1
|
Rymuza J, Kober P, Maksymowicz M, Nyc A, Mossakowska BJ, Woroniecka R, Maławska N, Grygalewicz B, Baluszek S, Zieliński G, Kunicki J, Bujko M. High level of aneuploidy and recurrent loss of chromosome 11 as relevant features of somatotroph pituitary tumors. J Transl Med 2024; 22:994. [PMID: 39497133 PMCID: PMC11536836 DOI: 10.1186/s12967-024-05736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/06/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Somatotroph neuroendocrine pituitary tumors (sPitNET) are a subtype of pituitary tumors that commonly cause acromegaly. Our study aimed to determine the spectrum of DNA copy number abnormalities (CNAs) in sPitNETs and their relevance. METHODS A landscape of CNAs in sPitNETs was determined using combined whole-genome approaches involving low-pass whole genome sequencing and SNP microarrays. Fluorescent in situ hybridization (FISH) was used for microscopic validation of CNAs. The tumors were also subjected to transcriptome and DNA methylation analyses with RNAseq and microarrays, respectively. RESULTS We observed a wide spectrum of cytogenetic changes ranging from multiple deletions, recurrent chromosome 11 loss, stable genomes, to duplication of the majority of the chromosomes. The identified CNAs were confirmed with FISH. sPitNETs with multiple duplications were characterized by intratumoral heterogeneity in chromosome number variation in individual tumor cells, as determined with FISH. These tumors were separate CNA-related sPitNET subtype in clustering analyses with CNA signature specific for whole genome doubling-related etiology. This subtype encompassed GNAS-wild type, mostly densely granulated tumors with favorable expression level of known prognosis-related genes, notably enriched with POUF1/NR5A1-double positive PitNETs. Chromosomal deletions in sPitNETs are functionally relevant. They occurred in gene-dense DNA regions and were related to genes downregulation and increased DNA methylation in the CpG island and promoter regions in the affected regions. Recurrent loss of chromosome 11 was reflected by lowered MEN1 and AIP. No such unequivocal relevance was found for chromosomal gains. Comparisons of transcriptomes of selected most cytogenetically stable sPitNETs with tumors with recurrent loss of chromosome 11 showed upregulation of processes related to gene dosage compensation mechanism in tumors with deletion. Comparison of stable tumors with those with multiple duplications showed upregulation of processes related to mitotic spindle, DNA repair, and chromatin organization. Both comparisons showed upregulation of the processes related to immune infiltration in cytogenetically stable tumors and deconvolution of DNA methylation data indicated a higher content of specified immune cells and lower tumor purity in these tumors. CONCLUSIONS sPitNETs fall into three relevant cytogenetic groups: highly aneuploid tumors characterized by known prognostically favorable features and low aneuploidy tumors including specific subtype with chromosome 11 loss.
Collapse
Affiliation(s)
- Julia Rymuza
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aleksandra Nyc
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata J Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Renata Woroniecka
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Maławska
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine, National Institute of Medicine, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
2
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
3
|
Gil J, Marques-Pamies M, Valassi E, Serra G, Salinas I, Xifra G, Casano-Sancho P, Carrato C, Biagetti B, Sesmilo G, Marcos-Ruiz J, Rodriguez-Lloveras H, Rueda-Pujol A, Aulinas A, Blanco A, Hostalot C, Simó-Servat A, Muñoz F, Rico M, Ibáñez-Domínguez J, Cordero E, Webb SM, Jordà M, Puig-Domingo M. Molecular characterization of epithelial-mesenchymal transition and medical treatment related-genes in non-functioning pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1129213. [PMID: 37033229 PMCID: PMC10074986 DOI: 10.3389/fendo.2023.1129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Different medical therapies have been developed for pituitary adenomas. However, Non-Functioning Pituitary Neuroendocrine Tumors (NF-PitNET) have shown little response to them. Furthermore, epithelial-mesenchymal transition (EMT) has been linked to resistance to medical treatment in a significant number of tumors, including pituitary adenomas. Methods We aimed to evaluate the expression of EMT-related markers in 72 NF-PitNET and 16 non-tumoral pituitaries. To further explore the potential usefulness of medical treatment for NF-PitNET we assessed the expression of somatostatin receptors and dopamine-associated genes. Results We found that SNAI1, SNAI2, Vimentin, KLK10, PEBP1, Ki-67 and SSTR2 were associated with invasive NF-PitNET. Furthermore, we found that the EMT phenomenon was more common in NF-PitNET than in GH-secreting pituitary tumors. Interestingly, PEBP1 was overexpressed in recurrent NF-PitNET, and could predict growth recurrence with 100% sensitivity but only 43% specificity. In parallel with previously reported studies, SSTR3 is highly expressed in our NF-PitNET cohort. However, SSTR3 expression is highly heterogeneous among the different histological variants of NF-PitNET with very low levels in silent corticotroph adenomas. Conclusion NF-PitNET showed an enhanced EMT phenomenon. SSTR3 targeting could be a good therapeutic candidate in NF-PitNET except for silent corticotroph adenomas, which express very low levels of this receptor. In addition, PEBP1 could be an informative biomarker of tumor regrowth, useful for predictive medicine in NF-PitNET.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Marques-Pamies
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| | - Elena Valassi
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Serra
- Department of Endocrinology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Isabel Salinas
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Gemma Xifra
- Department of Endocrinology, Josep Trueta University Hospital, Girona, Spain
| | - Paula Casano-Sancho
- Centro de Investigación en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Pediatric Endocrinology Unit, Institut de Recerca SJS 39-57, Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Betina Biagetti
- Department of Endocrinology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Gemma Sesmilo
- Department of Endocrinology, Dexeus University Hospital, Barcelona, Spain
| | - Jennifer Marcos-Ruiz
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Anna Rueda-Pujol
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Aulinas
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blanco
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Hostalot
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Andreu Simó-Servat
- Department of Endocrinology, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Fernando Muñoz
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Rico
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Esteban Cordero
- Department of Neurosurgery, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Susan M. Webb
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| |
Collapse
|
4
|
Transcriptomic Classification of Pituitary Neuroendocrine Tumors Causing Acromegaly. Cells 2022; 11:cells11233846. [PMID: 36497102 PMCID: PMC9738119 DOI: 10.3390/cells11233846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acromegaly results from growth hormone hypersecretion, predominantly caused by a somatotroph pituitary neuroendocrine tumor (PitNET). Acromegaly-causing tumors are histologically diverse. Our aim was to determine transcriptomic profiles of various somatotroph PitNETs and to evaluate clinical implication of differential gene expression. A total of 48 tumors were subjected to RNA sequencing, while expression of selected genes was assessed in 134 tumors with qRT-PCR. Whole-transcriptome analysis revealed three transcriptomic groups of somatotroph PitNETs. They differ in expression of numerous genes including those involved in growth hormone secretion and known prognostic genes. Transcriptomic subgroups can be distinguished by determining the expression of marker genes. Analysis of the entire cohort of patients confirmed differences between molecular subtypes of tumors. Transcriptomic group 1 includes ~20% of acromegaly patients with GNAS mutations-negative, mainly densely granulated tumors that co-express GIPR and NR5A1 (SF-1). SF-1 expression was verified with immunohistochemistry. Transcriptomic group 2 tumors are the most common (46%) and include mainly GNAS-mutated, densely granulated somatotroph and mixed PitNETs. They have a smaller size and express favorable prognosis-related genes. Transcriptomic group 3 includes predominantly sparsely granulated somatotroph PitNETs with low GNAS mutations frequency causing ~35% of acromegaly. Ghrelin signaling is implicated in their pathogenesis. They have an unfavorable gene expression profile and higher invasive growth rate.
Collapse
|
5
|
Prognostic Factors for Invasiveness and Recurrence of Pituitary Adenomas: A Series of 94 Patients. Diagnostics (Basel) 2022; 12:diagnostics12102413. [PMID: 36292101 PMCID: PMC9600140 DOI: 10.3390/diagnostics12102413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The aim of the current study is to evaluate the immunohistochemical expression of Ki-67, CD-56, Cyclin-D1 and E-Cadherin in the tissues samples of pituitary adenomas (PAs) and its association with PAs clinical manifestation tumor size, invasiveness and the risk of recurrence. (2) Materials and Methods: Ninety-four patients who underwent endoscope transsphenoidal excision of PAs were included in our study. The immunohistochemical expression of the Cyclin-D1, CD-56, E-Cadherin and Ki-67 markers was analyzed in paraffin-embedded tissue samples. (3) Results: The expression of Cyclin-D1 and Ki-67 index levels was positively correlated with the size (p < 0.001, r = 0.56 and p < 0.001, r = 0.43, respectively), the recurrence (p < 0.001, r = 0.46 and p = 0.007 r = 0.3, respectively), the extrasellar extension (p < 0.001, r = 0.48 and p < 0.001, r = 0.4, respectively) and the cavernous sinus invasion of (p < 0.001, r = 0.39 and p < 0.001, r = 0.3, respectively). No correlation was found between CD-56 and E-Cadherin expression with the size, the invasiveness and the recurrence of PAs. (4) Conclusion: Cyclin-D1 and Ki-67 are promising immunohistochemical markers in predicting the invasive behavior and recurrence of PAs in contrast to E-Cadherin and CD-56 which did not seem to be associated with PAs behavior post-surgery. However, larger studies are required in order to establish their role in the routine evaluation of PAs.
Collapse
|
6
|
Øystese KAB, Casar-Borota O, Berg-Johnsen J, Berg JP, Bollerslev J. Distribution of E- and N-cadherin in subgroups of non-functioning pituitary neuroendocrine tumours. Endocrine 2022; 77:151-159. [PMID: 35674926 PMCID: PMC9242907 DOI: 10.1007/s12020-022-03051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Clinically non-functioning pituitary neuroendocrine tumours (NF-PitNETs) present a varying degree of aggressiveness, and reliable prognostic markers are lacking. We aimed to characterise the distribution of E- and N-cadherin in corticotroph, PIT1 and null-cell NF-PitNETs, and link it to the course of the tumours. METHODS The distribution of E- and N-cadherin was investigated by immunohistochemistry in a retrospective cohort of 30 tumours of the less common NF-PitNETs (corticotroph (N = 18), PIT1 (N = 8) and null-cell PitNETs (N = 4)). Immunoreactive scores (IRS) were compared to previously presented cohorts of gonadotroph NF-PitNETs (N = 105) and corticotroph functioning PitNETs (N = 17). RESULTS We found a low IRS for the extra-cellular domain of E-cadherin (median 0 (IQR 0-0, N = 135)), a medium to high IRS for the intra-cellular domain of E-cadherin (median 6 (IQR 4-9)) and a high IRS for N-cadherin (median 12 (IQR 10.5-12)) throughout the cohort of NF-PitNETs. The corticotroph NF-PitNETs presented a higher IRS for both the extra- and intra-cellular domain of E-cadherin (median 0 (IQR 0-1) and median 9 (IQR 6-12), respectively) than the gonadotroph NF-PitNETs (p < 0.001 for both comparisons). Presence of nuclear E-cadherin was associated with a weaker staining for the intra-cellular domain of E-cadherin (median 4 (IQR 0.5-6) and median 9 (IQR 9-12), for tumours with and without nuclear E-cadherin, respectively), and with a lower rate of re-intervention (p = 0.03). CONCLUSIONS Considering our results and the benign course of NF-PitNETs, we suggest that a high N-cadherin and downregulation of membranous E-cadherin are not associated with a more aggressive tumour behaviour in these subgroups of NF-PitNETs.
Collapse
Affiliation(s)
- Kristin Astrid B Øystese
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Jon Berg-Johnsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jens Petter Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Bollerslev
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Lu L, Wan X, Xu Y, Chen J, Shu K, Lei T. Prognostic Factors for Recurrence in Pituitary Adenomas: Recent Progress and Future Directions. Diagnostics (Basel) 2022; 12:diagnostics12040977. [PMID: 35454025 PMCID: PMC9024548 DOI: 10.3390/diagnostics12040977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Pituitary adenomas (PAs) are benign lesions; nonetheless, some PAs exhibit aggressive behaviors, which lead to recurrence. The impact of pituitary dysfunction, invasion-related risks, and other complications considerably affect the quality of life of patients with recurrent PAs. Reliable prognostic factors are needed for recurrent PAs but require confirmation. This review summarizes research progress on two aspects—namely, the clinical and biological factors (biomarkers) for recurrent PAs. Postoperative residue, age, immunohistological subtypes, invasion, tumor size, hormone levels, and postoperative radiotherapy can predict the risk of recurrence in patients with PAs. Additionally, biomarkers such as Ki-67, p53, cadherin, pituitary tumor transforming gene, matrix metalloproteinase-9, epidermal growth factor receptor, fascin actin-bundling protein 1, cyclooxygenase-2, and some miRNAs and lncRNAs may be utilized as valuable tools for predicting PA recurrence. As no single marker can independently predict PA recurrence, we introduce an array of comprehensive models and grading methods, including multiple prognostic factors, to predict the prognosis of PAs, which have shown good effectiveness and would be beneficial for predicting PA recurrence.
Collapse
Affiliation(s)
| | | | | | | | | | - Ting Lei
- Correspondence: ; Tel./Fax: +86-27-8366-5202
| |
Collapse
|
8
|
Tang Y, Xie T, Wu S, Yang Q, Liu T, Li C, Liu S, Shao Z, Zhang X. Quantitative proteomics revealed the molecular characteristics of distinct types of granulated somatotroph adenomas. Endocrine 2021; 74:375-386. [PMID: 34043183 DOI: 10.1007/s12020-021-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Somatotroph adenomas are obviously heterogeneous in clinical characteristics, imaging performance, pathological diagnosis and therapeutic effect. The heterogeneity of the tumors, especially for SG and DG type adenomas, have attracted great interest in identifying the specific pathological markers and therapeutic targets of them. However, previous analyses of the molecular characteristics of the subtypes of somatotroph adenomas were performed at genomic and transcriptome level. The proteomic differences between the two subtypes of somatotroph adenomas are still unknown. METHODS Tumor samples were surgically removed from 10 sporadic pituitary somatotroph adenoma patients and grouped according to the pathological type. Tandem mass tag (TMT)-based quantitative proteomic analysis was employed to analyze the proteomic differences between SG and DG tumors. RESULTS In total, 228 differentially expressed proteins were identified between SG adenomas and DG adenomas. They were enriched mainly in extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, arrhythmogenic right ventricular cardiomyopathy and DNA replication pathways. Protein-protein interaction (PPI) network analysis indicated that Cadherin-1 and Catenin beta-1 were the most important key proteins in the differences between SG and DG adenomas. Immunohistochemistry (IHC) confirmed the expression levels of the key proteins. CONCLUSIONS This study provides large-scale proteome molecular characteristics of distinct granulation subtypes of somatotroph adenomas. Compared with DG adenomas, The differential protein of SG adenomas mostly enrich in invasive and proliferative functions and pathways at the proteomic level. Cadherin-1 and Catenin beta-1 play key roles in the different biological characteristics of the two tumor subtypes.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Silin Wu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoqiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Digital Medical Research Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Image Computing and Computer-Assisted Intervention, Shanghai, China.
| |
Collapse
|
9
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
10
|
Soukup J, Cesak T, Hornychova H, Manethova M, Michnova L, Netuka D, Vitovcova B, Cap J, Ryska A, Gabalec F. Cytokeratin 8/18-negative somatotroph pituitary neuroendocrine tumours (PitNETs, adenomas) show variable morphological features and do not represent a clinicopathologically distinct entity. Histopathology 2021; 79:406-415. [PMID: 33738859 DOI: 10.1111/his.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
AIMS In somatotroph pituitary neuroendocrine tumours (adenomas), a pattern of cytokeratin (CK) 18 expression is used for tumour subclassification, with possible clinical implications. Rare somatotroph tumours do not express CK 18. We aimed to characterise this subset clinically and histologically. METHODS AND RESULTS Clinical and pathological data for the study were derived from a previously published data set of a cohort of 110 patients with acromegaly. Data included serum levels of insulin-like growth factor 1 (IGF1), growth hormone (GH), prolactin and thyroid-stimulating hormone (TSH), tumour diameter, tumour invasion defined by Knosp grade and immunohistochemical data concerning the expression of Ki67, p53, E-cadherin, somatostatin receptor (SSTR)1, SSTR2A, SSTR3, SSTR5 and D2 dopamine receptor. Additional immunohistochemical analysis (AE1/3, CK 8/18, vimentin, neurofilament light chain, internexin-α) was performed. CK 18 was negative in 10 of 110 (9.1%) tumours. One of these tumours was immunoreactive with CK 8/18 antibody, while the remainder expressed only internexin-α intermediate filament in patterns similar to CK 18 (perinuclear fibrous bodies). CK-negative tumours showed no significant differences with respect to biochemical, radiological or pathological features. They showed significantly higher expression of SSTR2A compared to the sparsely granulated subtype and significantly lower expression of E-cadherin compared to the non-sparsely granulated subtypes of tumours. The tumours showed divergent morphology and hormonal expression: two corresponded to densely granulated tumours and three showed co-expression of prolactin and morphology of either mammosomatotroph or somatotroph-lactotroph tumours. Four tumours showed morphology and immunoprofile compatible with plurihormonal Pit1-positive tumours. CONCLUSIONS CK-negative somatotroph tumours do not represent a distinct subtype of somatotroph tumours, and can be further subdivided according to their morphology and immunoprofile.
Collapse
Affiliation(s)
- Jiri Soukup
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Cesak
- Department of Neurosurgery, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Monika Manethova
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Ludmila Michnova
- Department of Pathology, Military University Hospital Prague, Praha, Czech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, 1st Medical Faculty, Charles University, Military University Hospital Prague, Prague, Czech Republic
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Faculty of Medicine Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Cap
- 4th Department of Internal Medicine, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Filip Gabalec
- 4th Department of Internal Medicine, Faculty of Medicine Hradec Kralove, University Hospital, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Xia J, Li S, Ma D, Guo W, Long H, Yin W. MicroRNA‑29‑3p regulates the β‑catenin pathway by targeting IGF1 to inhibit the proliferation of prolactinoma cells. Mol Med Rep 2021; 23:432. [PMID: 33846792 PMCID: PMC8060803 DOI: 10.3892/mmr.2021.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to analyze the effects and underlying mechanisms of microRNA (miR)-29-3p on the proliferation and secretory abilities of prolactinoma cells by targeting insulin-like growth factor (IGF)-1/β-catenin. The relationship between miR-29a-3p and the survival of prolactinoma cells was analyzed with the Kaplan-Meier method in reference to The Cancer Genome Atlas. The expression levels of miR-29a-3p and IGF-1 in MMQ and GH3 cells were detected. A dual-luciferase reporter gene assay was performed to verify the combination of miR-29a-3p and IGF-1. Cells were transfected with a miR-29a-3p mimic and/or IGF-1 pcDNA3.1 to analyze the effects on the proliferation, apoptosis and secretion of prolactin (PRL) and growth hormone (GH) of prolactinoma cells. The effects on β-catenin in the cytoplasm and nucleus were investigated by western blot analysis. The results showed that miR-29a-3p expression was low in MMQ and GH3 cells. Overexpression miR-29a-3p inhibited IGF-1 mRNA and protein expression. miR-29a-3p inhibited cell proliferation and PRL and GH expression, and promoted apoptosis by inhibiting IGF-1. Increasing the expression of miR-29a-3p increased β-catenin levels in the cytoplasm, whereas IGF-1 promoted β-catenin activation and entry into the nucleus, and reversed the inhibitory effects of miR-29a-3p on β-catenin. To conclude, miR-29a-3p inhibited the proliferation and secretory abilities of prolactinoma cells by inhibiting nuclear translocation of β-catenin via a molecular mechanism that is inseparable from IGF-1.
Collapse
Affiliation(s)
- Jie Xia
- Department of Pharmacy, Yunnan Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Songmei Li
- Department of Pharmacy, Yunnan Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Dianfei Ma
- Department of Pharmacy, Yunnan Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Wenyujie Guo
- Department of Pediatrics, Kunming Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650011, P.R. China
| | - Hong Long
- Department of Pediatrics, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Weiping Yin
- Department of Pediatrics, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
12
|
Gil J, Jordà M, Soldevila B, Puig-Domingo M. Epithelial-Mesenchymal Transition in the Resistance to Somatostatin Receptor Ligands in Acromegaly. Front Endocrinol (Lausanne) 2021; 12:646210. [PMID: 33790868 PMCID: PMC8006574 DOI: 10.3389/fendo.2021.646210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process by which epithelial cells loss their phenotype and acquire mesenchymal traits, including increased migratory and invasive capacities. EMT is involved in physiological processes, such as embryogenesis and wound healing, and in pathological processes such as cancer, playing a pivotal role in tumor progression and metastasis. Pituitary tumors, although typically benign, can be locally invasive. Different studies have shown the association of EMT with increased tumor size and invasion in pituitary tumors, and in particular with a poor response to Somatostatin Receptor Ligands (SRLs) treatment in GH-producing pituitary tumors, the main cause of acromegaly. This review will summarize the current knowledge regarding EMT and SRLs resistance in acromegaly and, based on this relation, will suggest new biomarkers and possible therapies to SRLs resistant tumors.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Mireia Jordà
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| | - Berta Soldevila
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| |
Collapse
|
13
|
Flores-Martinez Á, Venegas-Moreno E, Dios E, Remón-Ruiz P, Gros-Herguido N, Vázquez-Borrego MC, Madrazo-Atutxa A, Japón MA, Kaen A, Cárdenas-Valdepeñas E, Roldán F, Castaño JP, Luque RM, Cano DA, Soto-Moreno A. Quantitative Analysis of Somatostatin and Dopamine Receptors Gene Expression Levels in Non-functioning Pituitary Tumors and Association with Clinical and Molecular Aggressiveness Features. J Clin Med 2020; 9:jcm9093052. [PMID: 32971845 PMCID: PMC7565399 DOI: 10.3390/jcm9093052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023] Open
Abstract
The primary treatment for non-functioning pituitary tumors (NFPTs) is surgery, but it is often unsuccessful. Previous studies have reported that NFPTs express receptors for somatostatin (SST1-5) and dopamine (DRDs) providing a rationale for the use of dopamine agonists and somatostatin analogues. Here, we systematically assessed SST1-5 and DRDs expression by real-time quantitative PCR (RT-qPCR) in a large group of patients with NFPTs (n = 113) and analyzed their potential association with clinical and molecular aggressiveness features. SST1-5 expression was also evaluated by immunohistochemistry. SST3 was the predominant SST subtype detected, followed by SST2, SST5, and SST1. DRD2 was the dominant DRD subtype, followed by DRD4, DRD5, and DRD1. A substantial proportion of NFPTs displayed marked expression of SST2 and SST5. No major association between SSTs and DRDs expression and clinical and molecular aggressiveness features was observed in NFPTs.
Collapse
Affiliation(s)
- Álvaro Flores-Martinez
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - Pablo Remón-Ruiz
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - Noelia Gros-Herguido
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - M. Carmen Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (M.C.V.-B.); (J.P.C.); (R.M.L.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), 14004 Córdoba, Spain
| | - Ainara Madrazo-Atutxa
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
| | - Miguel A. Japón
- Department of Pathology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain;
| | - Ariel Kaen
- Servicio de Neurocirugía, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (A.K.); (E.C.-V.)
| | | | - Florinda Roldán
- Servicio de Radiología, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain;
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (M.C.V.-B.); (J.P.C.); (R.M.L.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), 14004 Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (M.C.V.-B.); (J.P.C.); (R.M.L.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), 14004 Córdoba, Spain
| | - David A. Cano
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
- Correspondence: (D.A.C.); (A.S.-M.)
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (Á.F.-M.); (E.V.-M.); (E.D.); (P.R.-R.); (N.G.-H.); (A.M.-A.)
- Correspondence: (D.A.C.); (A.S.-M.)
| |
Collapse
|
14
|
Kolnes AJ, Øystese KAB, Olarescu NC, Ringstad G, Berg-Johnsen J, Casar-Borota O, Bollerslev J, Jørgensen AP. FSH Levels Are Related to E-cadherin Expression and Subcellular Location in Nonfunctioning Pituitary Tumors. J Clin Endocrinol Metab 2020; 105:5839824. [PMID: 32421791 PMCID: PMC7758833 DOI: 10.1210/clinem/dgaa281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Gonadotroph pituitary neuroendocrine tumors (PitNETs) can express follicle-stimulating hormone (FSH) and luteinizing hormone (LH) or be hormone negative, but they rarely secrete hormones. During tumor development, epithelial cells develop a mesenchymal phenotype. This process is characterized by decreased membranous E-cadherin and translocation of E-cadherin to the nucleus. Estrogen receptors (ERs) regulate both E-cadherin and FSH expression and secretion. Whether the hormone status of patients with gonadotroph PitNETs is regulated by epithelial-to-mesenchymal transition (EMT) and ERs is unknown. OBJECTIVES To study the effect of EMT on hormone expression in gonadotroph nonfunctioning (NF)-PitNETs. DESIGN Molecular and clinical analyses of 105 gonadotroph PitNETs. Immunohistochemical studies and real-time quantitative polymerase chain reaction were performed for FSH, LH, E-cadherin, and ERα. Further analyses included blood samples, clinical data, and radiological images. SETTING All patients were operated on in the same tertiary referral center. RESULTS NF-PitNET with high FSH expression had decreased immunohistochemical staining for membranous E-cadherin (P < .0001) and increased staining for nuclear E-cadherin (P < .0001). Furthermore, high FSH expression was associated with increased ERα staining (P = .0002) and ERα mRNA (P = .0039). Circulating levels of plasma-FSH (P-FSH) correlated with FSH staining in gonadotroph NF-PitNET (P = .0025). Tumor size and invasiveness was not related to FSH staining, E-cadherin, or ERα. LH expression was not associated with E-cadherin or ERα. CONCLUSION In gonadotroph PitNETs, FSH staining is related to E-cadherin, ERα expression, and circulating levels of P-FSH. There was no association between FSH staining and invasiveness. The clinical significance of these findings will be investigated in ongoing prospective studies.
Collapse
Affiliation(s)
- Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Correspondence and Reprint Requests: Anders Jensen Kolnes, Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway, E-mail:
| | - Kristin A B Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicoleta C Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Jon Berg-Johnsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders P Jørgensen
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
16
|
Su YX, Du GL, Shen HL, Wang W, Bao JL, Aierken A, Wang BW, Jiang S, Zhu J, Gao XM. Increased expression of aromatase cytochrome P450 enzyme is associated with prolactinoma invasiveness in post-menopausal women. J Int Med Res 2019; 47:3115-3126. [PMID: 31179796 PMCID: PMC6683891 DOI: 10.1177/0300060519848916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives To investigate the expression levels of aromatase cytochrome P450 enzyme (P450AROM) and related molecules—estrogen receptor-beta (ER-β), Ki-67, and p53—in prolactinoma tumor tissue from pre- and post-menopausal women, and to determine the associations of tumor invasiveness with expression levels of these genes. Methods This study recruited 90 patients with prolactinoma who underwent adenoidectomy between 2012 and 2017. Information was collected regarding clinical characteristics, hormones, laboratory tests, and magnetic resonance imaging-assessed tumor invasiveness. Expression levels of P450AROM, ER-β, Ki-67, and p53 were examined by immunohistochemistry in prolactinoma tissues. Results Increased P450AROM expression was found in invasive prolactinoma tissues in post-menopausal women, compared with its expression in non-invasive prolactinoma tissues. ER-β level was significantly higher in patients resistant to treatment with bromocriptine, a dopamine agonist. However, there were no differences in rate of resistance to treatment (8.2% vs. 3.4%) or expression levels of P450AROM, Ki-67, p53, and ER-β between pre- and post-menopausal patients. Conclusions Our results demonstrated that increased P450AROM expression in prolactinoma of post-menopausal women was positively associated with invasiveness. Moreover, ER-β level was higher in both pre- and post-menopausal patients who were resistant to dopamine agonist treatment.
Collapse
Affiliation(s)
- Yin-Xia Su
- 1 Center of Health Management, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Guo-Li Du
- 2 Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Li Shen
- 3 Department of Oncology, The Sixth Division Hospital, Xinjiang Production and Construction Corps, Urumqi, China
| | - Wen Wang
- 4 Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian-Ling Bao
- 5 Medical Experimental Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aizezijiang Aierken
- 6 Department of Pharmacology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo-Wei Wang
- 4 Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Sheng Jiang
- 2 Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun Zhu
- 2 Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- 7 Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Fuentes-Fayos AC, García-Martínez A, Herrera-Martínez AD, Jiménez-Vacas JM, Vázquez-Borrego MC, Castaño JP, Picó A, Gahete MD, Luque RM. Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. MINERVA ENDOCRINOL 2019; 44:109-128. [PMID: 30650942 DOI: 10.23736/s0391-1977.19.02970-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acromegaly is a chronic systemic disease mainly caused by a growth hormone (GH)-secreting pituitary neuroendocrine tumor (PitNETs), which is associated with many health complications and increased mortality when not adequately treated. Transsphenoidal surgery is considered the treatment of choice in GH-secreting PitNETs, but patients in whom surgery cannot be considered or with persistent disease after surgery require medical therapy. Treatment with available synthetic somatostatin analogues (SSAs) is considered the mainstay in the medical management of acromegaly which exert their beneficial effects through the binding to a family of G-protein coupled receptors encoded by 5 genes (SSTR1-5). However, although it has been demonstrated that the SST1-5 receptors are physically present in tumor cells, SSAs are in many cases ineffective (i.e. approximately 10-30% of patients with GH-secreting PitNET are unresponsive to SSAs), suggesting that other cellular/molecular determinants could be essential for the response to the pharmacological treatment in patients with GH-secreting PitNETs. Therefore, the scrutiny of these determinants might be used for the identification of subgroups of patients in whom an appropriate pharmacological treatment can be successfully employed (responders vs. non-responders). In this review, we will describe some of the existing, classical and novel, genetic and molecular determinants involved in the response of patients with GH-secreting PitNETs to the available therapeutic treatments, as well as new molecular/therapeutic approaches that could be potentially useful for the treatment of GH-secreting PitNETs.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Antonio Picó
- Department of Endocrinology and Nutrition, Hospital General Universitario de Alicante-ISABIAL, Miguel Hernández University, CIBERER, Alicante, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain - .,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
18
|
Venegas-Moreno E, Flores-Martinez A, Dios E, Vazquez-Borrego MC, Ibañez-Costa A, Madrazo-Atutxa A, Japón MA, Castaño JP, Luque RM, Cano DA, Soto-Moreno A. E-cadherin expression is associated with somatostatin analogue response in acromegaly. J Cell Mol Med 2019; 23:3088-3096. [PMID: 30843342 PMCID: PMC6484433 DOI: 10.1111/jcmm.13851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Acromegaly is a rare disease resulting from hypersecretion of growth hormone (GH) and insulin‐like growth factor 1 (IGF1) typically caused by pituitary adenomas, which is associated with increased mortality and morbidity. Somatostatin analogues (SSAs) represent the primary medical therapy for acromegaly and are currently used as first‐line treatment or as second‐line therapy after unsuccessful pituitary surgery. However, a considerable proportion of patients do not adequately respond to SSAs treatment, and therefore, there is an urgent need to identify biomarkers predictors of response to SSAs. The aim of this study was to examine E‐cadherin expression by immunohistochemistry in fifty‐five GH‐producing pituitary tumours and determine the potential association with response to SSAs as well as other clinical and histopathological features. Acromegaly patients with tumours expressing low E‐cadherin levels exhibit a worse response to SSAs. E‐cadherin levels are associated with GH‐producing tumour histological subtypes. Our results indicate that the immunohistochemical detection of E‐cadherin might be useful in categorizing acromegaly patients based on the response to SSAs.
Collapse
Affiliation(s)
- Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alvaro Flores-Martinez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Mari C Vazquez-Borrego
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Alejandro Ibañez-Costa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Ainara Madrazo-Atutxa
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel A Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Justo P Castaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Yang Q, Li X. Molecular Network Basis of Invasive Pituitary Adenoma: A Review. Front Endocrinol (Lausanne) 2019; 10:7. [PMID: 30733705 PMCID: PMC6353782 DOI: 10.3389/fendo.2019.00007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cases with pituitary adenoma comprise 10-25% of intracranial neoplasm, being the third most common intracranial tumor, most of the adenomas are considered to be benign. About 35% of pituitary adenomas are invasive. This review summarized the known molecular basis of the invasiveness of pituitary adenomas. The study pointed out that hypoxia-inducible factor-1α, pituitary tumor transforming gene, vascular endothelial growth factor, fibroblast growth factor-2, and matrix metalloproteinases (MMPs, mainly MMP-2, and MMP-9) are core molecules responsible for the invasiveness of pituitary adenomas. The reason is that these molecules have the ability to directly or indirectly induce cell proliferation, epithelial-to-mesenchymal transition, angiogenesis, degradation, and remodeling of extracellular matrix. HIF-1α induced by hypoxia or apoplexy inside the adenoma might be the initiating factor of invasive transformation, followed with angiogenesis for overexpressed VEGF, EMT for overexpressed PTTG, degradation of ECM for overexpressed MMPs, creating a suitable microenvironment within the tumor. Together, they form a complex interactive network. More investigations are required to further elucidate the mechanisms underlying the invasiveness of pituitary adenomas.
Collapse
|
20
|
Abstract
Acromegaly is a chronic disorder usually diagnosed late in the disease evolution, leading to substantial morbidity and mortality related to this long period of undiagnosed state as well as the difficulty in achieving normalization of GH hypersecretion and controlling tumor mass. First generation somatostatin analogues (SSA) are accepted as the first-line medical therapy or as second-line therapy in patients undergoing unsuccessful surgery. However, because a high percentage of patients experience SSA treatment failure, the inclusion of biomarkers associated with a successful or non-successful response to these drug (as well as to all classes of medical therapy) is necessary to better guide the choice of treatment, potentially allowing for a quicker achievement of disease control. The current treatment algorithms for acromegaly are based upon a "trial and error" approach with additional treatment options provided when disease is not controlled. In many other diseases, their therapeutic algorithms have been evolving towards personalizing treatment with medication that best matches individual disease characteristics, using biomarkers that identify therapeutic response, thus allowing the personalization of the therapy. It is time to introduce this approach to acromegaly treatment algorithms. This paper reviews the potential tools for doing so.
Collapse
Affiliation(s)
- Manuel Puig-Domingo
- Service of Endocrinology, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain - .,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain -
| | - Monica Marazuela
- Service of Endocrinology, University Hospital of La Princesa, Madrid, Spain.,Department of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Vega-Arroyo M, Tena-Suck ML, Álvarez-Gamiño CTDJ, Salinas-Lara C, Gómez-Amador JL. Gigantism in a McCune-Albright's syndrome with calcified GH-releasing pituitary adenoma: Case report and literature review. Int J Surg Case Rep 2018; 53:61-65. [PMID: 30390486 PMCID: PMC6215971 DOI: 10.1016/j.ijscr.2018.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
There have been very few cases of pituitary calcified associated with McCune Albright syndrome. Pituitary calcification is quite rare by itself. Unlike this is a benign disease, its behavior is very aggressive and this highlights the need of a multidisciplinary team. It is mandatory to rule out a whole work up when McCune Albright syndrome is suspected to stratify risks and survival.
Background McCune-Albright’s syndrome (MAS) is a rare disorder that is characterized by café-au-lait macules, fibrous dysplasia of the skull and endocrinopathies like excessive secretion of growth hormone by a hyper-functional pituitary adenoma (PA). Case We describe the case of a 43-year-old male with history of Gigantism in 1990 secondary to a GH-secreting pituitary macroadenoma that was treated via microscopic transsphenoidal surgery at that time. He was reported as asymptomatic for 26 years until he developed headache and right temporal hemianopia with left amaurosis. Also ptosis and proptosis was found caused by a re-growth of the tumor on the follow up MRI. A second surgical procedure was performed via a dorsolateral craniotomy. Gross total resection was also achieved with a Neuropathology report of a pituitary adenoma tissue accompanied by extended dystrophic calcification and bone formation. Conclusion This is a rare case of MAS. Gigantism within the context of a pituitary calcification raises special diagnostic and therapeutic challenges. The cause of the excessive secretion of GH in MAS is not well understood concluding that it seems to be a different etiology of patients with Acromegaly and Gigantism in non-MAS patients.
Collapse
Affiliation(s)
- Miguel Vega-Arroyo
- Neurosurgery Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Martha Lilia Tena-Suck
- Neuropathology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | | | - Citlaltepetl Salinas-Lara
- Neuropathology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | - Juan Luis Gómez-Amador
- Neurosurgery Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| |
Collapse
|
22
|
Øystese KAB, Berg JP, Normann KR, Zucknick M, Casar-Borota O, Bollerslev J. The role of E and N-cadherin in the postoperative course of gonadotroph pituitary tumours. Endocrine 2018; 62:351-360. [PMID: 30051197 DOI: 10.1007/s12020-018-1679-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
PURPOSE Gonadotroph tumours are the most abundant of the clinically silent pituitary tumours. There is a lack of reliable prognostic markers predicting their clinical course. Our aim was to determine the level of E-cadherin and N-cadherin in a cohort of clinically silent gonadotroph pituitary tumours, and compare them to the rate of reintervention. METHODS Tumour tissue from primary surgery was retrospectively investigated and compared with clinical data. Immunohistochemical (N = 105) and real time-qPCR (N = 85) analyses for the levels of N-cadherin and the extra- and intracellular domains of E-cadherin were performed. The immunoreactive scores (IRS) and mRNA relative quantity were compared to the rate of reintervention. RESULTS The tumours presented a high IRS for N-cadherin (Median 12 (IQR 12-12)) and almost no immunoreactivity for the extracellular domain of E-cadherin (Median 0 (IQR 0-0)). The membranous staining for the intracellular domain of E-cadherin varied (Median 6 (IQR 4-6). Reduced membranous expression of the intracellular domain of E-cadherin was associated with nuclear presence of the same domain. Nuclear staining for the intracellular domain of E-cadherin was associated with a lower rate of reintervention (p = 0.01). CONCLUSION We found that silent gonadotroph tumours presented high IRS for N-cadherin and low IRS for the extracellular domain of E-cadherin. A substantial proportion of the tumours presented nuclear staining for the intracellular domain of E-cadherin, accompanied by a reduced membranous expression of the intracellular domain of E-cadherin. Absence of nuclear staining for the intracellular domain of E-cadherin served as an independent predictor of reintervention.
Collapse
Affiliation(s)
- Kristin Astrid Berland Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Research Institute for Internal Medicine (IMF), OUS Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway.
| | - Jens Petter Berg
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424, Oslo, Norway
| | - Kjersti Ringvoll Normann
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute for Internal Medicine (IMF), OUS Rikshospitalet, Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
- Department of Pathology, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, P.b.4950 Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Ongaratti BR, Haag T, D'Ávila MF, Trott G, Ferreira NP, Rech CGSL, Pereira-Lima JFS, da Costa Oliveira M. Gene and protein expression of E-cadherin and NCAM markers in non-functioning pituitary adenomas. Ann Diagn Pathol 2018; 38:59-61. [PMID: 30419428 DOI: 10.1016/j.anndiagpath.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Non-functioning pituitary adenomas (NFPA) are classified as benign tumors of slow growth, but 40% of them present local invasion, a characteristic of behavior still unpredictable with the use of current tumor markers. This work aims to evaluate the tissue markers E-cadherin and NCAM, which act on cell adhesion, in tumor tissue samples of NFPA and its relationship with the degree of local invasiveness. Gene expression of E-cadherin (CDH1) and NCAM (NCAM1) was assessed by real-time PCR and tissue expression by immunohistochemistry. Fifty-three patients with macroadenomas were submitted to transsphenoidal surgery, presented grade II invasive adenomas in 16 cases (30.2%), grade III in 7 (13.2%) and grade IV in 30 (56.6%). In the immunohistochemistry, one case was negative for E-cadherin, 7 showed weak immunostaining, 17 moderate and 28 strong, whereas for NCAM, 5 showed negative, 28 weakly, 14 moderate and 6 strong. Regarding gene expression, 43.3% showed expression for CDH1 (mean of 2.12) and 50% for NCAM1 (mean of 1.86). There was no significant correlation between the immunohistochemical expression of the markers, as well as the gene expression, the degree of invasiveness and clinical data. The results suggest that E-cadherin and NCAM markers are not directly related to the invasiveness in NFPA.
Collapse
Affiliation(s)
- Bárbara Roberta Ongaratti
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil.
| | - Taiana Haag
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Geraldine Trott
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Nelson Pires Ferreira
- Neuroendocrinology Center, Complexo Hospitalar Santa Casa, Av. Independência, 75 - Independência, Porto Alegre - RS, 90035-072 Porto Alegre, RS, Brazil
| | - Carolina Garcia Soares Leães Rech
- Neuroendocrinology Center, Complexo Hospitalar Santa Casa, Av. Independência, 75 - Independência, Porto Alegre - RS, 90035-072 Porto Alegre, RS, Brazil
| | - Júlia Fernanda Semmelmman Pereira-Lima
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil; Neuroendocrinology Center, Complexo Hospitalar Santa Casa, Av. Independência, 75 - Independência, Porto Alegre - RS, 90035-072 Porto Alegre, RS, Brazil
| | - Miriam da Costa Oliveira
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, 90050-170 Porto Alegre, RS, Brazil; Neuroendocrinology Center, Complexo Hospitalar Santa Casa, Av. Independência, 75 - Independência, Porto Alegre - RS, 90035-072 Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Shan X, Liu Q, Li Z, Li C, Gao H, Zhang Y. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractBackgroundThe detection and treatment of invasive growth hormone-secreting pituitary adenoma (GHPA) remains challenging. Several transcription factors promoting the epithelial–mesenchymal transition (EMT) can act as cofactors for the transforming growth factor-beta (TGF-ß)/SMAD4. The goal of this study was to investigate the association of SMAD4 expression and clinicopathologic features using a tissue microarray analysis (TMA). The levels of SMAD4 and the related genes of EMT in GHPAs were analyzed by q-PCR and western blot. SMAD4 was strongly expressed in 15/19 cases (78.9%) of invasive GHPA and 10/42 cases (23.8%) of noninvasive GHPA (χ2=10.887,p=0.000). In the high SMAD4 group, a headache was reported in 16/25 cases (64%) compared with 13/36 cases (36.1%) in the low SMAD4 group (χ2=4.565,p=0.032). The progression-free survival (PFS) in the high group was lower than that in the low group (p=0.026). qRT-PCR and western blot analysis further revealed a significant downregulation of E-cadherin and upregulation of N-cadherin and vimentin in the invasive GHPA group. SMAD4 was associated with increased levels of invasion of GH3 cells, as determined by a transwell test. SMAD4 downregulated E-cadherin levels and increased the levels of N-cadherin and vimentin. Our data provide evidence that SMAD4 is a potential prognosis biomarker and a therapeutic target for patients with invasive GHPA.
Collapse
Affiliation(s)
- Xiaosong Shan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
26
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
27
|
Mendes GA, Haag T, Trott G, Rech CGSL, Ferreira NP, Oliveira MC, Kohek MB, Pereira-Lima JFS. Expression of E-cadherin, Slug and NCAM and its relationship to tumor invasiveness in patients with acromegaly. ACTA ACUST UNITED AC 2017; 51:e6808. [PMID: 29267504 PMCID: PMC5731331 DOI: 10.1590/1414-431x20176808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
Pituitary adenomas account for 10–15% of primary intracranial tumors. Growth hormone (GH)-secreting adenomas account for 13% of all pituitary adenomas and cause acromegaly. These tumors can be aggressive, invade surrounding structures and are highly recurrent. The objective of this study was to evaluate E-cadherin, Slug and neural cell adhesion molecule (NCAM) expression in GH-secreting pituitary adenomas and its relationship to tumor invasiveness. A cross–sectional study of patients who underwent hypophysectomy due to GH-secreting pituitary adenoma from April 2007 to December 2014 was carried out. The medical records were reviewed to collect clinical data. Immediately after surgery, tumor samples were frozen in liquid nitrogen and stored in a biofreezer at –80°C for assessment of E-cadherin 1 (CDH1), SLUG (SNAI2), and NCAM (NCAM1) by real-time PCR. The samples were fixed in formalin and embedded in paraffin for immunohistochemical analysis of E-cadherin and NCAM. Thirty-five patients with acromegaly were included in the study. Of these, 65.7% had invasive tumors. Immunohistochemically, E-cadherin was expressed in 96.7% of patients, and NCAM in 80% of patients. There was no statistically significant relationship between tumor grade or invasiveness and immunohistochemical expression of these markers. Regarding gene expression, 50% of cases expressed CDH1, none expressed SNAI2, and 53.3% expressed NCAM1. There was no statistically significant relationship between tumor grade or invasiveness and gene expression of CDH1, SNAI2, and NCAM1. The absence of Slug overexpression and of E-cadherin and NCAM suppression suggests that expression of these markers is not associated with tumor invasiveness in GH-secreting pituitary adenomas.
Collapse
Affiliation(s)
- G A Mendes
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - T Haag
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - G Trott
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - C G S L Rech
- Centro de Neuroendocrinologia, Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - N P Ferreira
- Centro de Neuroendocrinologia, Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - M C Oliveira
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Centro de Neuroendocrinologia, Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - M B Kohek
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - J F S Pereira-Lima
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Centro de Neuroendocrinologia, Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
28
|
Zhang Q, Peng C, Song J, Zhang Y, Chen J, Song Z, Shou X, Ma Z, Peng H, Jian X, He W, Ye Z, Li Z, Wang Y, Ye H, Zhang Z, Shen M, Tang F, Chen H, Shi Z, Chen C, Chen Z, Shen Y, Wang Y, Lu S, Zhang J, Li Y, Li S, Mao Y, Zhou L, Yan H, Shi Y, Huang C, Zhao Y. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Am J Hum Genet 2017; 100:817-823. [PMID: 28413019 DOI: 10.1016/j.ajhg.2017.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenoma (PA) is one of the most common intracranial neoplasms. Several genetic predisposing factors for PA have been identified, but they account for a small portion of cases. In this study, we sought to identify the PA genetic risk factors by focusing on causative mutations for PAs. Among the 4 affected and 17 asymptomatic members from one family with familial PA, whole-exome sequencing identified cosegregation of the PA phenotype with the heterozygous missense mutation c.4136G>T (p.Arg1379Leu) in cadherin-related 23 (CDH23). This mutation causes an amino acid substitution in the calcium-binding motif of the extracellular cadherin (EC) domains of CDH23 and is predicted to impair cell-cell adhesion. Genomic screening in a total of 12 families with familial PA (20 individuals), 125 individuals with sporadic PA, and 260 control individuals showed that 33% of the families with familial PA (4/12) and 12% of individuals with sporadic PA (15/125) harbored functional CDH23 variants. In contrast, 0.8% of the healthy control individuals (2/260) carried functional CDH23 variants. Gene-based analysis also revealed a significant association between CDH23 genotype and PA (p = 5.54 × 10-7). Moreover, PA individuals who did not harbor functional CDH23 variants displayed tumors that were larger in size (p = 0.005) and more invasive (p < 0.001). Therefore, mutations in CDH23 are linked with familial and sporadic PA and could play important roles in the pathogenesis of PA.
Collapse
Affiliation(s)
- Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Cheng Peng
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Jianhua Chen
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhijian Song
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuefei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Hong Peng
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuemin Jian
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenqiang He
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Zhiqiang Li
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Hongying Ye
- Shanghai Pituitary Tumor Center, Shanghai 200040, China; Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhaoyun Zhang
- Shanghai Pituitary Tumor Center, Shanghai 200040, China; Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Ming Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Feng Tang
- Shanghai Pituitary Tumor Center, Shanghai 200040, China; Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hong Chen
- Shanghai Pituitary Tumor Center, Shanghai 200040, China; Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Chunjui Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Zhengyuan Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Yue Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Ye Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiming Li
- Shanghai Pituitary Tumor Center, Shanghai 200040, China; Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Shiqi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China
| | - Hai Yan
- Department of Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Yongyong Shi
- Bio-X Institutes, Ministry of Education Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China; Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes and the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Pituitary Tumor Center, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
29
|
Syro LV, Rotondo F, Serna CA, Ortiz LD, Kovacs K. Pathology of GH-producing pituitary adenomas and GH cell hyperplasia of the pituitary. Pituitary 2017; 20:84-92. [PMID: 27586499 DOI: 10.1007/s11102-016-0748-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Histologic, immunohistochemical and electron microscopic studies have provided conclusive evidence that a marked diversity exists between tumors which secrete growth hormone (GH) in excess. GH cell hyperplasia can also be associated with acromegaly in patients with extrapituitary GH-releasing hormone secreting tumors or in familial pituitary tumor syndromes. MATERIALS AND METHODS A literature search was performed for information regarding pathology, GH-producing tumors and acromegaly. RESULTS This review summarizes the current knowledge on the morphology of GH-producing and silent GH adenomas, as well as GH hyperplasia of the pituitary. CONCLUSION The importance of morphologic classification and identification of different subgroups of patients with GH-producing adenomas and their impact on clinical management is discussed.
Collapse
Affiliation(s)
- Luis V Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia.
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Carlos A Serna
- Laboratorio de Patologia y Citologia Rodrigo Restrepo. Department of Pathology, Clinica Las Americas, Universidad CES, Medellin, Colombia
| | - Leon D Ortiz
- Division of Neuro-oncology, Instituto de Cancerologia, Clinica Las Americas, Medellin, Colombia
| | - Kalman Kovacs
- Department of Laboratory Medicine, Division of Pathology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|