1
|
Liu X, Wang FY, Chi S, Liu T, Yang HL, Zhong RJ, Li XY, Gao J. Mitochondria-targeting peptide SS-31 attenuates ferroptosis via inhibition of the p38 MAPK signaling pathway in the hippocampus of epileptic rats. Brain Res 2024; 1836:148882. [PMID: 38521160 DOI: 10.1016/j.brainres.2024.148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Ferroptosis is a newly identified form of non-apoptotic regulated cell death (RCD) andplaysanimportantrole in epileptogenesis. The p38 mitogen-activated protein kinase (p38 MAPK) pathway has been confirmed to be involved in ferroptosis. The mitochondria-targeting antioxidant Elamipretide (SS-31) can reduce the generation of lipid peroxidation and the buildup of reactive oxygen species (ROS). Collectively, our present study was to decipher whether SS-31 inhibits ferroptosis via the p38 MAPK signaling pathway in the rat epilepsy model induced by pilocarpine (PILO).Adult male Wistar rats were randomly divided into four groups: control group (CON group), epilepsy group (EP group), SS-31 treatment group (SS group), and p38 MAPK inhibitor (SB203580) treatment group (SB group). Our results demonstrated that the rat hippocampal neurons after epilepsy were followed by accumulated iron and malondialdehyde (MDA) content, upregulated phosphorylated p38 MAPK protein (P-p38) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels, reduced glutathione peroxidase 4 (Gpx4) content, and depleted glutathione (GSH) activity. Morphologically, mitochondrial ultrastructural damage under electron microscopy was manifested by a partial increase in outer membrane density, disappearance of mitochondrial cristae, and mitochondrial shrinkage. SS-31 and SB203580 treatment blocked the initiation and progression of ferroptosis in the hippocampus of epileptic rats via reducing the severity of epileptic seizures, reversing the expression of Gpx4, P-p38 , decreasing the levels of iron and MDA, as well as increasing the activity of GSH and Nrf2. To summarize, our findings proved that ferroptosis was coupled with the pathology of epilepsy, and SS-31 can inhibit PILO-induced seizures by preventing ferroptosis, which may be connected to the inhibition of p38 MAPK phosphorylation, highlighting the potential therapeutic value for targeting ferroptosis process in individuals with seizure-related diseases.
Collapse
Affiliation(s)
- Xue Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fei-Yu Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hai-Lin Yang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ru-Jie Zhong
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiao-Yu Li
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
2
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Pyun J, Koay H, Runwal P, Mawal C, Bush AI, Pan Y, Donnelly PS, Short JL, Nicolazzo JA. Cu(ATSM) Increases P-Glycoprotein Expression and Function at the Blood-Brain Barrier in C57BL6/J Mice. Pharmaceutics 2023; 15:2084. [PMID: 37631298 PMCID: PMC10458578 DOI: 10.3390/pharmaceutics15082084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aβ), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aβ levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aβ in AD.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - HuiJing Koay
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Pranav Runwal
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; (C.M.); (A.I.B.)
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia (P.S.D.)
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.P.); (P.R.)
| |
Collapse
|
4
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
5
|
Impact of ABCC2 1249G>A and -24C>T Polymorphisms on Lacosamide Efficacy and Plasma Concentrations in Uygur Pediatric Patients With Epilepsy in China. Ther Drug Monit 2023; 45:117-125. [PMID: 36253887 PMCID: PMC9819208 DOI: 10.1097/ftd.0000000000001003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE We aimed to evaluate the effect of the ABCC2 1249G>A (rs2273697) and -24C>T (rs717620) polymorphisms on lacosamide (LCM) plasma concentrations and the efficacy of LCM in Uygur pediatric patients with epilepsy. METHODS We analyzed 231 pediatric patients with epilepsy, among which 166 were considered to be LCM responsive. For drug assays, 2-3 mL of venous blood was collected from each patient just before the morning LCM dose was administered (approximately 12 hours after the evening dose, steady-state LCM concentrations). The remaining samples after routine therapeutic drug monitoring were used for genotyping analysis. The χ 2 test and Fisher exact test were utilized for comparative analysis of the allelic and genotypic distribution of ABCC2 polymorphisms between the LCM-resistant and LCM-responsive groups. The Student t test or Mann-Whitney U test was conducted to analyze differences in plasma LCM concentration among pediatric patients with epilepsy with different genotypes. RESULTS Patients with the ABCC2 1249G>A GA genotype (0.7 ± 0.3 mcg/mL per kg/mg) and AA genotype (0.5 ± 0.3 mcg/mL per kg/mg) showed significantly ( P < 0.001) lower LCM concentration-to-dose (CD) ratios than patients with the GG genotype (1.0 ± 0.4 mcg/mL per kg/mg). Moreover, patients with the ABCC2 -24C>T CT genotype (0.6 ± 0.2 mcg/mL per kg/mg) and TT genotype (0.6 ± 0.3 mcg/mL per kg/mg) presented a significantly ( P < 0.001) lower LCM CD ratio than patients with the CC genotype (1.1 ± 0.4 mcg/mL per kg/mg). CONCLUSIONS The ABCC2 1249G>A (rs2273697) and ABCC2 -24C>T (rs717620) polymorphisms can affect plasma LCM concentrations and treatment efficacy among a population of Uygur pediatric patients with epilepsy, causing these patients to become resistant to LCM. In clinical practice, ABCC2 polymorphisms should be identified before LCM treatment, and then, the dosage should be adjusted for pediatric patients with epilepsy accordingly.
Collapse
|
6
|
Mao S, Wu J, Yan J, Zhang W, Zhu F. Dysregulation of miR-146a: a causative factor in epilepsy pathogenesis, diagnosis, and prognosis. Front Neurol 2023; 14:1094709. [PMID: 37213914 PMCID: PMC10196196 DOI: 10.3389/fneur.2023.1094709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
miR-146a is an NF-κB-dependent miRNA that acts as an anti-inflammatory miRNA via the Toll-like receptor (TLR) pathway. miR-146a targets multiple genes and has been identified to directly or indirectly regulate processes other than inflammation, including intracellular Ca changes, apoptosis, oxidative stress, and neurodegeneration. miR-146a is an important regulator of gene expression in epilepsy development and progression. Furthermore, miR-146a-related single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) contribute to the genetic susceptibility to drug resistance and seizure severity in epilepsy patients. This study summarizes the abnormal expression patterns of miR-146a in different types and stages of epilepsy and its potential molecular regulation mechanism, indicating that miR-146a can be used as a novel biomarker for epilepsy diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jinhan Wu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingkai Yan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Weijun Zhang
- Department of Neurology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Weijun Zhang
| | - Feng Zhu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
- Feng Zhu
| |
Collapse
|
7
|
Liu Q, Wang Y, Tan D, Liu Y, Zhang P, Ma L, Liang M, Chen Y. The Prevention and Reversal of a Phenytoin-Resistant Model by N-acetylcysteine Therapy Involves the Nrf2/P-Glycoprotein Pathway at the Blood-Brain Barrier. J Mol Neurosci 2022; 72:2125-2135. [PMID: 36028602 DOI: 10.1007/s12031-022-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The transporter hypothesis is one of the most popular hypotheses of drug-resistant epilepsy (DRE). P-glycoprotein (P-gp), a channel protein at the blood-brain barrier (BBB), plays an important role in the transport of some anti-seizure drugs from brain tissue into vessels, which reduces drug concentrations and diminishes the effects of drug treatment. We performed this study to test whether P-gp is overexpressed in DRE and identify ways to prevent and reverse DRE. In this study, we established a phenytoin (PHT)-resistant mouse model and revealed that P-gp was overexpressed at the BBB in PHT-resistant mice. The P-gp inhibitor nimodipine decreased the resistance of phenytoin. Antioxidative preventive treatment with N-acetylcysteine (NAC) prevented the mice from entering a PHT-resistant state, and NAC therapy tended to reverse PHT resistance into sensitivity. We were also able to induce PHT resistance by activating the Nrf2/P-gp pathway, which indicates that oxidative stress plays an important role in drug resistance. Taken together, these findings suggest that antioxidative therapy may be a promising strategy for overcoming DRE.
Collapse
Affiliation(s)
- Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
8
|
Pyun J, McInnes LE, Donnelly PS, Mawal C, Bush AI, Short JL, Nicolazzo JA. Copper bis(thiosemicarbazone) complexes modulate P-glycoprotein expression and function in human brain microvascular endothelial cells. J Neurochem 2022; 162:226-244. [PMID: 35304760 PMCID: PMC9540023 DOI: 10.1111/jnc.15609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022]
Abstract
P-glycoprotein (P-gp) is an efflux transporter at the blood-brain barrier (BBB) that hinders brain access of substrate drugs and clears endogenous molecules such as amyloid beta (Aβ) from the brain. As biometals such as copper (Cu) modulate many neuronal signalling pathways linked to P-gp regulation, it was hypothesised that the bis(thiosemicarbazone) (BTSC) Cu-releasing complex, copper II glyoxal bis(4-methyl-3-thiosemicarbazone) (CuII [GTSM]), would enhance P-gp expression and function at the BBB, while copper II diacetyl bis(4-methyl-3-thiosemicarbazone) (CuII [ATSM]), which only releases Cu under hypoxic conditions, would not modulate P-gp expression. Following treatment with 25-250 nM CuII (BTSC)s for 8-48 h, expression of P-gp mRNA and protein in human brain endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively. P-gp function was assessed by measuring accumulation of the fluorescent P-gp substrate, rhodamine 123 and intracellular Cu levels were quantified by inductively coupled plasma mass spectrometry. Interestingly, CuII (ATSM) significantly enhanced P-gp expression and function 2-fold and 1.3-fold, respectively, whereas CuII (GTSM) reduced P-gp expression 0.5-fold and function by 200%. As both compounds increased intracellular Cu levels, the effect of different BTSC backbones, independent of Cu, on P-gp expression was assessed. However, only the Cu-ATSM complex enhanced P-gp expression and this was mediated partly through activation (1.4-fold) of the extracellular signal-regulated kinase 1 and 2, an outcome that was significantly attenuated in the presence of an inhibitor of the mitogen-activated protein kinase regulatory pathway. Our findings suggest that CuII (ATSM) and CuII (GTSM) have the potential to modulate the expression and function of P-gp at the BBB to impact brain drug delivery and clearance of Aβ.
Collapse
Affiliation(s)
- Jae Pyun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Lachlan E. McInnes
- Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul S. Donnelly
- Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Celeste Mawal
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ashley I. Bush
- Oxidation Biology Lab, Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jennifer L. Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
9
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
10
|
Lin Y, Dong S, Ye X, Liu J, Li J, Zhang Y, Tu M, Wang S, Ying Y, Chen R, Wang F, Ni F, Chen J, Du B, Zhang D. Synergistic regenerative therapy of thin endometrium by human placenta-derived mesenchymal stem cells encapsulated within hyaluronic acid hydrogels. Stem Cell Res Ther 2022; 13:66. [PMID: 35135594 PMCID: PMC8822809 DOI: 10.1186/s13287-022-02717-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Thin endometrium is a primary cause of defective endometrial receptivity, resulting in infertility or recurrent miscarriage. Much effort has been devoted toward regenerating thin endometrium by stem cell-based therapies. The human placenta-derived mesenchymal stem cells (HP-MSCs) are emerging alternative sources of MSCs with various advantages. To maximize their retention inside the uterus, we loaded HP-MSCs with cross-linked hyaluronic acid hydrogel (HA hydrogel) to investigate their therapeutic efficacy and possible underlying mechanisms.
Methods Ethanol was injected into the mice uterus to establish the endometrium-injured model. The retention time of HP-MSCs and HA hydrogel was detected by in vivo imaging, while the distribution of HP-MSCs was detected by immunofluorescence staining. Functional restoration of the uterus was assessed by testing embryo implantation rates. The endometrial morphological alteration was observed by H&E staining, Masson staining, and immunohistochemistry. In vitro studies were further conducted using EdU, transwell, tube formation, and western blot assays. Results Instilled HP-MSCs with HA hydrogel (HP-MSCs-HA) exhibited a prolonged retention time in mouse uteri than normal HP-MSCs. In vivo studies showed that the HP-MSCs-HA could significantly increase the gland number and endometrial thickness (P < 0.001, P < 0.05), decrease fibrous area (P < 0.0001), and promote the proliferation and angiogenesis of endometrial cells (as indicated by Ki67 and VEGF, P < 0.05, P < 0.05, respectively) in mice injured endometrium. HP-MSCs-HA could also significantly improve the embryo implantation rate (P < 0.01) compared with the ethanol group. Further mechanistic study showed the paracrine effects of HP-MSCs. They could not only promote the proliferation and migration of human endometrial stromal cells via the JNK/Erk1/2-Stat3-VEGF pathway but also facilitate the proliferation of glandular cells via Jak2-Stat5 and c-Fos-VEGF pathway. In turn, the increased VEGF in the endometrium promoted the angiogenesis of endothelial cells. Conclusion Our study suggested the potential therapeutic effects and the underlying mechanisms of HP-MSCs-HA on treating thin endometrium. HA hydrogel could be a preferable delivery method for HP-MSCs, and the strategy represents a promising therapeutic approach against endometrial injury in clinical settings. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02717-2.
Collapse
Affiliation(s)
- Yifeng Lin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohang Ye
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Juan Liu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
11
|
Yadav RK, Mehan S, Sahu R, Kumar S, Khan A, Makeen HA, Al Bratty M. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum Exp Toxicol 2022; 41:9603271221084276. [PMID: 35373622 DOI: 10.1177/09603271221084276] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methylmercury (MeHg) is a neurotoxin that induces neurotoxicity and cell death in neurons. MeHg increases oligodendrocyte death, glial cell activation, and motor neuron demyelination in the motor cortex and spinal cord. As a result, MeHg plays an important role in developing neurocomplications similar to amyotrophic lateral sclerosis (ALS). Recent research has implicated c-JNK and p38MAPK overactivation in the pathogenesis of ALS. Apigenin (APG) is a flavonoid having anti-inflammatory, antioxidant, and c-JNK/p38MAPK inhibitory activities. The purpose of this study is to determine whether APG possesses neuroprotective effects in MeHg-induced neurotoxicity in adult rats associated with ALS-like neuropathological alterations. In the current study, the neurotoxin MeHg causes an ALS-like phenotype in Wistar rats after 21 days of oral administration at a dose of 5 mg/kg. Prolonged administration of APG (40 and 80 mg/kg) improved neurobehavioral parameters such as learning memory, cognition, motor coordination, and grip strength. This is mainly associated with the downregulation of c-JNK and p38MAPK signaling as well as the restoration of myelin basic protein within the brain. Furthermore, APG inhibited neuronal apoptotic markers (Bax, Bcl-2, and caspase-3), restored neurotransmitter imbalance, decreased inflammatory markers (TNF- and IL-1), and alleviated oxidative damage. As a result, the current study shows that APG has neuroprotective potential as a c-JNK and p38MAPK signaling inhibitor against MeHg-induced neurotoxicity in adult rats. Based on these promising findings, we suggested that APG could be a potential new therapeutic approach over other conventional therapeutic approaches for MeHg-induced neurotoxicity in neurobehavioral, molecular, and neurochemical abnormalities.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, 123285Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
12
|
Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J, Liu L, Shen H, Na M, Lin Z. Study of Neuronal Apoptosis ceRNA Network in Hippocampal Sclerosis of Human Temporal Lobe Epilepsy by RNA-Seq. Front Neurosci 2021; 15:770627. [PMID: 34867172 PMCID: PMC8633546 DOI: 10.3389/fnins.2021.770627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.
Collapse
Affiliation(s)
- Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aoweng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Cao Q, Yang F, Wang H. CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways. Int J Neurosci 2021; 131:735-744. [PMID: 32715907 DOI: 10.1080/00207454.2020.1796661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Epilepsy is a pivotal neurological disorder characterized by the synchronous discharging of neurons to induce momentary brain dysfunction. Temporal lobe epilepsy is the most common type of epilepsy, with seizures originating from the mesial temporal lobe. The hippocampus forms part of the mesial temporal lobe and plays a significant role in epileptogenesis; it also has a vital influence on the mental development of children. In this study, we aimed to explore the effects of CB2 receptor (CB2R) activation on ERK and p38 signaling in nerve cells of a rat epilepsy model. MATERIALS AND METHODS We treated Sprague-Dawley rats with pilocarpine to induce an epilepsy model and treated such animals with a CB2R agonist (JWH133) alone or with a CB2R antagonist (AM630). Nissl's stain showed the neuron conditon in different groups. Western blot analyzed the level of p-ERK and p-p38. RESULTS JWH133 can increase the latent period of first seizure attack and decrease the Grades IV-V magnitude ratio after the termination of SE. Nissl's stain showed JWH133 protected neurons in the hippocampus while AM630 inhibited the functioning of CB2R in neurons. Western blot analysis showed that JWH133 decreased levels of p-ERK and p-p38, which is found at increased levels in the hippocampus of our epilepsy model. In contrast, AM630 inhibited the protective function of JWH133 and also enhanced levels of p-ERK and p-p38. CONCLUSIONS CB2R activation can induce neurons proliferation and survival through activation of ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fenghua Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Fang H, Ma W, Guo X, Wang J. PTPN6 promotes chemosensitivity of colorectal cancer cells via inhibiting the SP1/MAPK signalling pathway. Cell Biochem Funct 2021; 39:392-400. [PMID: 33615510 DOI: 10.1002/cbf.3604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/17/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
The abnormal expression of protein tyrosine phosphatase nonreceptor type 6 (PTPN6) has been proved to be associated with the progression of colorectal cancer. However, its role in chemosensitivity and related molecular mechanism have not been clarified. It has been reported that PTPN6 was down-regulated in colorectal cancer cells compared with the normal colorectal cells. To evaluate the effects of PTPN6 on the proliferation and survival of colorectal cancer cells, PTPN6 was overexpressed in colorectal cancer cells in the present study. We found that cell proliferation and viability were both decreased after overexpression of PTPN6. The IC50 of 5-Fu against colorectal cells was also declined in PTPN6 transfected cells. And further, we verified that PTPN6 could down-regulate the expression of P-gp and MRP-1. Moreover, SP1 was the target protein of PTPN6 predicated by ChIPBase software and confirmed through Co-immunoprecipitation assay and it was negatively regulated by PTPN6. To further verify the effect of SP1 on chemoresistance, SP1 was overexpressed. SP1 overexpression enhanced the drug-resistance to 5-Fu and abrogated the effects of PTPN6 upregulation on 5-Fu resistance. All the above changes were associated with the down-regulation of proteins related to MAPK signalling pathway, such as phosphorylation of extracellular regulated protein kinases (ERK) and p38. In summary, PTPN6 promoted chemosensitivity of colorectal cancer cells by targeting SP1 and inhibiting the activation of MAPK signalling pathway. SIGNIFICANCE OF THE STUDY: It has been demonstrated that the abnormal expression of PTPN6 was related to the progression of colorectal cancer. However, the chemosensitivity of PTPN6 and its molecular mechanisms were still unclear. Here, we identified that PTPN6 was down-regulated in colorectal cancer cells. Moreover, PTPN6 overexpression not only reduced cell proliferation and viability, but decreased the resistance of colorectal cells to 5-Fu. In our research, we found that the SP1 was the target protein of PTPN6 and it was negatively regulated by PTPN6. In addition, SP1 could increase the resistance of colorectal cells to 5-Fu. Molecular mechanism studies have shown that PTPN6 promoted the chemosensitivity of colorectal cancer cells by inhibiting the activation of MAPK signalling pathway.
Collapse
Affiliation(s)
- Huilong Fang
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Wei Ma
- Department of Translational Medicine Collaorative Innovation Center, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xuli Guo
- Department of Pathogenic Biology and Immunology, Xiangnan University, Chenzhou, China
| | - Junjie Wang
- Department of Pharmacology, Xiangnan University, Chenzhou, China
| |
Collapse
|
15
|
Gene Expression Analysis Identifies Cholesterol Metabolism Dysregulation in Hippocampus of Phenytoin-Resistant Pentylenetetrazol-Kindled Epileptic Mice. Neuromolecular Med 2021; 23:485-490. [PMID: 33604751 DOI: 10.1007/s12017-021-08648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Pharmaco-resistant Epilepsy has been a major challenge for medical interventions in controlling seizures. To date, up to 33% of the patients with epilepsy do not show adequate response to anti-epileptic drugs even after prolonged combinatorial drug usage. Using microarray, this study explores the changes in hippocampal gene expression in the phenytoin-resistant pentylenetetrazol (PTZ)-kindled mouse model of epilepsy. Our results from mRNA microarray analysis show distinct gene expression profiles in the hippocampus of phenytoin-resistant and sensitive mice. Pathway enrichment analysis showed differential expression of genes involved in cholesterol biosynthesis in phenytoin-resistant and sensitive mice.
Collapse
|
16
|
Zhou X, Chen Q, Huang H, Zhang J, Wang J, Chen Y, Peng Y, Zhang H, Zeng J, Feng Z, Xu Z. Inhibition of p38 MAPK regulates epileptic severity by decreasing expression levels of A1R and ENT1. Mol Med Rep 2020; 22:5348-5357. [PMID: 33174009 PMCID: PMC7647013 DOI: 10.3892/mmr.2020.11614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic nervous system disease. Excessive increase of the excitatory neurotransmitter glutamate in the body results in an imbalance of neurotransmitters and excessive excitation of neurons, leading to epileptic seizures. Long‑term recurrent seizures lead to behavior and cognitive changes, and even increase the risk of death by 2‑ to 3‑fold relative to the general population. Adenosine A1 receptor (A1R), a member of the adenosine system, has notable anticonvulsant effects, and adenosine levels are controlled by the type 1 equilibrative nucleoside transporter (ENT1); in addition the p38 MAPK signaling pathway is involved in the regulation of ENT1, although the effect of its inhibitors on the expression levels of A1R and ENT1 is unclear. Therefore, in the present study, SB203580 was used to inhibit the p38 MAPK signaling pathway in rats, and the expression levels of A1R and ENT1 in the brain tissue of rats with acute LiCl‑pilocarpine‑induced status epilepticus was detected. SB203580 decreased pathological damage of hippocampal neurons, prolonged seizure latency, reduced the frequency of seizures, and decreased levels of A1R and ENT1 protein in rats.
Collapse
Affiliation(s)
- Xuejiao Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jing Wang
- Department of Prevention and Health Care, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
17
|
Neochamaejasmin A Induces Mitochondrial-Mediated Apoptosis in Human Hepatoma Cells via ROS-Dependent Activation of the ERK1/2/JNK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3237150. [PMID: 32411325 PMCID: PMC7201479 DOI: 10.1155/2020/3237150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.
Collapse
|
18
|
Bongaarts A, van Scheppingen J, Korotkov A, Mijnsbergen C, Anink JJ, Jansen FE, Spliet WGM, den Dunnen WFA, Gruber VE, Scholl T, Samueli S, Hainfellner JA, Feucht M, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Coras R, Blümcke I, Krsek P, Zamecnik J, Meijer L, Scicluna BP, Schouten-van Meeteren AYN, Mühlebner A, Mills JD, Aronica E. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas. Brain 2020; 143:131-149. [PMID: 31834371 PMCID: PMC6935755 DOI: 10.1093/brain/awz370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sharon Samueli
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Lisethe Meijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine and Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
19
|
Xie Y, Wang M, Shao Y, Deng X, Chen Y. Long Non-coding RNA KCNQ1OT1 Contributes to Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 Axis in vitro. Front Neurosci 2019; 13:1358. [PMID: 31920517 PMCID: PMC6928106 DOI: 10.3389/fnins.2019.01358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Compelling evidence has verified that long non-coding RNAs (lncRNAs) play a critical role on drug resistance in various diseases, especially cancer. However, the role of lncRNAs underlying multidrug resistance in epilepsy remains to be clarified. In the present study, we investigated the potential regulatory mechanism of the lncRNA KCNQ1OT1 in regulating antiepileptic drug (AED) resistance in human brain microvascular endothelial cells (HBMECs). The results revealed that expression of P-glycoprotein (P-gp) and KCNQ1OT1 was significantly elevated in phenytoin-resistant HBMECs (HBMEC/PHT). Meanwhile, the activity of nuclear factor-kappa B (NF-κB) was increased in HBMECs/PHT cells. Microarray analysis indicated that miR-138-5p was downregulated in HBMEC/PHT cells. Interestingly, bioinformatics prediction tools indicated miR-138-5p could directly target the transcripts of KCNQ1OT1 and NF-κB p65, and these results were confirmed by luciferase assays. Moreover, KCNQ1OT1 downregulation or miR-138-5p upregulation in vitro could inhibit P-gp expression and suppress NF-κB signaling pathway activation. Additionally, knockdown of KCNQ1OT1 or overexpression of miR-138-5p could increase the accumulation of rhodamine 123 (Rh123) and AEDs in HBMEC/PHT cells. Collectively, our results suggested that KCNQ1OT1 contributes to AED resistance through the miR-138-5p/NF-κB/ABCB1 axis in HBMEC/PHT cells, and these results provide a promising therapeutic target for the treatment of medically intractable epilepsy.
Collapse
Affiliation(s)
- Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Li M, Cui L, Feng X, Wang C, Zhang Y, Wang L, Ding Y, Zhao T. Losmapimod Protected Epileptic Rats From Hippocampal Neuron Damage Through Inhibition of the MAPK Pathway. Front Pharmacol 2019; 10:625. [PMID: 31231220 PMCID: PMC6565798 DOI: 10.3389/fphar.2019.00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: This research aimed to validate the therapeutic effect of losmapimod and explore the underlying mechanism in its treatment of epilepsy. Methods: A rat model of epilepsy was constructed with an injection of pilocarpine. Microarray analysis was performed to screen aberrantly expressed mRNAs and activated signaling pathways between epileptic rats and normal controls. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was used to identify cell apoptosis. Hippocampal cytoarchitecture was visualized with Nissl staining. The secretion of inflammatory factors as well as the marker proteins in the mitogen-activated protein kinase (MAPK) pathway were detected by Western blot. A Morris water maze navigation test evaluated the rats’ cognitive functions. Results: Activation of the MAPK signaling pathway was observed in epilepsy rats. A decrease in the MAPK phosphorylation level by application of losmapimod protected against epilepsy by reducing neuron loss. Losmapimod effectively improved memory, reduced the frequency of seizures, protected the neuron from damage, and limited the apoptosis of neurons in epilepsy rats. Conclusion: The application of losmapimod could partly reverse the development of epilepsy.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Lexiang Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xuemin Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Major in Clinical Medicine, Medical College of Nanchang University, Nanchang, China
| | - Lijie Wang
- Department of Traditional Chinese Medicine, General Hospital of FAW, Fourth Hospital of Jilin University, Changchuan, China
| | - Ying Ding
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Teng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Deng X, Shao Y, Xie Y, Feng Y, Wu M, Wang M, Chen Y. MicroRNA-146a-5p Downregulates the Expression of P-Glycoprotein in Rats with Lithium–Pilocarpine-Induced Status Epilepticus. Biol Pharm Bull 2019; 42:744-750. [DOI: 10.1248/bpb.b18-00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University
- Department of Neurology, Huashan Hospital North, Fudan University
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University
- Department of Neurology, Huashan Hospital North, Fudan University
| |
Collapse
|
22
|
Wang L, Song L, Chen X, Ma Y, Suo J, Shi J, Chen G. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 2019; 25:112-122. [PMID: 29808547 PMCID: PMC6436603 DOI: 10.1111/cns.12991] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To explore the role of miR-181b in alterations of apoptosis and autophagy in the kainic acid (KA)-induced epileptic juvenile rats via modulating TLR4 and P38/JNK signaling pathway. METHODS Dual-luciferase reporter assay was performed to testify the targeting relationship between miR-181b and TLR4. After intracerebroventricular injection (i.c.v.) of KA, rats were injected with miR-181b agomir and TLR4 inhibitor (TAK-242). The TLR-4 activator lipopolysaccharide (LPS) was also administered into rats immediately after injection with miR-181b agomir. Quantitative real-time-polymerase chain reaction (qRT-PCR) was used for detections of miR-181b and TLR4 expressions, hematoxylin-eosin (HE) and Nissl staining for observation of the hippocampus morphological changes, and TUNEL staining for apoptosis analysis. Moreover, western blot was determined to detect TLR4 and P38/JNK pathway proteins, as well as autophagy- and apoptosis-related proteins. RESULTS TLR4 was identified as a direct target of miR-181b using Dual-luciferase reporter assay. KA rats injected with miR-181b agomir or TAK-242 had improved learning and memory abilities, reduced seizure severity of Racine's scale, and lessened neuron injury. Additionally, miR-181b agomir or TAK-242 could significantly inhibit P38/JNK signaling, decrease LC3II/I, Beclin-1, ATG5, ATG7, ATG12, Bax, and cleaved caspases-3, but increase p62 and Bcl-2 expression. No significances were found between KA group and KA + miR-181b + LPS group. CONCLUSION MiR-181b could inhibit P38/JNK signaling pathway via targeting TLR4, thereby exerting protective roles in attenuating autophagy and apoptosis of KA-induced epileptic juvenile rats.
Collapse
Affiliation(s)
- Li Wang
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Li‐Fang Song
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Xiao‐Yi Chen
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Yan‐Li Ma
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Jun‐Fang Suo
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Jing‐He Shi
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| | - Guo‐Hong Chen
- Department of NeurologyZhengzhou Children’s Hospital (Zhengzhou University Affiliated Children’s Hospital)ZhengzhouChina
| |
Collapse
|
23
|
Han CL, Zhao XM, Liu YP, Wang KL, Chen N, Hu W, Zhang JG, Ge M, Meng FG. Gene Expression Profiling of Two Epilepsy Models Reveals the ECM/Integrin signaling Pathway is Involved in Epiletogenesis. Neuroscience 2018; 396:187-199. [PMID: 30452975 DOI: 10.1016/j.neuroscience.2018.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms underlying the development of epilepsy, i.e., epileptogenesis, are due to altered expression of a series of genes. Global expression profiling of temporal lobe epilepsy is confounded by a number of factors, including the variability among animal species, animal models, and tissue sampling time-points. In this study, we pooled two microarray datasets of the most used pilocarpine and kainic acid epilepsy models from the Gene Expression Omnibus database. A total of 567 known and novel genes were commonly differentially expressed across the two models. Pathway analyses demonstrated that the dysregulated genes were involved in 46 pathways. Real-time PCR and western blot analysis confirmed the activation of extracellular matrix (ECM)/integrin signaling pathways. Moreover, targeting ECM/integrin signaling inhibits astrocyte activation and promotes neuron injury in the hippocampus of epileptic mice. This study may provide a "gene/pathway database" that with further investigation can determine the mechanisms underlining epileptogenesis and the possible targets for neuron protection in the hippocampus after status epilepticus.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Xue-Min Zhao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China
| | - Ning Chen
- Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Hu
- Department of Neurology, University of Florida, FL 32607, USA
| | - Jian-Guo Zhang
- Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission, Beijing 100050, China.
| |
Collapse
|
24
|
Yang Z, Wang J, Yu C, Xu P, Zhang J, Peng Y, Luo Z, Huang H, Zeng J, Xu Z. Inhibition of p38 MAPK Signaling Regulates the Expression of EAAT2 in the Brains of Epileptic Rats. Front Neurol 2018; 9:925. [PMID: 30429824 PMCID: PMC6220601 DOI: 10.3389/fneur.2018.00925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
Seizures induce the release of excitatory amino acids (EAAs) from the intracellular fluid to the extracellular fluid, and the released EAAs primarily comprise glutamic acid (Glu) and asparaginic acid (Asp). Glu neurotransmission functions via EAA transporters (EAATs) to maintain low concentrations of Glu in the extracellular space and avoid excitotoxicity. EAAT2, the most abundant Glu transporter subtype in the central nervous system (CNS), plays a key role in the regulation of glutamate transmission. Previous studies have shown that SB203580 promotes EAAT2 expression by inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway, but whether SB203580 upregulates EAAT2 expression in epileptic rats is unknown. This study demonstrated that EAAT2 expression was increased in the brain tissue of epileptic rats. Intraperitoneal injection of a specific inhibitor of p38 MAPK, SB203580, reduced the time to the first epileptic seizure and attenuated the seizure severity. In addition, SB203580 treatment increased the EAAT2 expression levels in the brain tissue of epileptic rats. These results suggest that SB203580 could regulate epileptic seizures via EAAT2.
Collapse
Affiliation(s)
- Zhang Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Wang
- Department of Prevention and Health Care, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Wu DM, Zhang YT, Lu J, Zheng YL. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol 2018; 233:6632-6643. [PMID: 29194604 DOI: 10.1002/jcp.26297] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/28/2017] [Indexed: 11/12/2022]
Abstract
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yu-Tong Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
26
|
Gao F, Gao Y, Meng F, Yang C, Fu J, Li Y. The Sphingosine 1-Phosphate Analogue FTY720 Alleviates Seizure-induced Overexpression of P-Glycoprotein in Rat Hippocampus. Basic Clin Pharmacol Toxicol 2018; 123:14-20. [PMID: 29380527 DOI: 10.1111/bcpt.12973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Fei Gao
- Department of Neurology; The First Affiliated Hospital of Xi'an Medical University; Xi'an China
| | - Ying Gao
- Department of Radiotherapy Oncology; The First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an China
| | - Fangling Meng
- Department of Neurology; The First Affiliated Hospital of Xi'an Medical University; Xi'an China
| | - Chunmei Yang
- Department of Neurology; The First Affiliated Hospital of Xi'an Medical University; Xi'an China
| | - Jiangfeng Fu
- Department of Neurology; The First Affiliated Hospital of Xi'an Medical University; Xi'an China
| | - Yajun Li
- Department of Neurology; The First Affiliated Hospital of Xi'an Medical University; Xi'an China
| |
Collapse
|
27
|
P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade. Epilepsy Res 2017; 133:89-92. [PMID: 28472735 DOI: 10.1016/j.eplepsyres.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/26/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our group has previously reported the role of P38 mitogen-activated protein kinase (MAPK) pathway in the memory impairment of pentylenetetrazole (PTZ)-kindled rats. However, any contribution of p38 MAPK pathways to the cognitive dysfunction of PTZ-kindled rats remains unclear. The objective of this study is to verify the relationship between p38 MAPK pathway and cognitive function of epileptic rats, and discuss probable mechanisms. METHODS Thirty male SD rats were divided into three groups, namely, PTZ, inhibitor, and sham groups. All rats except those from the sham group were treated with PTZ to establish temporal lobe epilepsy (TLE) models, whereas the P38 MAPK inhibitor SB 203580 was given to the inhibitor group. Morris water maze test was performed to assay their learning and memory abilities. The levels of phosphorylated p38 (p-p38) and caspase 3 were confirmed using Western blot. RESULTS In the probe test of water maze, the PTZ group had the longest escape latency and least time to pass through the platform. Compared with the PTZ group, the inhibitor group had better performance in escape latency and spatial probe tests. Performance in the water maze test corresponded with the level of p-p38 and caspase 3 in hippocampus. We also found that the down-regulation of p-p38 in the inhibitor group led to down-regulated levels of caspase 3. CONCLUSIONS P38 MAPK pathway contributed to cognitive damage in PTZ-induced epilepsy via apoptosis cascade.
Collapse
|
28
|
Wang H, Wang X, Liao A, Liu Z. Hypomethylation agent decitabine restores drug sensitivity by depressing P-glycoprotein activity through MAPK signaling pathway. Mol Cell Biochem 2017; 433:141-148. [PMID: 28405849 DOI: 10.1007/s11010-017-3022-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
The multidrug resistance (MDR) continues to be an obstacle in the treatment of both hematological and solid tumors. Hypomethylation agent, decitabine (5-Aza-dC), is an experimental agent in MDR therapy, while the mechanism is not very clear. In the present study, we demonstrated 5-Aza-dC may reverse MDR induced by P-glycoprotein (P-gp) coded by mdr1 gene in both hematologic K562/ADR cells and solid tumor MCF-7/ADR cells with time and dose-dependent manner. 5-Aza-dC significantly increased drug sensitivity in patients' leukemic cells which had higher expression of mdr1 gene. Both total protein and membrane P-gp expression were up-regulated with 5-Aza-dC treatment in K562/ADR and MCF-7/ADR cells. However, accumulation of adriamycin and rhodamine 123 were increased which suggested the depression of P-gp activity. Gene expression profiling was performed and activation of MAPK signaling pathway was identified as the most significant change affected by 5-Aza-dC. Inhibition of MAPK pathway could increase P-gp activity. Our data suggested that hypomethylation agent decitabine restores drug sensitivity in the P-gp-induced MDR phenotype by depressing of P-gp activity as drug pump partly through MAPK signaling pathway.
Collapse
Affiliation(s)
- Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China
| | - Xiaobin Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China.
| |
Collapse
|
29
|
Yang X, Ren W, Shao Y, Chen Y. MiR-466b-1-3p regulates P-glycoprotein expression in rat cerebral microvascular endothelial cells. Neurosci Lett 2017; 645:60-66. [PMID: 28235604 DOI: 10.1016/j.neulet.2017.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and approximately one-third of epilepsy cases are resistant to treatment with anti-epileptic drug (AED). P-glycoprotein (P-gp) is a multi-drug transporter that is thought to play a pivotal role in multiple drug resistance (MDR) in epilepsy. The regulatory mechanism of P-gp remains largely unknown; however, recent studies have demonstrated that microRNAs (miRNAs) may regulate the chemo-resistance mediated by P-gp. This study investigated the effect of specific miRNAs that regulate P-gp expression in rat cerebral microvascular endothelial cells (RCMECs). Primary cultures of RCMECs were treated with phenobarbital (PB) at various concentrations to induce P-gp overexpression. MiRNA microarrays were used to investigate the expression profiles of miRNAs in the resistant RCMECs induced by PB and corresponding non-resistant cells. Our data demonstrated decreased miR-466b-1-3p expression in the resistant cells compared with the non-resistant cells. Moreover, the recombinant RNA of 466b-1-3p (mimic) and the artificial antisense RNA of miR-466b-1-3p (inhibitor) were constructed and transfected into resistant RCMECs. The expression and function of P-gp were measured by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry using rhodamine efflux. The mRNA and protein levels of P-gp increased as the concentration of PB increased, whereas miR-466b-1-3p levels decreased with increasing PB concentrations (P<0.05). The miR-466b-1-3p mimic down-regulated P-gp expression, whereas the miR-466b-1-3p inhibitor up-regulated P-gp expression (P<0.05). These findings demonstrate that miR-466b-1-3p may regulate PB-induced P-gp expression in RCMECs.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Weimin Ren
- Department of Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Wu J, Cui LL, Yuan J, Wang Y, Song S. Clinical significance of the phosphorylation of MAPK and protein expression of cyclin D1 in human osteosarcoma tissues. Mol Med Rep 2017; 15:2303-2307. [PMID: 28260005 DOI: 10.3892/mmr.2017.6224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/04/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the significance of the phosphorylation of mitogen-activated protein kinase (MAPK) and the protein expression of cyclin D1 in human osteosarcoma tissues. Human osteosarcoma tissue samples were collected from 30 patients, benign bone tumor samples were collected from 30 patients, and normal bone tissues were collected from 10 individuals as controls. Immunohistochemistry was performed to measure the levels of phosphorylated (p)-MAPK and cyclin D1 protein in cases of human osteosarcoma. The results showed that the positive rates of MAPK and cyclin D1 in osteosarcoma were 86.67% (26/30) and 73.00% (22/30), respectively. The positive staining rates of MAPK and cyclin D1 in benign bone tumor tissues were 10.00% (3/30) and 3.30% (1/30), respectively. The positive rate in the normal bone tissues was 0% (0/30), which was significantly lower, compared with that of the cancerous bone tissue. The positive rates of MAPK and cyclin D1 in osteosarcoma were increased (P<0.05), and the expression of cyclin D1 and p‑MAPK were positively correlated. The phosphorylation of MAPK may be important in the development of osteosarcoma, and the overactivation of MAPK may induce high expression of cyclin D1 and induce tumor cells to proliferate continuously.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Lei-Lei Cui
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Jun Yuan
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Yuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shu Song
- Pathological Science Laboratory, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
31
|
Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Mol Neurobiol 2017; 55:793-803. [PMID: 28058582 DOI: 10.1007/s12035-016-0353-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and frequently evolving drug resistance. Although there is growing consensus that noncoding ribonucleic acids (ncRNAs) are modulators of TLE, the knowledge about the deoxyribonucleic acid (DNA) methylation patterns of ncRNAs in TLE remains limited. In the current study, we constructed DNA methylation profiles from 30 TLE patients and 30 healthy controls for ncRNAs, primarily focusing on long ncRNAs (lncRNAs) and microRNAs (miRNAs), by reannotating data of DNA methylation BeadChip. Statistics analyses have revealed a global hypermethylation pattern in miRNA and lncRNA gene in TLE patients. Bioinformatic analyses have found aberrantly methylated miRNAs and lncRNAs are related to ion channel activity, drug metabolism, mitogen-activated protein kinase (MAPK) signaling pathway, and neurotrophin signaling pathway. Aberrantly methylated ncRNA and pathway target might be involved in TLE development and progression. The methylated and demethylated ncRNAs identified in this study provide novel insights for developing TLE biomarkers and potential therapeutic targets.
Collapse
|