1
|
Essam RM, Mohamed YS, El-Sayed SS, Kamel NM. Linking KATP channel activation to p-AKT/mTORC1/eEF2/BDNF axis unravels Nicorandil's promise in countering acetaminophen-induced hepatic encephalopathy in mice. Life Sci 2025; 366-367:123477. [PMID: 39983823 DOI: 10.1016/j.lfs.2025.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Nicorandil (NIC), an antianginal agent that acts both as an opener of adenosine triphosphate-sensitive potassium (KATP) channels and a nitric oxide donor, has demonstrated protective and curative effects in various diseases. The predominance of these mechanisms varies based on the dose of NIC and the specific organ affected. This study scrutinized the possible beneficial effects of NIC in acetaminophen (APAP)-induced hepatic encephalopathy (HE) model through highlighting the role of KATP channels in mediating these effects. Forty-eight mice were randomly subdivided into four groups: control (saline), APAP model (1 g/kg, i.p.), NIC treatment (15 mg/kg/day p.o. for 14 days), and glibenclamide (GLIB "KATP blocker", 5 mg/kg/day, p.o. 1 h before NIC for 14 days). NIC significantly mitigated APAP-induced liver injury, hyperammonemia, and cognitive deficits, as evidenced by reduced serum alanine aminotransferase, aspartate aminotransferase, ammonia levels, and improved performance in Y-maze and Morris Water Maze tests. Mechanistically, NIC suppressed hippocampal glutamate, activated phosphoserine 473 protein kinase B (p-AKT(Ser473))/mammalian target of rapamycin complex 1 (mTORC1) pathway, lessened the inactive phosphorylation of eukaryotic elongation factor 2 (eEF2), upsurged brain-derived neurotrophic factor (BDNF), leading to reduced neuroinflammation proved by nuclear factor-kappa B and tumor necrosis factor-alpha suppression. Histopathological analyses revealed improved liver and hippocampal morphology, while immunohistochemistry showed reduced astrocyte activation with NIC treatment. These effects were abolished by GLIB pre-treatment, indicating the crucial role of KATP channel. Accordingly, NIC could alleviate APAP-induced liver injury and HE mainly dependent on KATP channel opening, with resultant inhibition of glutamate signaling, activation of p-AKT/mTORC1/eEF2/BDNF trajectory, and abating hippocampal inflammation.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza 12577, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
2
|
Yan J, Bhanshali F, Shuzenji C, Mendenhall TT, Taylor SKB, Ermakova G, Cheng X, Bai P, Diwan G, Seraj D, Meyer JN, Sorensen PH, Hartman JH, Taubert S. Eukaryotic Elongation Factor 2 Kinase EFK-1/eEF2K promotes starvation resistance by preventing oxidative damage in C. elegans. Nat Commun 2025; 16:1752. [PMID: 39966347 PMCID: PMC11836464 DOI: 10.1038/s41467-025-56766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Cells and organisms frequently experience starvation. To survive, they mount an evolutionarily conserved stress response. A vital component in the mammalian starvation response is eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), which suppresses translation in starvation by phosphorylating and inactivating the translation elongation driver eEF2. C. elegans EFK-1/eEF2K phosphorylates EEF-2/eEF2 on a conserved residue and is required for starvation survival, but how it promotes survival remains unclear. Surprisingly, we found that eEF2 phosphorylation is unchanged in starved C. elegans and EFK-1's kinase activity is dispensable for starvation survival, suggesting that efk-1 promotes survival via a noncanonical pathway. We show that efk-1 upregulates transcription of DNA repair pathways, nucleotide excision repair (NER) and base excision repair (BER), to promote starvation survival. Furthermore, efk-1 suppresses oxygen consumption and ROS production in starvation to prevent oxidative stress. Thus, efk-1 enables starvation survival by protecting animals from starvation-induced oxidative damage through an EEF-2-independent pathway.
Collapse
Affiliation(s)
- Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Forum Bhanshali
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Catalera BioSolutions, 199 W 6th Ave, Vancouver, BC, V5Y 1K3, Canada
| | - Chiaki Shuzenji
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Tsultrim T Mendenhall
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Shane K B Taylor
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Canada's Michael Smith Genome Sciences Centre, 570 W 7th Ave, Vancouver, BC, V5Z 4S6, Canada
| | - Pamela Bai
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Gahan Diwan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Donna Seraj
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, 675 W 10th Ave, Vancouver, BC, V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
3
|
Ahn H, Lee H, Choi W, Lee H, Lee KG, Youn I, Hur W, Han S, Song C. Discovery of the therapeutic potential of naltriben against glutamate-induced neurotoxicity. Neurochem Int 2025; 183:105928. [PMID: 39756586 DOI: 10.1016/j.neuint.2025.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists. A potent, selective δ-opioid receptor antagonist naltriben, also known as a potent TRPM7 agonist, displayed the prominent protective effect against glutamate-induced toxicity through opioid receptor-independent, TRPM7-independent mechanisms in HT22 cells. Naltriben activated Nrf2 pathway, and alleviated glutamate-induced Ca2+ influx, ROS production, and apoptosis. Moreover, intraperitoneal administration of naltriben at 20 mg/kg greatly reduced the infarct volume in the subcortical photothrombotic ischemia mouse model in vivo. The neuroprotective activity of naltriben was enhanced by a longer pretreatment, indicating that like Nrf2 activators, naltriben also requires the cellular priming for its full protective effects. Together, these results suggested naltriben as a potential therapeutic agent in conditions related with glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Hyomin Ahn
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyomin Lee
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wonseok Choi
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyebin Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Inchan Youn
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungmin Han
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; KHU-KIST, Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedaero, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Chiman Song
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 Gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
4
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
5
|
Wang L, Song BS, Poojary R, Xiong X, Ren X, Yang JM, Song J. eEF-2K Deficiency Boosts the Virus-Specific Effector CD8 + T Cell Responses During Viral Infection. Viruses 2024; 17:26. [PMID: 39861816 PMCID: PMC11768472 DOI: 10.3390/v17010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
In this study, we revealed a critical role of eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, in regulating T cells during vaccinia virus (VACV) infection. We found that eEF-2K-deficient (eEF-2K⁻/⁻) mice exhibited a significantly higher proportion of VACV-specific effector CD8+ T cells without compromising the development of VACV-specific memory CD8+ T cells. RNA sequencing demonstrated that eEF-2K⁻/⁻ VACV-specific effector CD8+ T cells had enhanced functionality, which improves their capacity to combat viral infection during the effector phase. Moreover, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3) as a critical mediator of the stronger antiviral response observed in eEF-2K⁻/⁻ effector CD8+ T cells. These findings suggest that targeting eEF-2K may provide a novel strategy to augmenting effector CD8+ T cell responses against viral infections.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA (R.P.); (X.X.)
| | - Benny Shone Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA (R.P.); (X.X.)
| | - Rayansh Poojary
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA (R.P.); (X.X.)
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA (R.P.); (X.X.)
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA (R.P.); (X.X.)
| |
Collapse
|
6
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
7
|
Wang XL, Zhang RN, Pan YL, Li ZM, Li HQ, Lei YT, Zhao FF, Hao XX, Ma WW, Yu CP, Yao HW, Wang XY, Lv JJ, Wu YH, Wang SY. Reduction of eEF2 kinase alleviates the learning and memory impairment caused by acrylamide. Cell Biosci 2024; 14:106. [PMID: 39180059 PMCID: PMC11344312 DOI: 10.1186/s13578-024-01285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear. RESULTS Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism. CONCLUSIONS In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Ru-Nan Zhang
- Department of Nutrition and Food Hygiene, National Key Discipline, Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Lin Pan
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Cui-Ping Yu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Hong-Wei Yao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Xin-Yu Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Jun-Jie Lv
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China.
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China.
| |
Collapse
|
8
|
Lewis V, Rurak G, Salmaso N, Aguilar-Valles A. An integrative view on the cell-type-specific mechanisms of ketamine's antidepressant actions. Trends Neurosci 2024; 47:195-208. [PMID: 38220554 DOI: 10.1016/j.tins.2023.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Over the past six decades, the use of ketamine has evolved from an anesthetic and recreational drug to the first non-monoaminergic antidepressant approved for treatment-resistant major depressive disorder (MDD). Subanesthetic doses of ketamine and its enantiomer (S)-ketamine (esketamine) directly bind to several neurotransmitter receptors [including N-methyl-d-aspartic acid receptor (NMDAR), κ and μ opioid receptor (KOR and MOR)] widely distributed in the brain and across different cell types, implicating several potential molecular mechanisms underlying the action of ketamine as an antidepressant. This review examines preclinical studies investigating cell-type-specific mechanisms underlying the effects of ketamine on behavior and synapses. Cell-type-specific approaches are crucial for disentangling the critical mechanisms involved in the therapeutic effect of ketamine.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Gareth Rurak
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Argel Aguilar-Valles
- Department of Neuroscience, Carleton University, Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
9
|
Piserchio A, Dalby KN, Ghose R. Revealing eEF-2 kinase: recent structural insights into function. Trends Biochem Sci 2024; 49:169-182. [PMID: 38103971 PMCID: PMC10950556 DOI: 10.1016/j.tibs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas, Austin, TX 78712, USA.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; The Graduate Center of The City University of New York (CUNY), New York, NY 10016, USA.
| |
Collapse
|
10
|
Lourenco MV. Preface: Special issue "Brain Proteostasis in Health and Disease". J Neurochem 2023; 166:3-6. [PMID: 37414435 DOI: 10.1111/jnc.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
This preface introduces the Journal of Neurochemistry Special Issue on Brain Proteostasis. Adequate control of protein homeostasis, or proteostasis, has been at the center stage of brain physiology, and its deregulation may contribute to brain diseases, including several neuropsychiatric and neurodegenerative conditions. Therefore, delineating the processes underlying protein synthesis, folding, stability, function, and degradation in brain cells is key to promoting brain function and identifying effective therapeutic options for neurological disorders. This special issue comprises four review articles and four original articles covering the roles of protein homeostasis in several mechanisms that are of relevance to sleep, depression, stroke, dementia, and COVID-19. Thus, these articles highlight different aspects of proteostasis regulation in the brain and present important evidence on this growing and exciting field.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Wang X, Zhou X, Lee J, Furdui CM, Ma T. In-Depth Proteomic Analysis of De Novo Proteome in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1471-1482. [PMID: 36641677 PMCID: PMC10016629 DOI: 10.3233/jad-221044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common dementia syndrome in the elderly characterized by synaptic failure and unique brain pathology. De novo protein synthesis is required for the maintenance of memory and synaptic plasticity. Mounting evidence links impaired neuronal protein synthesis capacity and overall protein synthesis deficits to AD pathogenesis. Meanwhile, identities of AD-associated dysregulation of "newly synthesized proteome" remain elusive. OBJECTIVE To investigate de novo proteome alterations in the hippocampus of aged Tg19959 AD model mice. METHODS In this study, we combined the bioorthogonal noncanonical amino acid tagging (BONCAT) method with the unbiased large-scale proteomic analysis in acute living brain slices (we name it "BONSPEC") to investigate de novo proteome alterations in the hippocampus of Tg19959 AD model mice. We further applied multiple bioinformatics methods to analyze in-depth the proteomics data. RESULTS In total, 1,742 proteins were detected across the 10 samples with the BONSPEC method. After exclusion of those only detected in less than half of the samples in both groups, 1,362 proteins were kept for further analysis. 37 proteins were differentially expressed (based on statistical analysis) between the WT and Tg19959 groups. Among them, 19 proteins were significantly decreased while 18 proteins were significantly increased in the hippocampi of Tg19959 mice compared to WT mice. The results suggest that proteins involved in synaptic function were enriched in de novo proteome of AD mice. CONCLUSION Our study could provide insights into the future investigation into the molecular signaling mechanisms underlying AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Ma X, Li L, Li Z, Huang Z, Yang Y, Liu P, Guo D, Li Y, Wu T, Luo R, Xu J, Ye W, Jiang B, Shi L. eEF2 in the prefrontal cortex promotes excitatory synaptic transmission and social novelty behavior. EMBO Rep 2022; 23:e54543. [PMID: 35993189 PMCID: PMC9535807 DOI: 10.15252/embr.202154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 08/24/2023] Open
Abstract
Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.
Collapse
Affiliation(s)
- Xuanyue Ma
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Liuren Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhengyi Huang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yaorong Yang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Peng Liu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Daji Guo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Clinical Neuroscience InstituteThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yueyao Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Tianying Wu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ruixiang Luo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Wen‐Cai Ye
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Kasica NP, Zhou X, Jester HM, Holland CE, Ryazanov AG, Forshaw TE, Furdui CM, Ma T. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer’s disease model mice independent of brain amyloid β pathology. Front Aging Neurosci 2022; 14:959326. [PMID: 36158543 PMCID: PMC9500344 DOI: 10.3389/fnagi.2022.959326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Maintenance of memory and synaptic plasticity depends on de novo protein synthesis, and accumulating evidence implicates a role of dysregulated mRNA translation in cognitive impairments associated with Alzheimer’s disease (AD). Accumulating evidence demonstrates hyper-phosphorylation of translation factor eukaryotic elongation factor 2 (eEF2) in the hippocampi of human AD patients as well as transgenic AD model mice. Phosphorylation of eEF2 (at the Thr 56 site) by its only known kinase, eEF2K, leads to inhibition of general protein synthesis. A recent study suggests that amyloid β (Aβ)-induced neurotoxicity could be associated with an interaction between eEF2 phosphorylation and the transcription factor nuclear erythroid 2-related factor (NRF2)-mediated antioxidant response. In this brief communication, we report that global homozygous knockout of the eEF2K gene alleviates deficits of long-term recognition and spatial learning in a mouse model of AD (APP/PS1). Moreover, eEF2K knockout does not alter brain Aβ pathology in APP/PS1 mice. The hippocampal NRF2 antioxidant response in the APP/PS1 mice, measured by expression levels of nicotinamide adenine dinucleotide plus hydrogen (NADPH) quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), is ameliorated by suppression of eEF2K signaling. Together, the findings may contribute to our understanding of the molecular mechanisms underlying AD pathogenesis, indicating that suppression of eEF2K activity could be a beneficial therapeutic option for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole P. Kasica
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hannah M. Jester
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Caroline E. Holland
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alexey G. Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Tom E. Forshaw
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Cristina M. Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Tao Ma,
| |
Collapse
|
14
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. The Brain's Microvascular Response to High Glycemia and to the Inhibition of Soluble Epoxide Hydrolase Is Sexually Dimorphic. Nutrients 2022; 14:3451. [PMID: 36079709 PMCID: PMC9460226 DOI: 10.3390/nu14173451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Biological sex and a high glycemic diet (HGD) contribute to dementia, yet little is known about the operative molecular mechanisms. Our goal was to understand the differences between males and females in the multi-genomic response of the hippocampal microvasculature to the HGD, and whether there was vasculoprotection via the inhibition of soluble epoxide hydrolase (sEHI). Adult wild type mice fed high or low glycemic diets for 12 weeks, with or without an sEHI inhibitor (t-AUCB), had hippocampal microvessels isolated by laser-capture microdissection. Differential gene expression was determined by microarray and integrated multi-omic bioinformatic analyses. The HGD induced opposite effects in males and females: the HGD-upregulated genes were involved in neurodegeneration or neuroinflammation in males, whereas in females they downregulated the same pathways, favoring neuroprotection. In males, the HGD was associated with a greater number of clinical diseases than in females, the sEHI downregulated genes involved in neurodegenerative diseases to a greater extent with the HGD and compared to females. In females, the sEHI downregulated genes involved in endothelial cell functions to a greater extent with the LGD and compared to males. Our work has potentially important implications for sex-specific therapeutic targets for vascular dementia and cardiovascular diseases in males and females.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol Psychiatry 2022; 27:3182-3191. [PMID: 35484241 DOI: 10.1038/s41380-022-01589-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
The accumulation of amyloid-β protein (Aβ) plays an early role in the pathogenesis of Alzheimer's disease (AD). The precise mechanism of how Aβ accumulation leads to synaptic dysfunction and cognitive impairment remains unclear but is likely due to small soluble oligomers of Aβ (oAβ). Most studies have used chemical synthetic or cell-secreted Aβ oligomers to study their pathogenic mechanisms, but the Aβ derived from human AD brain tissue is less well characterized. Here we review updated knowledge on the extraction and characterization of bioactive human AD brain oAβ and the mechanisms by which they cause hippocampal synaptic dysfunction. Human AD brain-derived oAβ can impair hippocampal long-term potentiation (LTP) and enhance long-term depression (LTD). Many studies suggest that oAβ may directly disrupt neuronal NMDA receptors, AMPA receptors and metabotropic glutamate receptors (mGluRs). oAβ also impairs astrocytic synaptic functions, including glutamate uptake, D-serine release, and NMDA receptor function. We also discuss oAβ-induced neuronal hyperexcitation. These results may suggest a multi-target approach for the treatment of AD, including both oAβ neutralization and reversal of glutamate-mediated excitotoxicity.
Collapse
|
16
|
Eukaryotic Extension Factor 2 Kinase may Affect the Occurrence and Development of Glioblastoma Through Immune Cell Infiltration. Neurochem Res 2022; 47:3670-3681. [PMID: 35849271 DOI: 10.1007/s11064-022-03679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Glioblastoma (GBM) is one of the most common malignancies among primary brain tumors in adults, featuring a poor prognosis and a high recurrence rate. Eukaryotic elongation factor 2 kinase (eEF2K) is a calcium/calmodulin-dependent protein kinase that is involved in promoting tumor cell proliferation, migration, invasion, and survival. However, its expression level in GBM, its prognostic impact and correlation with immune infiltration are not yet known. In this study, we used The Cancer Genome Atlas (TCGA) database to explore the potential molecular mechanisms of eEF2K in GBM development and clinical prognosis in terms of gene expression, survival status, immune infiltration, and associated cellular pathways. We found that eEF2K expression levels were elevated in GBM, but eEF2K was not associated with the prognosis of GBM patients; eEF2K expression in GBM was associated with multiple immune cell infiltrations. These results show a statistical correlation between eEF2K expression and the development of GBM and immune cell infiltration, which helps us to understand the roles of eEF2K in GBM from different perspectives.
Collapse
|
17
|
Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC, Myers M, Matta-Camacho E, Aguilar-Valles A. Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 2022. [PMID: 35680556 DOI: 10.1111/jnc.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Molly Zhang
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Mysa Myers
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Edna Matta-Camacho
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|