1
|
Xu Y, Shao N, Zhi F, Chen R, Yang Y, Li J, Xia Y, Peng Y. Delta-opioid receptor signaling alleviates neuropathology and cognitive impairment in the mouse model of Alzheimer's disease by regulating microglia homeostasis and inhibiting HMGB1 pathway. Alzheimers Res Ther 2025; 17:35. [PMID: 39893485 PMCID: PMC11786345 DOI: 10.1186/s13195-025-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Recent studies suggest that opioid receptor signaling may differentially affect Alzheimer's disease (AD) pathology and the relevant behavioral dysfunctions. However, the precise roles and mechanisms of opioid receptor subtypes in AD pathologies are still unclear with major controversies. METHODS We compared the delta-opioid receptor (DOR)- and mu-opioid receptor (MOR)-mediated effects on AD-associated cognitive deficits, pathologies, neuroinflammations, cell death using transgenic APP/PS1 mouse model and BV2 cell line at behavioral, molecular, and cellular levels. Unpaired t-test and one/two way analysis for variance (ANOVA) were used to analyze statistical significance of the data. RESULTS We show a distinct role of DOR and its major difference with MOR in AD injury in an APP/PS1 mouse model. DOR activation by UFP-512, but not MOR activation by DAMGO, attenuated cognitive impairment, reduced beta-amyloid (Aβ) production and aggregation, as well as protected the neurons from apoptosis in APP/PS1 mice. DOR and MOR also differentially modulated microglia in APP/PS1 mice and in vitro AD cell model with a DOR-mediated inhibition on the excessive activation of microglia and the release of pro-inflammatory cytokines in AD pathologies. Gene expression profiling further revealed that the alternations in DOR/MOR are closely associated with microglial homeostatic signatures and high mobility group protein B1 (HMGB1) in AD. DOR activation inhibited HMGB1 secretion and its translocation from nuclear to cytoplasm. Our in-vitro studies further confirmed that DOR overexpression mitigated microglial inflammatory response and rescued neurons from AD injury via HMGB1-NF-κB signaling pathway. CONCLUSIONS These novel findings uncover previously unappreciated roles of DOR in neuroprotection against AD injury via modulating microglia-related inflammatory responses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ronghua Chen
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jiahui Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Dean E, Dominique A, Palillero A, Tran A, Paradis N, Wu C. Probing the Activation Mechanisms of Agonist DPI-287 to Delta-Opioid Receptor and Novel Agonists Using Ensemble-Based Virtual Screening with Molecular Dynamics Simulations. ACS OMEGA 2023; 8:32404-32423. [PMID: 37720760 PMCID: PMC10500586 DOI: 10.1021/acsomega.3c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Pain drugs targeting mu-opioid receptors face major addiction problems that have caused an epidemic. The delta-opioid receptor (DOR) has shown to not cause addictive effects when bound to an agonist. While the active conformation of the DOR in complex with agonist DPI-287 has been recently solved, there are still no FDA-approved agonists targeting it, providing the opportunity for structure-based virtual screening. In this study, the conformational plasticity of the DOR was probed using molecular dynamics (MD) simulations, identifying two representative conformations from clustering analysis. The two MD conformations as well as the crystal conformation of DOR were used to screen novel compounds from the ZINC database (17 million compounds), in which 69 drugs were picked as potential compounds based on their docking scores. Notably, 37 out of the 69 compounds were obtained from the simulated conformations. The binding stability of the 69 compounds was further investigated using MD simulations. Based on the MM-GBSA binding energy and the predicted drug properties, eight compounds were chosen as the most favorable, six of which were from the simulated conformations. Using a dynamic network model, the communication between the crystal agonist and the top eight molecules with the receptor was analyzed to confirm if these novel compounds share a similar activation mechanism to the crystal ligand. Encouragingly, docking of these eight compounds to the other two opioid receptors (kappa and mu) suggests their good selectivity toward DOR.
Collapse
Affiliation(s)
- Emily Dean
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - AnneMarie Dominique
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Americus Palillero
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Annie Tran
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Nicholas Paradis
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
3
|
Guo R, Zhang Y, Geng Y, Chen P, Fu T, Xia Y, Zhang R, Zhu Y, Jin J, Jin N, Xu H, Tian X. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway. Front Neuroanat 2023; 16:1057929. [PMID: 36686575 PMCID: PMC9850165 DOI: 10.3389/fnana.2022.1057929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-β, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.
Collapse
Affiliation(s)
- Runjie Guo
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjie Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Geng
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Fu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Xia
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ren Zhang
- Shanghai Chinese Medicine Literature Museum, Shanghai, China
| | - Yuan Zhu
- Shanghai Jinshan District Hospital of Traditional Chinese and Western Medicine, Shanghai, China
| | - Jingling Jin
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Nange Jin
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | - Hong Xu
- Department of Acupuncture-Moxibustion, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| | - Xuesong Tian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| |
Collapse
|
4
|
Huber CC, Wang X, Wang H. Impact of Cardiovascular Diseases on Ischemic Stroke Outcomes. J Integr Neurosci 2022; 21:138. [PMID: 36137958 PMCID: PMC9721101 DOI: 10.31083/j.jin2105138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Stroke induces complex pathological cascades in the affected brain area, leading to brain injury and functional disability. To fight against cerebral ischemia/reperfusion-induced neuronal death, numerous neuroprotective strategies and reagents have been studied. However, translation of these neuroprotective drugs to clinical trials has been unsuccessful. To date, the tissue plasminogen activator is still the only FDA-approved drug for treating ischemic stroke. Thus, it is obligatory to identify and validate additional therapeutic strategies for stroke. A stroke rarely occurs without any other pathophysiological condition; but instead, it often has multi-morbidity conditions, one of which is cardiac disease. Indeed, up to half of the stroke cases are associated with cardiac and large artery diseases. As an adequate blood supply is essential for the brain to maintain its normal function, any pathophysiological alterations in the heart are frequently implicated in stroke outcomes. In this review, we summarize some of the cardiovascular factors that influence stroke outcomes and propose that considering these factors in designing stroke therapies should enhance success in clinical trials. We also highlight the recent advances regarding the potential effect of protein aggregates in a peripheral organ, such as in the heart, on ischemic stroke-caused brain injury and functional recovery. Including these and other comorbidity factors in the future therapeutic strategy designs should facilitate translational success toward developing effective combinational therapies for the disorder.
Collapse
Affiliation(s)
- Christa C. Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
5
|
Zhang G, Lai Z, Gu L, Xu K, Wang Z, Duan Y, Chen H, Zhang M, Zhang J, Zhao Z, Wang S. Delta Opioid Receptor Activation with Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin Contributes to Synaptic Improvement in Rat Hippocampus against Global Ischemia. Cell Transplant 2021; 30:9636897211041585. [PMID: 34470528 PMCID: PMC8419564 DOI: 10.1177/09636897211041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Global cerebral ischemia induced by cardiac arrest usually leads to poor neurological outcomes. Numerous studies have focused on ways to prevent ischemic damage in the brain, however clinical therapies are still limited. Our previous studies revealed that delta opioid receptor (DOR) activation with [d-Ala2, d-Leu5] enkephalin (DADLE), a DOR agonist, not only significantly promotes neuronal survival on day 3, but also improves spatial memory deficits on days 5-9 after ischemia. However, the neurological mechanism underlying DADLE-induced cognitive recovery remains unclear. This study first examined the changes in neuronal survival in the CA1 region at the advanced time point (day 7) after ischemia/reperfusion (I/R) injury and found a significant amelioration of damaged CA1 neurons in the rats treated with DADLE (2.5 nmol) when administered at the onset of reperfusion. The structure and function of CA1 neurons on days 3 and 7 post-ischemia showed significant improvements in both the density of the injured dendritic spines and the basic transmission of the impaired CA3-CA1 synapses following DADLE treatment. The molecular changes involved in DADLE-mediated synaptic modulation on days 3 and 7 post-ischemia implied the time-related differential regulation of PKCα-MARCKS on the dendritic spine structure and of BDNF- ERK1/2-synapsin I on synaptic function, in response to ischemic/reperfusion injury as well as to DADLE treatment. Importantly, all the beneficial effects of DADLE on ischemia-induced cellular, synaptic, and molecular deficits were eliminated by the DOR inhibitor naltrindole (2.5 nmol). Taken together, this study suggested that DOR activation-induced protective signaling pathways of PKCα-MARCKS involved in the synaptic morphology and BDNF-ERK-synapsin I in synaptic transmission may be engaged in the cognitive recovery in rats suffering from advanced cerebral ischemia.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zelin Lai
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Lingling Gu
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Kejia Xu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Zhenlu Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yale Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital
| | - Min Zhang
- Tongji University School of Medicine, Shanghai 201204, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital.,Tongji University School of Medicine, Shanghai 201204, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
6
|
Sun Y, Chen H, Lin Y. Rehabilitation training inhibits neuronal apoptosis by down-regulation of TLR4/MyD88 signaling pathway in mice with cerebral ischemic stroke. Am J Transl Res 2021; 13:2213-2223. [PMID: 34017384 PMCID: PMC8129365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the role of rehabilitation training and TLR4/MyD88 signaling pathway on neuronal apoptosis in mice with cerebral ischemic stroke. METHODS Mice were randomized into six groups, which were normal group (healthy mice, n=20), control group (sham surgery, n=20), model group (middle cerebral artery occlusion (MCAO) model, n=20), training (MCAO model, continuous rehabilitation training for 4 weeks, n=20), TAK-242 group (MCAO model, TL R4 inhibitor TAK-242, n=20), and TAK-242 + Training group (MCAO model, TLR4 inhibitor TAK-242 + rehabilitation training, n=20). RESULTS Neurobehavioral assessment was performed, and cerebral infarction area of mice was detected by triphenyl tetrazolium chloride staining. Compared with the normal group, no significant differences in all indicators were found in the control group (all P>0.05), while the other groups had higher neurological function scores, cerebral infarction area, neuronal apoptosis rate, increased expressions of TLR4, MyD88, Bax, NF-κB, TNF-α, Caspase-3, IL-1βA and decreased mRNA and protein expressions of Bcl-2 (all P<0.05). CONCLUSION Rehabilitation training can effectively reduce the apoptosis of hippocampal neurons in mice with ischemic stroke by inhibiting the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- School of Rehabilitation Medicine, He’nan University of Chinese MedicineZhengzhou, He’nan Province, China
| | - Hai Chen
- Department of Children’s Rehabilitation, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou, He’nan Province, China
| | - Yibing Lin
- Shaoxing Institute of Traditional Chinese Medicine Culture, Shaoxing Hospital of Traditional Chinese MedicineShaoxing, Zhejiang Province, China
| |
Collapse
|
7
|
Liu Y, Subedi K, Baride A, Romanova S, Callegari E, Huber CC, Wang X, Wang H. Peripherally misfolded proteins exacerbate ischemic stroke-induced neuroinflammation and brain injury. J Neuroinflammation 2021; 18:29. [PMID: 33472658 PMCID: PMC7818745 DOI: 10.1186/s12974-021-02081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein aggregates can be found in peripheral organs, such as the heart, kidney, and pancreas, but little is known about the impact of peripherally misfolded proteins on neuroinflammation and brain functional recovery following ischemic stroke. METHODS Here, we studied the ischemia/reperfusion (I/R) induced brain injury in mice with cardiomyocyte-restricted overexpression of a missense (R120G) mutant small heat shock protein, αB-crystallin (CryABR120G), by examining neuroinflammation and brain functional recovery following I/R in comparison to their non-transgenic (Ntg) littermates. To understand how peripherally misfolded proteins influence brain functionality, exosomes were isolated from CryABR120G and Ntg mouse blood and were used to treat wild-type (WT) mice and primary cortical neuron-glia mix cultures. Additionally, isolated protein aggregates from the brain following I/R were isolated and subjected to mass-spectrometric analysis to assess whether the aggregates contained the mutant protein, CryABR120G. To determine whether the CryABR120G misfolding can self-propagate, a misfolded protein seeding assay was performed in cell cultures. RESULTS Our results showed that CryABR120G mice exhibited dramatically increased infarct volume, delayed brain functional recovery, and enhanced neuroinflammation and protein aggregation in the brain following I/R when compared to the Ntg mice. Intriguingly, mass-spectrometric analysis of the protein aggregates isolated from CryABR120G mouse brains confirmed presence of the mutant CryABR120G protein in the brain. Importantly, intravenous administration of WT mice with the exosomes isolated from CryABR120G mouse blood exacerbated I/R-induced cerebral injury in WT mice. Moreover, incubation of the CryABR120G mouse exosomes with primary neuronal cultures induced pronounced protein aggregation. Transduction of CryABR120G aggregate seeds into cell cultures caused normal CryAB proteins to undergo dramatic aggregation and form large aggregates, suggesting self-propagation of CryABR120G misfolding in cells. CONCLUSIONS These results suggest that peripherally misfolded proteins in the heart remotely enhance neuroinflammation and exacerbate brain injury following I/R likely through exosomes, which may represent an underappreciated mechanism underlying heart-brain crosstalk.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Aravind Baride
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Christa C Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
8
|
Lai Z, Gu L, Yu L, Chen H, Yu Z, Zhang C, Xu X, Zhang M, Zhang M, Ma M, Zhao Z, Zhang J. Delta opioid peptide [d-Ala2, d-Leu5] enkephalin confers neuroprotection by activating delta opioid receptor-AMPK-autophagy axis against global ischemia. Cell Biosci 2020; 10:79. [PMID: 32549974 PMCID: PMC7294676 DOI: 10.1186/s13578-020-00441-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Ischemic stroke poses a severe risk to human health worldwide, and currently, clinical therapies for the disease are limited. Delta opioid receptor (DOR)-mediated neuroprotective effects against ischemia have attracted increasing attention in recent years. Our previous studies revealed that DOR activation by [d-Ala2, d-Leu5] enkephalin (DADLE), a selective DOR agonist, can promote hippocampal neuronal survival on day 3 after ischemia. However, the specific molecular and cellular mechanisms underlying the DOR-induced improvements in ischemic neuronal survival remain unclear. Results We first detected the cytoprotective effects of DADLE in an oxygen–glucose deprivation/reperfusion (OGD/R) model and observed increased viability of OGD/R SH-SY5Y neuronal cells. We also evaluated changes in the DOR level following ischemia/reperfusion (I/R) injury and DADLE treatment and found that DADLE increased DOR levels after ischemia in vivo and vitro. The effects of DOR activation on postischemic autophagy were then investigated, and the results of the animal experiment showed that DOR activation by DADLE enhanced autophagy after ischemia, as indicated by elevated LC3 II/I levels and reduced P62 levels. Furthermore, the DOR-mediated protective effects on ischemic CA1 neurons were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, the results of the cell experiments revealed that DOR activation not only augmented autophagy after OGD/R injury but also alleviated autophagic flux dysfunction. The molecular pathway underlying DOR-mediated autophagy under ischemic conditions was subsequently studied, and the in vivo and vitro data showed that DOR activation elevated autophagy postischemia by triggering the AMPK/mTOR/ULK1 signaling pathway, while the addition of the AMPK inhibitor compound C eliminated the protective effects of DOR against I/R injury. Conclusion DADLE-evoked DOR activation enhanced neuronal autophagy through activating the AMPK/mTOR/ULK1 signaling pathway to improve neuronal survival and exert neuroprotective effects against ischemia.
Collapse
Affiliation(s)
- Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lingling Gu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| | - Zhenhua Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Cheng Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Xiaoqing Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Mutian Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| | - Mingliang Ma
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062 China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China.,Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Affiliated to Fudan University, Shanghai, 201508 China
| |
Collapse
|
9
|
Liu Y, Feng S, Subedi K, Wang H. Attenuation of Ischemic Stroke-Caused Brain Injury by a Monoamine Oxidase Inhibitor Involves Improved Proteostasis and Reduced Neuroinflammation. Mol Neurobiol 2020; 57:937-948. [PMID: 31620993 PMCID: PMC7035161 DOI: 10.1007/s12035-019-01788-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Mitochondrial dysfunction and oxidative stress play a key role in ischemia/reperfusion (I/R) induced brain injury. We previously showed that ubiquilin-1 (Ubqln1), a ubiquitin-like protein, improves proteostasis and protects brains against oxidative stress and I/R induced brain injury. We demonstrate here that nialamide (NM), a non-selective monoamine oxidase (MAO) inhibitor, upregulated Ublqn1 and protected neurons from oxygen-glucose deprivation- and I/R-caused cell death in in vitro and in vivo, respectively. Post-ischemic administration of the NM in a stroke mouse model even at 3 h following I/R still reduced neuronal injury and improved functional recovery and survival. Treating stroke animals with NM also increased the association of Ubqln1 with mitochondria and decreased the total oxidized and polyubiquitinated protein levels. Intriguingly, NM-enhanced proteostasis was also associated with reduced I/R-caused neuroinflammation, as reflected by attenuated activation of microglia and astrocytes as well as reduced TNF-α level. Thus, our results suggest that MAO inhibition-induced neuroprotection following I/R involves improved proteostasis and reduced neuroinflammation.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Shelley Feng
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
10
|
Abstract
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels. Despite having advancement in the use of thrombolytic and clot removal medicine, significant numbers of stroke patients are still left out without option for treatment. In this review, we summarize recent research work on the activation of δ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury. Moreover, as activation of δ-opioid receptor by a non-peptidic δ-opioid receptor agonist also modulates the expression, maturation and processing of amyloid precursor protein and β-secretase activity, the potential role of these effects on ischemic stroke caused dementia or Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
11
|
Li N, Jia P, Huang Y. Facile access to highly functionalized hydroisoquinoline derivatives via phosphine-catalyzed sequential [3+3]/[3+3] annulation. Chem Commun (Camb) 2019; 55:10976-10979. [DOI: 10.1039/c9cc05832j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new phosphine-catalyzed sequential [3+3]/[3+3] annulation of δ-sulfonamido-allenoates and dienes for hydroisoquinoline derivatives with excellent yields and wide substrate scope.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|