and Neurobiology, University of Mainz, Germany
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Chai TT, Xiao J, Mohana Dass S, Teoh JY, Ee KY, Ng WJ, Wong FC. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem 2020; 340:127876. [PMID: 32871354 DOI: 10.1016/j.foodchem.2020.127876] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 02/05/2023]
Abstract
Jackfruit is a sweet tropical fruit with very pleasant aroma, and the ripe seeds are edible. In this study, jackfruit seed proteins were isolated and subjected to trypsin digestion. The resultant protein hydrolysate was then subjected to antioxidant assay-guided purification, using centrifugal filtration, C18 reverse-phase and strong cation exchange (SCX) fractionations. The purified SCX fraction was further analyzed by de novo peptide sequencing, and two peptide sequences were identified and synthesized. Peptide JFS-2 (VGPWQK) was detected with antioxidant potential, with EC50 value comparable to that of commercial GSH antioxidant peptide. Additionally, the identified peptides were tested with protein protection potential, in an albumin protein denaturation inhibitory assay. Concurrently, we also investigated the pH, temperature, and gastrointestinal-digestion stability profiles for the identified peptide. With further research efforts, the identified peptides could potentially be developed into preservative agent for protein-rich food systems or as health-promoting diet supplements.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia; Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | | | - Jia-Yun Teoh
- Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Kah-Yaw Ee
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia; Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Wen-Jie Ng
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia; Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Fai-Chu Wong
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia; Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| |
Collapse
|
8
|
Kunath S, Moosmann B. What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research. GeroScience 2019; 42:857-866. [PMID: 30809734 DOI: 10.1007/s11357-019-00058-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
Modern geroscience is divided as regards the validity of the free radical theory of aging. Thermodynamic arguments and observations from comparative zoology support it, whereas results from experimental manipulations in representative animal species sometimes strongly contradict it. From a comparison of the multi-step aging process with a linear metabolic pathway (glycolysis), we here argue that the identification of the rate-limiting kinetic steps of the aging cascade is essential to understand the overall flux through the cascade, i.e., the rate of aging. Examining free radical reactions as a case in point, these reactions usually occur as chain reactions with three kinetically independent steps: initiation, propagation, and termination, each of which can be rate-limiting. Revisiting the major arguments in favor and against a role of free radicals in aging, we find that the majority of arguments in favor point to radical propagation as relevant and rate-limiting, whereas almost all arguments in disfavor are based on experimental manipulations of radical initiation or radical termination which turned out to be ineffective. We conclude that the overall lack of efficacy of antioxidant supplementation (which fosters termination) and antioxidant enzyme overexpression (which inhibits initiation) in longevity studies is attributable to the fact that initiation and termination are not the rate-limiting steps of the aging cascade. The biological and evolutionary plausibility of this interpretation is discussed. In summary, radical propagation is predicted to be rate-limiting for aging and should be explored in more detail.
Collapse
Affiliation(s)
- Sascha Kunath
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
9
|
Hajieva P, Baeken MW, Moosmann B. The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett 2019; 663:29-38. [PMID: 29452613 DOI: 10.1016/j.neulet.2017.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023]
Abstract
Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is maintained by a fine-tuned interplay between calcium influx and releasing mechanisms (Ca2+-channels), and calcium efflux mechanisms (Ca2+-pumps and -exchangers). Central functional components of the calcium efflux machinery are the Plasma Membrane Calcium ATPases (PMCAs), which represent high-affinity calcium pumps responsible for the ATP-dependent removal of calcium out of the cytosol. Beyond a growing body of experimental evidence, it is their high expression level, their independence of secondary ions or membrane potential, their profound redox regulation and autoregulation, their postsynaptic localization in close proximity to the primary mediators of pathological calcium influx, i.e. NMDA receptors, as well as evolutionary considerations which all suggest a pivotal role of the PMCAs in the etiology of neurodegeneration and make them equally challenging and alluring candidates for drug development. This review aims to summarize the recent literature on the role of PMCAs in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Marius W Baeken
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Alzoubi KH, Al-Ibbini AM, Nuseir KQ. Prevention of memory impairment induced by post-traumatic stress disorder by cerebrolysin. Psychiatry Res 2018; 270:430-437. [PMID: 30316170 DOI: 10.1016/j.psychres.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) may occur after exposure to stressful, fearful or troubling events. Until now, there is no curable medication for this disorder. Cerebrolysin is a neuropeptide, which has an important role in the treatment of vascular dementia. In this study, the probable protective effect of cerebrolysin on PTSD-induced memory impairment was investigated. To induce PTSD, the single prolonged stress (SPS) model was used. Rats were allocated into four groups: control (vehicle-treated), CBL (administrated cerebrolysin 2.5 ml/kg by intraperitoneal route for 4 weeks), SPS (as a model of PTSD and administered vehicle), and CBL-SPS (exposed to SPS and administered cerebrolysin for 4 weeks). Learning and memory were assessed using the radial arm water maze (RAWM). Results showed that SPS impaired both short- and long- term memories; and chronic cerebrolysin administration prevented such effect. Cerebrolysin also prevented decreases in hippocampal GSH levels and GSH/GSSG ratios, and increased GSSG and TBARs, levels induced by PTSD. In conclusion, a protective effect of cerebrolysin administration against SPS model of PTSD induced short- and long- term memory impairment was characterized. This protection could be accomplished, at least partly, by prevention of PTSD induced increase in oxidative stress in the hippocampus via the use of cerebrolysin.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Alaa M Al-Ibbini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
11
|
Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, Farina M. Design, Synthesis, and In Vitro Evaluation of a Novel Probucol Derivative: Protective Activity in Neuronal Cells Through GPx Upregulation. Mol Neurobiol 2018; 55:7619-7634. [PMID: 29430618 DOI: 10.1007/s12035-018-0939-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/28/2018] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that probucol (PB), a hipocholesterolemic agent with antioxidant and anti-inflammatory properties, presents neuroprotective properties. On the other hand, adverse effects have limited PB's clinical application. Thus, the search for PB derivatives with no or less adverse effects has been a topic of research. In this study, we present a novel organoselenium PB derivative (RC513) and investigate its potential protective activity in an in vitro experimental model of oxidative toxicity induced by tert-butyl hydroperoxide (tBuOOH) in HT22 neuronal cells, as well as exploit potential protective mechanisms. tBuOOH exposure caused a significant decrease in the cell viability, which was preceded by (i) increased reactive species generation and (ii) decreased mitochondrial maximum oxygen consumption rate. RC513 pretreatment (48 h) significantly prevented the tBuOOH-induced decrease of cell viability, RS generation, and mitochondrial dysfunction. Of note, RC513 significantly increased glutathione peroxidase (GPx) activity and mRNA expression of GPx1, a key enzyme involved in peroxide detoxification. The use of mercaptosuccinic acid, an inhibitor of GPx, significantly decreased the protective activity of RC513 against tBuOOH-induced cytotoxicity in HT22 cells, highlighting the importance of GPx upregulation in the observed protection. In summary, the results showed a significant protective activity of a novel PB derivative against tBuOOH-induced oxidative stress and mitochondrial dysfunction, which was related to the upregulation of GPx. Our results point to RC513 as a promising neuroprotective molecule, even though studies concerning potential beneficial effects and safety aspects of RC513 under in vivo conditions are well warranted.
Collapse
Affiliation(s)
- Ruth Liliám Quispe
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| | - Rômulo Faria Santos Canto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Michael Lorenz Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil
| | - Flavio Augusto Rocha Barbosa
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Antônio Luiz Braga
- Departamento de Química, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, SC, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco C, CEP, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
12
|
Granold M, Hajieva P, Toşa MI, Irimie FD, Moosmann B. Modern diversification of the amino acid repertoire driven by oxygen. Proc Natl Acad Sci U S A 2018; 115:41-46. [PMID: 29259120 PMCID: PMC5776824 DOI: 10.1073/pnas.1717100115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7-13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO-LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialized redox cofactors in the late amino acids tryptophan and selenocysteine. We show that the arising prediction of a higher reactivity of the more recently added amino acids is correct as regards various free radicals, particularly oxygen-derived peroxyl radicals. Moreover, we demonstrate an immediate survival benefit conferred by the enhanced redox reactivity of the modern amino acids tyrosine and tryptophan in oxidatively stressed cells. Our data indicate that in demanding building blocks with more versatile redox chemistry, biospheric molecular oxygen triggered the selective fixation of the last amino acids in the genetic code. Thus, functional rather than structural amino acid properties were decisive during the finalization of the universal genetic code.
Collapse
Affiliation(s)
- Matthias Granold
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Monica Ioana Toşa
- Group of Biocatalysis and Biotransformations, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca 400028, Romania
| | - Florin-Dan Irimie
- Group of Biocatalysis and Biotransformations, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca 400028, Romania
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany;
| |
Collapse
|
13
|
Quercetin attenuates the injury-induced reduction of γ-enolase expression in a middle cerebral artery occlusion animal model. Lab Anim Res 2017; 33:308-314. [PMID: 29399028 PMCID: PMC5792532 DOI: 10.5625/lar.2017.33.4.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 12/17/2022] Open
Abstract
Quercetin, a natural flavonoid, copiously exists in vegetable, fruits and tea. Quercetin is beneficial to neurodegenerative disorders via its strong anti-oxidant and anti-inflammatory activities. γ-Enolase is one of the enzymes of glycolytic pathway and is predominantly expressed in neuronal cells. The aim of the present study is to verify whether quercetin modulates the expression of γ-enolase in brain ischemic injury. Adult Sprague-Dawley male rats were subjected to middle cerebral artery occlusion (MCAO) and quercetin (50 mg/kg) or vehicle was administered by intraperitoneal injection at 1 h before MCAO onset. A proteomics study, Western blot analysis, reversetranscription-PCR, and immunofluorescence staining were conducted to investigate the change of γ-enolase expression level. We identified a decline in γ-enolase expression in MCAO-operated animal model using a proteomic approach. However, quercetin treatment significantly attenuated this decline. These results were confirmed using Western blot analysis, reverse transcription-PCR, and immunofluorescence staining techniques. γ-Enolase is accepted as a neuron specific energy synthesis enzyme, and quercetin modulates γ-enolase in a MCAO animal model. Thus, our findings can suggest the possibility that quercetin regulates γ-enolase expression in response to cerebral ischemia, which likely contributes to the neuroprotective effect of quercetin.
Collapse
|
14
|
The Effect of Polyphenols on Protein Degradation Pathways: Implications for Neuroprotection. Molecules 2017; 22:molecules22010159. [PMID: 28106854 PMCID: PMC6155800 DOI: 10.3390/molecules22010159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Human neurodegenerative diseases are accompanied by accumulation of heavily oxidized and aggregated proteins. However, the exact molecular reason is not fully elucidated yet. Insufficient cellular protein quality control is thought to play an important role in accumulating covalently oxidized misfolded proteins. Pharmacologically active polyphenols and their derivatives exhibit potential for preventive and therapeutic purposes against protein aggregation during neurodegeneration. Although these compounds act on various biochemical pathways, their role in stabilizing the protein degradation machinery at different stages may be an attractive therapeutical strategy to halt the accumulation of misfolded proteins. This review evaluates and discusses the existing scientific literature on the effect of polyphenols on three major protein degradation pathways: chaperone-mediated autophagy, the proteasome and macroautophagy. The results of these studies demonstrate that phenolic compounds are able to influence the major protein degradation pathways at different levels.
Collapse
|
15
|
Ohlow MJ, Sohre S, Granold M, Schreckenberger M, Moosmann B. Why Have Clinical Trials of Antioxidants to Prevent Neurodegeneration Failed? - A Cellular Investigation of Novel Phenothiazine-Type Antioxidants Reveals Competing Objectives for Pharmaceutical Neuroprotection. Pharm Res 2016; 34:378-393. [DOI: 10.1007/s11095-016-2068-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
|
16
|
Affiliation(s)
- Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? Cell Mol Life Sci 2015; 72:4795-805. [PMID: 26403788 PMCID: PMC5005413 DOI: 10.1007/s00018-015-2038-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and infections are associated with neurodegenerative diseases. Unfortunately, the molecular bases of this link are still largely undiscovered. We, therefore, review how inflammatory processes can imbalance membrane homeostasis and theorize how this may have an effect on the aggregation behavior of the proteins implicated in such diseases. Specifically, we describe the processes that generate such imbalances at the molecular level, and try to understand how they affect protein folding and localization. Overall, current knowledge suggests that microglia pro-inflammatory mediators can generate membrane damage, which may have an impact in terms of triggering or accelerating disease manifestation.
Collapse
|
19
|
Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R. Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2015; 2:711-21. [PMID: 26273684 PMCID: PMC4531054 DOI: 10.1002/acn3.207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ofira Einstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| |
Collapse
|
20
|
Protein-borne methionine residues as structural antioxidants in mitochondria. Amino Acids 2015; 47:1421-32. [DOI: 10.1007/s00726-015-1955-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
|
21
|
Granold M, Moosmann B, Staib-Lasarzik I, Arendt T, Del Rey A, Engelhard K, Behl C, Hajieva P. High membrane protein oxidation in the human cerebral cortex. Redox Biol 2014; 4:200-7. [PMID: 25600696 PMCID: PMC4803790 DOI: 10.1016/j.redox.2014.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents. Membrane proteins from the human cerebral cortex show specific and severe oxidation. This contrasts to human cerebellum and to mouse cortex and cerebellum of any age. It also contrasts to adult rat cortex and hippocampus with or without ischemia. Lipid peroxidation is not a predictor of membrane protein oxidation. Membrane protein oxidation might be related to impending neurodegeneration.
Collapse
Affiliation(s)
- Matthias Granold
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Adriana Del Rey
- Institute of Physiology and Pathophysiology, Philipps University, Marburg, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|