1
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhu B, Cai B, Xue K, Zhou S, Yin G, Fang J. FKBP5 Induces Senescence in BMSCs and Inhibits Osteogenic Differentiation Through the Canonical WNT/β-Catenin Signalling Pathway in Senile Osteoporosis. J Cell Mol Med 2025; 29:e70552. [PMID: 40254776 PMCID: PMC12009754 DOI: 10.1111/jcmm.70552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Senile osteoporosis and its associated fractures significantly contribute to increased morbidity, mortality, and healthcare costs among older adults. Further research is needed to elucidate the molecular mechanisms underlying senile osteoporosis. This study found that FKBP5 expression in bone marrow mesenchymal stem cells (BMSCs) increases with age and is inversely correlated with patients' bone mineral density and CT values. Functional analyses revealed that FKBP5 plays a crucial regulatory role in BMSC osteogenic differentiation, acting through the canonical WNT/β-catenin signalling pathway. FKBP5 binds to β-catenin, promoting its ubiquitination and degradation. Importantly, administration of SAFit2, a selective FKBP5 inhibitor, enhanced bone mineral density in an animal model of senile osteoporosis. These findings suggest that FKBP5 may represent a novel therapeutic target and provide new insights into the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Bin Zhu
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Bowen Cai
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Kaixiao Xue
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Guoyong Yin
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| | - Jiahu Fang
- Department of OrthopedicsThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Soto OB, Ramirez CS, Koyani R, Rodriguez-Palomares IA, Dirmeyer JR, Grajeda B, Roy S, Cox MB. Structure and function of the TPR-domain immunophilins FKBP51 and FKBP52 in normal physiology and disease. J Cell Biochem 2024; 125:e30406. [PMID: 37087733 PMCID: PMC10903107 DOI: 10.1002/jcb.30406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Coordinated cochaperone interactions with Hsp90 and associated client proteins are crucial for a multitude of signaling pathways in normal physiology, as well as in disease settings. Research on the molecular mechanisms regulated by the Hsp90 multiprotein complexes has demonstrated increasingly diverse roles for cochaperones throughout Hsp90-regulated signaling pathways. Thus, the Hsp90-associated cochaperones have emerged as attractive therapeutic targets in a wide variety of disease settings. The tetratricopeptide repeat (TPR)-domain immunophilins FKBP51 and FKBP52 are of special interest among the Hsp90-associated cochaperones given their Hsp90 client protein specificity, ubiquitous expression across tissues, and their increasingly important roles in neuronal signaling, intracellular calcium release, peptide bond isomerization, viral replication, steroid hormone receptor function, and cell proliferation to name a few. This review summarizes the current knowledge of the structure and molecular functions of TPR-domain immunophilins FKBP51 and FKBP52, recent findings implicating these immunophilins in disease, and the therapeutic potential of targeting FKBP51 and FKBP52 for the treatment of disease.
Collapse
Affiliation(s)
- Olga B. Soto
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Christian S. Ramirez
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Rina Koyani
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Isela A. Rodriguez-Palomares
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Jessica R. Dirmeyer
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Brian Grajeda
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Sourav Roy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Marc B. Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
5
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
8
|
Chandra K, Swathi M, Keerthana B, Gopan S, Ghantasala JP, Joshi MB, Thondamal M, Parsa KVL. PHLPP1 regulates PINK1-parkin signalling and life span. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166718. [PMID: 37060964 DOI: 10.1016/j.bbadis.2023.166718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Adaptability to intracellular or extracellular cues is essential for maintaining cellular homeostasis. Metabolic signals intricately control the morphology and functions of mitochondria by regulating bioenergetics and metabolism. Here, we describe the involvement of PHLPP1, a Ser/Thr phosphatase, in mitochondrial homeostasis. Microscopic analysis showed the enhanced globular structure of mitochondria in PHLPP1-depleted HEK 293T and C2C12 cells, while forced expression of PHLPP1 promoted mitochondrial tubularity. We show that PHLPP1 promoted pro-fusion markers MFN2 and p-DRP1Ser637 levels using over-expression and knockdown strategies. Contrastingly, PHLPP1 induced mitochondrial fragmentation by augmenting pro-fission markers, t-DRP1 and pDrp1Ser616 upon mitochondrial stress. At the molecular level, PHLPP1 interacted with and caused dephosphorylation of calcineurin, a p-DRP1Ser637 phosphatase, under basal conditions. Likewise, PHLPP1 dimerized with PINK1 under basal conditions. However, the interaction of PHLPP1 with both calcineurin and PINK1 was impaired upon CCCP and oligomycin-induced mitochondrial stress. Interestingly, upon mitochondrial membrane depolarization, PHLPP1 promoted PINK1 stabilization and parkin recruitment to mitochondria, and thereby activated the mitophagy machinery providing a molecular explanation for the dual effects of PHLPP1 on mitochondria under different conditions. Consistent with our in-vitro findings, depletion of phlp-2, ortholog of PHLPP1 in C. elegans, led to mitochondrial fission under basal conditions, extended the lifespan of the worms, and enhanced survival of worms subjected to paraquat-induced oxidative stress.
Collapse
Affiliation(s)
- Kanika Chandra
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India; Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - M Swathi
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
| | - B Keerthana
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India; Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sooraj Gopan
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
| | | | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Manjunatha Thondamal
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam 530045, India
| | - Kishore V L Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India.
| |
Collapse
|
9
|
Tufano M, Marrone L, D'Ambrosio C, Di Giacomo V, Urzini S, Xiao Y, Matuozzo M, Scaloni A, Romano MF, Romano S. FKBP51 plays an essential role in Akt ubiquitination that requires Hsp90 and PHLPP. Cell Death Dis 2023; 14:116. [PMID: 36781840 PMCID: PMC9925821 DOI: 10.1038/s41419-023-05629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.
Collapse
Affiliation(s)
- Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Simona Urzini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Monica Matuozzo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
10
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
12
|
The Scaffold Immunophilin FKBP51 Is a Phosphoprotein That Undergoes Dynamic Mitochondrial-Nuclear Shuttling. Cells 2022; 11:cells11233771. [PMID: 36497030 PMCID: PMC9739885 DOI: 10.3390/cells11233771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus.
Collapse
|
13
|
Chen X, Wang Q, Li S, Li XJ, Yang W. Mitochondrial-Dependent and Independent Functions of PINK1. Front Cell Dev Biol 2022; 10:954536. [PMID: 35874823 PMCID: PMC9305176 DOI: 10.3389/fcell.2022.954536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
PINK1 has been characterized as a mitochondrial kinase that can target to damaged mitochondria to initiate mitophagy, a process to remove unhealthy mitochondria for protecting neuronal cells. Mutations of the human PINK1 gene are also found to cause early onset Parkinson’s disease, a neurodegenerative disorder with the pathological feature of mitochondrial dysfunction. Despite compelling evidence from in vitro studies to support the role of PINK1 in regulation of mitochondrial function, there is still lack of strong in vivo evidence to validate PINK1-mediated mitophagy in the brain. In addition, growing evidence indicates that PINK1 also executes function independent of mitochondria. In this review, we discuss the mitochondrial dependent and independent functions of PINK1, aiming at elucidating how PINK1 functions differentially under different circumstances.
Collapse
|
14
|
Im DS, Joselin A, Svoboda D, Takano T, Rousseaux MWC, Callaghan S, Slack RS, Hisanaga SI, Davis RJ, Park DS, Qu D. Cdk5-mediated JIP1 phosphorylation regulates axonal outgrowth through Notch1 inhibition. BMC Biol 2022; 20:115. [PMID: 35581583 PMCID: PMC9115922 DOI: 10.1186/s12915-022-01312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.
Collapse
Affiliation(s)
- Doo Soon Im
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Devon Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tesuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Steve Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01650, USA
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
15
|
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson's disease and its implication via Akt signaling. Neurochem Int 2022; 157:105344. [PMID: 35483538 DOI: 10.1016/j.neuint.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Substantia Nigra Pars-compacta (SNpc), in the basal ganglion region, is a primary source of dopamine release. These dopaminergic neurons require more energy than other neurons, as they are highly arborized and redundant. Neurons meet most of their energy demand (∼90%) from mitochondria. Oxidative phosphorylation (OxPhos) is the primary pathway for energy production. Many genes involved in Parkinson's disease (PD) have been associated with OxPhos, especially complex I. Abrogation in complex I leads to reduced ATP formation in these neurons, succumbing to death by inducing apoptosis. This review discusses the interconnection between complex I-associated PD genes and specific mitochondrial metabolic factors (MMFs) of OxPhos. Interestingly, all the complex I-associated PD genes discussed here have been linked to the Akt signaling pathway; thus, neuron survival is promoted and smooth mitochondrial function is ensured. Any changes in these genes disrupt the Akt pathway, which hampers the opening of the permeability transition pore (PTP) via GSK3β dephosphorylation; promotes destabilization of OxPhos; and triggers the release of pro-apoptotic factors.
Collapse
Affiliation(s)
- Md Zainul Ali
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
16
|
Chen Y, Zhao M, Fan X, Zhu P, Jiang Z, Li F, Yuan W, You S, Chen J, Li Y, Shi Y, Zhu X, Ye X, Li F, Zhuang J, Li Y, Jiang Z, Wang Y, Wu X. Engagement of gcFKBP5/TRAF2 by spring viremia of carp virus to promote host cell apoptosis for supporting viral replication in grass carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104291. [PMID: 34710469 DOI: 10.1016/j.dci.2021.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Spring viremia of carp virus (SVCV) causes severe morbidity and mortality in grass carp (Ctenopharyngodon idellus) in Europe, America and several Asian countries. We found that FKBP5 (FK506-binding protein 5) is an SVCV infection response factor; however, its role in the innate immune mechanism caused by SVCV infection remains unknown. This study cloned gcFKBP5 (grass carp FKBP5) and made its mimic protein structure for function discussion. We found that gcFKBP5 expression in the primary innate immune organs of grass carp, including intestine, liver and spleen, was highly upregulated by SVCV in 24 h, with a similar result in fish cells by poly(I:C) treatment. gcFKBP overexpression aggravates viral damage to cells and increases viral replication. Furthermore, SVCV engages gcFKBP5 interacting with TRAF2 (tumour necrosis factor receptor-associated factor 2) to promote host cell apoptosis for supporting viral replication. The enhanced viral replication seems not to be due to the repression of IFN and other antiviral factors as expected. For the first time, these data show the pivotal role of gcFKBP5 in the innate immune response of grass carp to SVCV infection.
Collapse
Affiliation(s)
- Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Mengjing Zhao
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiongwei Fan
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Zhaobiao Jiang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Faxiang Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wuzhou Yuan
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shiqi You
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yunxuan Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xiaolan Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xiangli Ye
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Fang Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yongqing Li
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhigang Jiang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Yuequn Wang
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Xiushan Wu
- State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
17
|
Bailus BJ, Scheeler SM, Simons J, Sanchez MA, Tshilenge KT, Creus-Muncunill J, Naphade S, Lopez-Ramirez A, Zhang N, Lakshika Madushani K, Moroz S, Loureiro A, Schreiber KH, Hausch F, Kennedy BK, Ehrlich ME, Ellerby LM. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy 2021; 17:4119-4140. [PMID: 34024231 PMCID: PMC8726715 DOI: 10.1080/15548627.2021.1904489] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Current disease-modifying therapies for Huntington disease (HD) focus on lowering mutant HTT (huntingtin; mHTT) levels, and the immunosuppressant drug rapamycin is an intriguing therapeutic for aging and neurological disorders. Rapamycin interacts with FKBP1A/FKBP12 and FKBP5/FKBP51, inhibiting the MTORC1 complex and increasing cellular clearance mechanisms. Whether the levels of FKBP (FK506 binding protein) family members are altered in HD models and if these proteins are potential therapeutic targets for HD have not been investigated. Here, we found levels of FKBP5 are significantly reduced in HD R6/2 and zQ175 mouse models and human HD isogenic neural stem cells and medium spiny neurons derived from induced pluripotent stem cells. Moreover, FKBP5 interacts and colocalizes with HTT in the striatum and cortex of zQ175 mice and controls. Importantly, when we decreased FKBP5 levels or activity by genetic or pharmacological approaches, we observed reduced levels of mHTT in our isogenic human HD stem cell model. Decreasing FKBP5 levels by siRNA or pharmacological inhibition increased LC3-II levels and macroautophagic/autophagic flux, suggesting autophagic cellular clearance mechanisms are responsible for mHTT lowering. Unlike rapamycin, the effect of pharmacological inhibition with SAFit2, an inhibitor of FKBP5, is MTOR independent. Further, in vivo treatment for 2 weeks with SAFit2, results in reduced HTT levels in both HD R6/2 and zQ175 mouse models. Our studies establish FKBP5 as a protein involved in the pathogenesis of HD and identify FKBP5 as a potential therapeutic target for HD.Abbreviations : ACTB/β-actin: actin beta; AD: Alzheimer disease; BafA1: bafilomycin A1; BCA: bicinchoninic acid; BBB: blood brain barrier; BSA: bovine serum albumin; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FKBPs: FK506 binding proteins; HD: Huntington disease; HTT: huntingtin; iPSC: induced pluripotent stem cells; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MES: 2-ethanesulfonic acid; MOPS: 3-(N-morphorlino)propanesulfonic acid); MSN: medium spiny neurons; mHTT: mutant huntingtin; MTOR: mechanistic target of rapamycin kinase; NSC: neural stem cells; ON: overnight; PD: Parkinson disease; PPIase: peptidyl-prolyl cis/trans-isomerases; polyQ: polyglutamine; PPP1R1B/DARPP-32: protein phosphatase 1 regulatory inhibitor subunit 1B; PTSD: post-traumatic stress disorder; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TBST:Tris-buffered saline, 0.1% Tween 20; TUBA: tubulin; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: littermate controls.
Collapse
Affiliation(s)
- Barbara J. Bailus
- The Buck Institute for Research on Aging, Novato, CA, USA
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Stephen M. Scheeler
- The Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jesse Simons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | - Swati Naphade
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Ningzhe Zhang
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Brian K. Kennedy
- The Buck Institute for Research on Aging, Novato, CA, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
18
|
Phosphatase PHLPP2 regulates the cellular response to metabolic stress through AMPK. Cell Death Dis 2021; 12:904. [PMID: 34608126 PMCID: PMC8490465 DOI: 10.1038/s41419-021-04196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
PHLPP2 is a member of the PHLPP family of phosphatases, known to suppress cell growth by inhibiting proliferation or promoting apoptosis. Oncogenic kinases Akt, S6K, and PKC, and pro-apoptotic kinase Mst1, have been recognized as functional targets of the PHLPP family. However, we observed that, in T-leukemia cells subjected to metabolic stress from glucose limitation, PHLPP2 specifically targets the energy-sensing AMP-activated protein kinase, pAMPK, rather than Akt or S6K. PHLPP2 dephosphorylates pAMPK in several other human cancer cells as well. PHLPP2 and pAMPK interact with each other, and the pleckstrin homology (PH) domain on PHLPP2 is required for their interaction, for dephosphorylating and inactivating AMPK, and for the apoptotic response of the leukemia cells to glucose limitation. Silencing PHLPP2 protein expression prolongs the survival of leukemia cells subjected to severe glucose limitation by promoting a switch to AMPK-mediated fatty acid oxidation for energy generation. Thus, this study reveals a novel role for PHLPP2 in suppressing a survival response mediated through AMPK signaling. Given the multiple ways in which PHLPP phosphatases act to oppose survival signaling in cancers and the pivotal role played by AMPK in redox homeostasis via glucose and fatty acid metabolism, the revelation that AMPK is a target of PHLPP2 could lead to better therapeutics directed both at cancer and at metabolic diseases.
Collapse
|
19
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
20
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
FBXO22, ubiquitination degradation of PHLPP1, ameliorates rotenone induced neurotoxicity by activating AKT pathway. Toxicol Lett 2021; 350:1-9. [PMID: 34182063 DOI: 10.1016/j.toxlet.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the lacking of dopaminergic neurons. Many reports have illustrated that rotenone is applied to establish the experimental model of PD, which simulates PD-like symptoms. FBXO22 is a poorly understood protein that may be involved in neurological disorders. However, little is known about FBXO22 in PD. In this study, first, SH-SY5Y cells were treated with rotenone to construct PD model in vitro. It was discovered that the FBXO22 expression was down-regulated following rotenone treatment. Additionally, overexpression of FBXO22 reduced rotenone treatment-mediated cell apoptosis in SH-SY5Y cells. In view of the ubiquitination effect of FBXO22, our study uncovered that FBXO22 bound with and degraded PHLPP1 by ubiquitination. Next, the effects of PHLPP1 on AKT pathway in PD were further explored. It was demonstrated that PHLPP1 inactivated AKT pathway through down-regulating the pAKT/AKT and pmTOR/mTOR levels. Through rescue assays, the results showed that PHLPP1 overexpression partially reversed the reduction of rotenone induced neurotoxicity caused by FBXO22 overexpression. Finally, we found that overexpression of FBXO22 alleviated rotenone-induced PD symptoms in rat model. Moreover, it was discovered that l-dopa treatment could not affect the FBXO22 expression in PD. In conclusion, findings from our work proved that FBXO22 degraded PHLPP1 by ubiquitination to ameliorate rotenone induced neurotoxicity, which attributed to activate AKT pathway. This work suggested that FBXO22 may be an effective biological marker for PD treatment.
Collapse
|
22
|
Park JM, Yang SW, Zhuang W, Bera AK, Liu Y, Gurbani D, von Hoyningen-Huene SJ, Sakurada SM, Gan H, Pruett-Miller SM, Westover KD, Potts MB. The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51. PLoS Biol 2021; 19:e3001281. [PMID: 34077419 PMCID: PMC8202955 DOI: 10.1371/journal.pbio.3001281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/14/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates. This study describes the discovery and characterization of a nutrient-sensitive signaling pathway that drives growth and inhibits autophagy in mammalian cells. This pathway, which involves the non-receptor tyrosine kinase SRMS and the PHLPP scaffold protein FKBP51, promotes tumor growth and is amenable to pharmacological inhibition.
Collapse
Affiliation(s)
- Jung Mi Park
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
| | - Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Asim K. Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yan Liu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sergei J. von Hoyningen-Huene
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haiyun Gan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Malia B. Potts
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Oncology Research, Amgen Research, Thousand Oaks, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Baffi TR, Cohen-Katsenelson K, Newton AC. PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling. Annu Rev Pharmacol Toxicol 2021; 61:723-743. [PMID: 32997603 PMCID: PMC11003498 DOI: 10.1146/annurev-pharmtox-031820-122108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Ksenya Cohen-Katsenelson
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| |
Collapse
|
24
|
Xing L, Cai Y, Yang T, Yu W, Gao M, Chai R, Ding S, Wei J, Pan J, Chen G. Epitranscriptomic m6A regulation following spinal cord injury. J Neurosci Res 2020; 99:843-857. [PMID: 33271625 DOI: 10.1002/jnr.24763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
RNA methylation is involved in multiple physiological and pathological processes. However, the role of RNA methylation in spinal cord regeneration has not been reported. In this study, we find an altered m6A (N6-methyladenosine) RNA methylation profiling following zebrafish spinal cord injury (SCI), in line with an altered transcription level of the m6A methylase Mettl3. Interestingly, many of the differential m6A-tagged genes associated with neural regeneration are hypomethylated, but their transcription levels are upregulated in SCI. Moreover, we find that METTL3 may be important for spinal cord regeneration. We also show a conserved feature of METTL3 changes in mouse SCI model, in which the expression of METTL3 is increased in both astrocytes and neural stem cells. Together, our results indicate that m6A RNA methylation is dynamic and conserved following SCI and may contribute to spinal cord regeneration.
Collapse
Affiliation(s)
- Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yunyun Cai
- Department of Physiology, School of medicine, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weiwei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengdie Gao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Chai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sujun Ding
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinhuan Wei
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Jingying Pan
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
25
|
Yu B, Shen B, Ba Z, Liu Z, Yuan J, Zhao W, Wu D. USP15 promotes the apoptosis of degenerative nucleus pulposus cells by suppressing the PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24:13813-13823. [PMID: 33135363 PMCID: PMC7754067 DOI: 10.1111/jcmm.15971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Degenerative disc disease is characterized by an enhanced breakdown of its existing nucleus pulposus (NP) matrix due to the dysregulation of matrix enzymes and factors. Ubiquitin-specific protease 15 (USP15) is reported to be abnormal in certain human diseases. However, its role in NP degeneration remains unclear. Therefore, we aimed to explore the function of USP15 in degenerative NP cell specimens. METHODS We induced gene silencing and overexpression of USP15 in degenerative NP cells using RNA interference (RNAi) and a lentiviral vector, respectively. qRT-PCR and Western blotting were used to determine gene and protein expression levels. Cell apoptosis was analysed via flow cytometry. Protein interaction was examined by performing a co-immunoprecipitation assay. Furthermore, the PI3K inhibitor LY294002 and agonist IGF-1 were used to investigate the link between USP15 and AKT in NP degeneration. RESULTS We found that USP15 was up-regulated in degenerative NP cells and that its overexpression accelerated the process of apoptosis. Moreover, USP15 expression levels negatively correlated with AKT phosphorylation in degenerative NP cells. Furthermore, targeting and silencing USP15 with miR-338-3p and studying its interaction with FK506-binding protein 5 (FKBP5) revealed enhancement of FKBP5 ubiquitination, indicating that USP15 is a component of the FKBP5/AKT signalling pathway in degenerative NP cells. CONCLUSIONS Our results show that USP15 exacerbates NP degradation by deubiquitinating and stabilizing FKBP5. This in turn results in the suppression of AKT phosphorylation in degenerative NP cells. Therefore, our study provides insights into the understanding of USP15 function as a potential molecule in the network of NP degeneration.
Collapse
Affiliation(s)
- Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghan Liu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Liu Y, Lear TB, Verma M, Wang KZ, Otero PA, McKelvey AC, Dunn SR, Steer E, Bateman NW, Wu C, Jiang Y, Weathington NM, Rojas M, Chu CT, Chen BB, Mallampalli RK. Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1. JCI Insight 2020; 5:131834. [PMID: 32493843 DOI: 10.1172/jci.insight.131834] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia. A computational simulation-based screen led to the identification of a small molecule, BC1464, which abrogated FBXO7 and PINK1 association, leading to increased cellular PINK1 concentrations and activities, and limiting mitochondrial damage. BC1464 exerted antiinflammatory activity in human tissue explants and murine lung inflammation models. Furthermore, BC1464 conferred neuroprotection in primary cortical neurons, human neuroblastoma cells, and patient-derived cells in several culture models of Parkinson's disease. The data highlight a unique opportunity to use small molecule antagonists that disrupt PINK1 interaction with the ubiquitin apparatus to enhance mitochondrial quality, limit inflammatory injury, and maintain neuronal viability.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Medicine, the Acute Lung Injury Center of Excellence.,The McGowan Institute for Regenerative Medicine
| | - Travis B Lear
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Department of Environmental and Occupational Health, Graduate School of Public Health, and
| | - Manish Verma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kent Zq Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - P Anthony Otero
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Sarah R Dunn
- Department of Medicine, the Acute Lung Injury Center of Excellence
| | - Erin Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Mauricio Rojas
- Department of Medicine, the Acute Lung Injury Center of Excellence
| | - Charleen T Chu
- The McGowan Institute for Regenerative Medicine.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Ophthalmology.,The Pittsburgh Institute for Neurodegenerative Diseases
| | - Bill B Chen
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Vascular Medicine Institute, and
| | - Rama K Mallampalli
- Department of Medicine, the Acute Lung Injury Center of Excellence.,Department of Cell Biology and.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Vemuri S, Srivastava R, Mir Q, Hashemikhabir S, Dong XC, Janga SC. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome. Methods 2020; 178:104-113. [PMID: 31494246 PMCID: PMC7056568 DOI: 10.1016/j.ymeth.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 09/01/2019] [Indexed: 12/26/2022] Open
Abstract
Several protein-RNA cross linking protocols have been established in recent years to delineate the molecular interaction of an RNA Binding Protein (RBP) and its target RNAs. However, functional dissection of the role of the RBP binding sites in modulating the post-transcriptional fate of the target RNA remains challenging. CRISPR/Cas9 genome editing system is being commonly employed to perturb both coding and noncoding regions in the genome. With the advancements in genome-scale CRISPR/Cas9 screens, it is now possible to not only perturb specific binding sites but also probe the global impact of protein-RNA interaction sites across cell types. Here, we present SliceIt (http://sliceit.soic.iupui.edu/), a database of in silico sgRNA (single guide RNA) library to facilitate conducting such high throughput screens. SliceIt comprises of ~4.8 million unique sgRNAs with an estimated range of 2-8 sgRNAs designed per RBP binding site, for eCLIP experiments of >100 RBPs in HepG2 and K562 cell lines from the ENCODE project. SliceIt provides a user friendly environment, developed using advanced search engine framework, Elasticsearch. It is available in both table and genome browser views facilitating the easy navigation of RBP binding sites, designed sgRNAs, exon expression levels across 53 human tissues along with prevalence of SNPs and GWAS hits on binding sites. Exon expression profiles enable examination of locus specific changes proximal to the binding sites. Users can also upload custom tracks of various file formats directly onto genome browser, to navigate additional genomic features in the genome and compare with other types of omics profiles. All the binding site-centric information is dynamically accessible via "search by gene", "search by coordinates" and "search by RBP" options and readily available to download. Validation of the sgRNA library in SliceIt was performed by selecting RBP binding sites in Lipt1 gene and designing sgRNAs. Effect of CRISPR/Cas9 perturbations on the selected binding sites in HepG2 cell line, was confirmed based on altered proximal exon expression levels using qPCR, further supporting the utility of the resource to design experiments for perturbing protein-RNA interaction networks. Thus, SliceIt provides a one-stop repertoire of guide RNA library to perturb RBP binding sites, along with several layers of functional information to design both low and high throughput CRISPR/Cas9 screens, for studying the phenotypes and diseases associated with RBP binding sites.
Collapse
Affiliation(s)
- Sasank Vemuri
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - Seyedsasan Hashemikhabir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, United States; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, United States; Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN 46202, United States.
| |
Collapse
|
28
|
Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020; 48:441-449. [PMID: 32318709 PMCID: PMC7200631 DOI: 10.1042/bst20190332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Adaptation to stress is a fundamental requirement to cope with changing environmental conditions that pose a threat to the homeostasis of cells and organisms. Post-translational modifications (PTMs) of proteins represent a possibility to quickly produce proteins with new features demanding relatively little cellular resources. FK506 binding protein (FKBP) 51 is a pivotal stress protein that is involved in the regulation of several executers of PTMs. This mini-review discusses the role of FKBP51 in the function of proteins responsible for setting the phosphorylation, ubiquitination and lipidation of other proteins. Examples include the kinases Akt1, CDK5 and GSK3β, the phosphatases calcineurin, PP2A and PHLPP, and the ubiquitin E3-ligase SKP2. The impact of FKBP51 on PTMs of signal transduction proteins significantly extends the functional versatility of this protein. As a stress-induced protein, FKBP51 uses re-setting of PTMs to relay the effect of stress on various signaling pathways.
Collapse
|
29
|
Rein T. Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52. Bioessays 2020; 42:e1900250. [DOI: 10.1002/bies.201900250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Theo Rein
- Department of Translational Science in Psychiatry, MunichMax Planck Institute of Psychiatry Munich 80804 Germany
| |
Collapse
|
30
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
31
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
32
|
Li T, Zhang W, Kang X, Yang R, Li R, Huang L, Chen J, Yang Q, Sun X. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D‐ND6 pathway in the MPTP/MPP
+
‐induced model of Parkinson's disease. J Neurochem 2019; 153:276-289. [PMID: 31520529 DOI: 10.1111/jnc.14868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tao Li
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Wei Zhang
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Xiaogang Kang
- Department of Neurology Xijing Hospital Fourth Military Medical University Xi’an China
| | - Ruixin Yang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Ruru Li
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Lu Huang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jianzong Chen
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Xiaolong Sun
- Department of Rehabilitation Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
33
|
Furlong RM, Lindsay A, Anderson KE, Hawkins PT, Sullivan AM, O'Neill C. The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P 3. J Cell Sci 2019; 132:jcs.233221. [PMID: 31540955 DOI: 10.1242/jcs.233221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease (PD). Akt activation is reduced in the brain in PD, and by many PD-causing genes, including PINK1 This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1-modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to PINK1 kinase-dependent increases in PI(3,4,5)P3 at both plasma membrane and Golgi being significantly impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P3, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel M Furlong
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland.,Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland .,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| |
Collapse
|
34
|
Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019; 184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.
Collapse
|