1
|
Halter SR, Wolf BO, Martinez del Rio C. The hummingbird's adipostat: can a simple rule explain torpor frequency and duration in hummingbirds? Proc Biol Sci 2025; 292:20242489. [PMID: 39809315 PMCID: PMC11732420 DOI: 10.1098/rspb.2024.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope (Selasphorus calliope) and rufous hummingbirds (Selasphorus rufus) at a stopover site. We constructed a mass-balance model to predict lipid thresholds for torpor entry, torpor duration and minimum morning lipid reserves. Hummingbirds entered torpor if their lipid contents were below a sharply defined threshold. Torpor duration increased as initial lipid content decreased, and birds that entered torpor had relatively constant morning lipid reserves. We propose a minimum morning reserve hypothesis that identifies torpor lipid thresholds and predicts frequency and duration. Several hypotheses were proposed previously to explain torpor's ultimate function, which can be derived as special cases that result from modifying our mass balance model's parameters. Torpor entails a balance between energy savings and the non-energetic risks of torpor, such as predation and physiological stress. We assessed energy equivalents of the non-energetic costs of torpor by accounting for the energetic costs and benefits of torpor, and by documenting its occurrence and length.
Collapse
Affiliation(s)
- Shayne R. Halter
- Department of Biology, University of New Mexico, Albuquerque, NM87131-0001, USA
| | - Blair O. Wolf
- Department of Biology, University of New Mexico, Albuquerque, NM87131-0001, USA
| | | |
Collapse
|
2
|
Noiret A, Aujard F, Terrien J. The response of grey mouse lemurs to acute caloric restriction before reproduction supports the 'thrifty female hypothesis'. J Exp Biol 2024; 227:jeb246769. [PMID: 39319380 DOI: 10.1242/jeb.246769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The 'thrifty female hypothesis' states that females preserve more of their energy reserves during winter than males because of the sex-specific time frame of energy allocation for reproduction. As males reactivate their reproductive axis before the mating period, while females mainly allocate energy during gestation and lactation, we hypothesized that males would have to use shorter torpor bouts and longer periods of normothermic activity to promote spermatogenesis during winter, a period of low food availability. Here, we applied an acute 2 week 80% caloric restriction in male and female grey mouse lemurs shortly before the mating period. We found evidence of thriftier phenotypes in wintering females, which performed deeper and longer torpor bouts than males and ultimately lost less body mass. Our results thus support the 'thrifty female hypothesis' in a seasonally breeding primate and reinforce the concept of a sex-biased trade-off in using torpor, which might ultimately benefit reproduction and survival.
Collapse
Affiliation(s)
- Aude Noiret
- Unité Ḿécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, 91800 Brunoy, France
| | - Fabienne Aujard
- Unité Ḿécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, 91800 Brunoy, France
| | - Jeremy Terrien
- Unité Ḿécanismes Adaptatifs et Evolution (MECADEV), Muséum National d'Histoire Naturelle, CNRS UMR 7179, 91800 Brunoy, France
| |
Collapse
|
3
|
Stevenson TJ. Defining the brain control of physiological stability. Horm Behav 2024; 164:105607. [PMID: 39059231 DOI: 10.1016/j.yhbeh.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The last few decades have seen major advances in neurobiology and uncovered novel genetic and cellular substrates involved in the control of physiological set points. In this Review, I discuss the limitations in the definition of homeostatic set points established by Walter B Canon and highlight evidence that two other physiological systems, namely rheostasis and allostasis provide distinct inputs to independently modify set-point levels. Using data collected over the past decade, the hypothalamic and genetic basis of regulated changes in set-point values by rheostatic mechanisms are described. Then, the role of higher-order brain regions, such as hippocampal circuits, for experience-dependent, allostatic induced changes in set-points are outlined. I propose that these systems provide a hierarchical organization of physiological stability that exists to maintain set-point values. The hierarchical organization of physiology has direct implications for basic and medical research, and clinical practice.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Redon L, Constant T, Smith S, Habold C, Giroud S. Understanding seasonal telomere length dynamics in hibernating species. J Therm Biol 2024; 123:103913. [PMID: 39002254 DOI: 10.1016/j.jtherbio.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Oxidative stress is thought to be one of the main causes of ageing as it progressively damages cell components throughout life, eventually causing cellular failure and apoptosis. In many organisms, telomeres shorten throughout life under the effect of, amongst other factors, oxidative stress, and are therefore commonly used as marker of biological ageing. However, hibernators, which are regularly exposed to acute oxidative stress when rewarming from torpor, are unexpectedly long-lived. In this review, we explore the causes of oxidative stress associated with hibernation and its impact on telomere dynamics in different taxa, focussing on hibernating rodents. We then speculate on the adaptive mechanisms of hibernators to compensate for the effects of oxidative stress, which may explain their increased longevity. Because winter hibernation appears to be associated with high oxidative stress, hibernators, particularly rodents, may periodically invest in repair mechanisms and antioxidant defences, resulting in seasonal variations in telomere lengths. This research shows how species with a slow life-history strategy deal with large changes in oxidative stress, unifying evolutionary and physiological theories of ageing. Because of the marked seasonal variation in telomere length, we also draw attention when using telomeres as markers for biological aging in seasonal heterotherms and possibly in other highly seasonal species.
Collapse
Affiliation(s)
- Lilian Redon
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria.
| | - Théo Constant
- Department of Ecology Physiology Ethology, Pluridisciplinary Institute Hubert Curien, UMR 7179 CNRS/UdS, Strasbourg, France
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria
| | - Caroline Habold
- Department of Ecology Physiology Ethology, Pluridisciplinary Institute Hubert Curien, UMR 7179 CNRS/UdS, Strasbourg, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
5
|
Giroud S, Yamaguchi Y, Terrien J, Henning RH. Editorial: Torpor and hibernation: metabolic and physiological paradigms. Front Physiol 2024; 15:1441872. [PMID: 38957214 PMCID: PMC11217508 DOI: 10.3389/fphys.2024.1441872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Sylvain Giroud
- Energetics Lab, Department of Biology, Northern Michigan University, Marquette, MI, United States
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology, and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Jeremy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7179, Brunoy, France
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
7
|
Kawach R, Diedrich V, Gruber A, Leopold K, Herwig A, Vujić Spasić M. Seasonal and fasting induced changes in iron metabolism in Djungarian hamsters. PLoS One 2023; 18:e0293971. [PMID: 37930992 PMCID: PMC10627461 DOI: 10.1371/journal.pone.0293971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Djungarian hamsters are small rodents that show pronounced physiological acclimations in response to changes in photoperiod, and unfavorable environmental conditions such as reduced food availability and low external temperature. These include substantial adjustments, such as severe body weight loss and the use of daily torpor. Torpor is a state of decreased physiological activity in eutherms, usually marked by low metabolic rate and a reduced body temperature. In this study, we investigated the effects of photoperiodic acclimation and food deprivation on systemic iron metabolism in Djungarian hamsters. Our study illustrates the association between liver iron levels and the incidence of torpor expression during the course of the experiment. Moreover, we show that both, acclimation to short photoperiods and long-term food restriction, associated with iron sequestration in the liver. This effect was accompanied with hypoferremia and mild reduction in the expression of principal iron-hormone, hepcidin. In addition to iron, the levels of manganese, selenium, and zinc were increased in the liver of hamsters under food restriction. These findings may be important factors for regulating physiological processes in hamsters, since iron and other trace elements are essential for many metabolic and physiological processes.
Collapse
Affiliation(s)
- Rawan Kawach
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | - Andreas Gruber
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Diedrich V, Haugg E, Van Hee J, Herwig A. Role of glucose in daily torpor of Djungarian hamsters ( Phodopus sungorus): challenge of continuous in vivo blood glucose measurements. Am J Physiol Regul Integr Comp Physiol 2023; 325:R359-R379. [PMID: 37519255 DOI: 10.1152/ajpregu.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/03/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Djungarian hamsters use daily torpor to save energy during winter. This metabolic downstate is part of their acclimatization strategy in response to short photoperiod and expressed spontaneously without energy challenges. During acute energy shortage, torpor incidence, depth, and duration can be modulated. Torpor induction might rely on glucose availability as acute metabolic energy source. To investigate this, the present study provides the first continuous in vivo blood glucose measurements of spontaneous daily torpor in short photoperiod-acclimated and fasting-induced torpor in long photoperiod-acclimated Djungarian hamsters. Glucose levels were almost identical in both photoperiods and showed a decrease during resting phase. Further decreases appeared during spontaneous daily torpor entrance, parallel with metabolic rate but before body temperature, while respiratory exchange rates were rising. During arousal, blood glucose tended to increase, and pretorpor values were reached at torpor termination. Although food-restricted hamsters underwent a considerable energetic challenge, blood glucose levels remained stable during the resting phase regardless of torpor expression. The activity phase preceding a torpor bout did not reveal changes in blood glucose that might be used as torpor predictor. Djungarian hamsters show a robust, circadian rhythm in blood glucose irrespective of season and maintain appropriate levels throughout complex acclimation processes including metabolic downstates. Although these measurements could not reveal blood glucose as proximate torpor induction factor, they provide new information about glucose availability during torpor. Technical innovations like in vivo microdialysis and in vitro transcriptome or proteome analyses may help to uncover the connection between torpor expression and glucose metabolism.
Collapse
Affiliation(s)
| | - Elena Haugg
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Justin Van Hee
- Data Sciences International, St. Paul, Minnesota, United States
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Andrabi M, Upton BA, Lang RA, Vemaraju S. An Expanding Role for Nonvisual Opsins in Extraocular Light Sensing Physiology. Annu Rev Vis Sci 2023; 9:245-267. [PMID: 37196422 DOI: 10.1146/annurev-vision-100820-094018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.
Collapse
Affiliation(s)
- Mutahar Andrabi
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; ,
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Jastroch M, van Breukelen F. Hypometabolism with the speed of ultrasound. Nat Metab 2023; 5:722-723. [PMID: 37231249 DOI: 10.1038/s42255-023-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Abstract
AbstractThe idea of putting astronauts into a hibernation-like state during interplanetary spaceflights has sparked new interest in the evolutionary roots of hibernation and torpor. In this context, it should be noted that mammalian fetuses and neonates respond to the environmental challenges in the perinatal period with a number of physiological mechanisms that bear striking similarity to hibernation and torpor. These include three main points: first, prenatal deviation from the overall metabolic size relationship, which adapts the fetus to the low-oxygen conditions in the womb and corresponds to the metabolic reduction during hibernation and estivation; second, intranatal diving bradycardia in response to shortened O2 supply during birth, comparable to the decrease in heart rate preceding the drop in body temperature upon entry into torpor; and third, postnatal onset of nonshivering thermogenesis in the brown adipose tissue, along with the increase in basal metabolic rate up to the level expected from body size, such as during arousal from hibernation. The appearance of hibernation-like adaptations in the perinatal period suggests that, conversely, hibernation and torpor may be composed of mechanisms shared by all mammals around birth. This hypothesis sheds new light on the origins of hibernation and supports its potential accessibility to nonhibernating species, including humans.
Collapse
|
12
|
Energy expenditure and body composition in a hibernator, the alpine marmot. J Comp Physiol B 2023; 193:135-143. [PMID: 36335482 PMCID: PMC9852207 DOI: 10.1007/s00360-022-01466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Visceral organs and tissues of 89 free-living alpine marmots (Marmota marmota) shot during a population control program in Switzerland, were collected. Between emergence from hibernation in April to July, the gastrointestinal tract (stomach to colon) gained 51% of mass and the liver mass increased by 24%. At the same time, the basal metabolic rate (BMR), determined with a portable oxygen analyzer, increased by 18%. The organ masses of the digestive system (stomach, small intestine, caecum, large intestine) were all significantly correlated with BMR. Interestingly, the mass of abdominal white adipose tissue (WAT) and of the remaining carcass (mainly skin and bones) were also significantly correlated with BMR. These results indicate that the gastrointestinal tract and organs involved in digestive function are metabolically expensive. They also show that it is costly to maintain even tissues with low metabolic rate such as WAT, especially if they are large. Heart and kidneys and especially brain and lungs did not explain a large proportion of the variance in BMR. Marmots increased the uptake of fat prior to hibernation, both by selective feeding and enhanced gastrointestinal capacity. Large fat reserves enable marmots to hibernate without food intake and to reproduce in spring, but at the cost of an elevated BMR. We predict that climate changes that disturb energy accumulation in summer, increase energy expenditure in winter, or delay the emergence from hibernation in spring, such as the occurrence of storms with increasing frequency, will increase mortality in alpine marmots.
Collapse
|
13
|
Takahashi TM, Hirano A, Kanda T, Saito VM, Ashitomi H, Tanaka KZ, Yokoshiki Y, Masuda K, Yanagisawa M, Vogt KE, Tokuda T, Sakurai T. Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. CELL REPORTS METHODS 2022; 2:100336. [PMID: 36452866 PMCID: PMC9701604 DOI: 10.1016/j.crmeth.2022.100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 μW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.
Collapse
Affiliation(s)
- Tohru M. Takahashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Arisa Hirano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- JST PRESTO, Japan
| | - Takeshi Kanda
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Viviane M. Saito
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroto Ashitomi
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Yasufumi Yokoshiki
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Kosaku Masuda
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kaspar E. Vogt
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takashi Tokuda
- JST PRESTO, Japan
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
15
|
Sullivan IR, Adams DM, Greville LJS, Faure PA, Wilkinson GS. Big brown bats experience slower epigenetic ageing during hibernation. Proc Biol Sci 2022; 289:20220635. [PMID: 35946154 PMCID: PMC9364000 DOI: 10.1098/rspb.2022.0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Comparative analyses of bats indicate that hibernation is associated with increased longevity among species. However, it is not yet known if hibernation affects biological ageing of individuals. Here, we use DNA methylation (DNAm) as an epigenetic biomarker of ageing to determine the effect of hibernation on the big brown bat, Eptesicus fuscus. First, we compare epigenetic age, as predicted by a multi-species epigenetic clock, between hibernating and non-hibernating animals and find that hibernation is associated with epigenetic age. Second, we identify genomic sites that exhibit hibernation-associated change in DNAm, independent of age, by comparing samples taken from the same individual in hibernating and active seasons. This paired comparison identified over 3000 differentially methylated positions (DMPs) in the genome. Genome-wide association comparisons to tissue-specific functional elements reveals that DMPs with elevated DNAm during winter occur at sites enriched for quiescent chromatin states, whereas DMPs with reduced DNAm during winter occur at sites enriched for transcription enhancers. Furthermore, genes nearest DMPs are involved in regulation of metabolic processes and innate immunity. Finally, significant overlap exists between genes nearest hibernation DMPs and genes nearest previously identified longevity DMPs. Taken together, these results are consistent with hibernation influencing ageing and longevity in bats.
Collapse
Affiliation(s)
- Isabel R. Sullivan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD 20742, USA,Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Lucas J. S. Greville
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1,Department of Biology, University of Waterloo, Waterloo, ON, Canada N3 L 3G1
| | - Paul A. Faure
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
16
|
Hypothalamic remodeling of thyroid hormone signaling during hibernation in the arctic ground squirrel. Commun Biol 2022; 5:492. [PMID: 35606540 PMCID: PMC9126913 DOI: 10.1038/s42003-022-03431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Hibernation involves prolonged intervals of profound metabolic suppression periodically interrupted by brief arousals to euthermy, the function of which is unknown. Annual cycles in mammals are timed by a photoperiodically-regulated thyroid-hormone-dependent mechanism in hypothalamic tanycytes, driven by thyrotropin (TSH) in the pars tuberalis (PT), which regulates local TH-converting deiodinases and triggers remodeling of neuroendocrine pathways. We demonstrate that over the course of hibernation in continuous darkness, arctic ground squirrels (Urocitellus parryii) up-regulate the retrograde TSH/Deiodinase/TH pathway, remodel hypothalamic tanycytes, and activate the reproductive axis. Forcing the premature termination of hibernation by warming animals induced hypothalamic deiodinase expression and the accumulation of secretory granules in PT thyrotrophs and pituitary gonadotrophs, but did not further activate the reproductive axis. We suggest that periodic arousals may allow for the transient activation of hypothalamic thyroid hormone signaling, cellular remodeling, and re-programming of brain circuits in preparation for the short Arctic summer. Arctic ground squirrels hibernating in darkness activate the pars tuberalis - hypothalamus thyroid hormone signaling pathway, remodel hypothalamic tanycytes, and activate the reproductive axis.
Collapse
|
17
|
Mikes M, Rice SA, Bibus D, Kitaysky A, Drew KL. Translating PUFA omega 6:3 ratios from wild to captive hibernators (Urocitellus parryii) enhances sex-dependent mass-gain without increasing physiological stress indicators. J Comp Physiol B 2022; 192:529-540. [PMID: 35503574 PMCID: PMC9197884 DOI: 10.1007/s00360-022-01437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) are well-documented for their influence on health and weight loss. Recent studies indicate omega 3 PUFAs may exert a negative impact on cellular stress and physiology in some hibernators. We asked if physiological stress indicators, lipid peroxidation and mass gain in Arctic Ground Squirrels (AGS) were negatively influenced by naturally occurring dietary omega 3 PUFA levels compared to omega 3 PUFA levels found in common laboratory diets. We found plasma fatty acid profiles of free-ranging AGS to be high in omega 3 PUFAs with balanced omega 6:3 ratios, while standard laboratory diets and plasma of captive AGS are high in omega 6 and low in omega 3 PUFAs with higher omega 6:3 ratios. Subsequently, we designed a diet to mimick free-range AGS omega 6:3 ratios in captive AGS. Groups of wild-caught juvenile AGS were either fed: (1) Mazuri Rodent Chow (Standard Rodent chow, 4.95 omega 6:3 ratio), or (2) balanced omega 6:3 chow (Balanced Diet, 1.38 omega 6:3). AGS fed the Balanced Diet had plasma omega 6:3 ratios that mimicked plasma profiles of wild AGS. Balanced Diet increased female body mass before hibernation, but did not influence levels of cortisol in plasma or levels of the lipid peroxidation product 4-HNE in brown adipose tissue. Overall, as the mass gain is critical during pre-hibernation for obligate hibernators, the results show that mimicking a fatty acid profile of wild AGS facilitates sex-dependent mass accumulation without increasing stress indicators.
Collapse
Affiliation(s)
- Monica Mikes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Sarah A Rice
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA. .,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Doug Bibus
- Lipid Technologies, LLC, Austin, MN, USA
| | - Alexander Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
18
|
Watts AJ, Storey KB. Peripheral circadian gene activity is altered during hibernation in the thirteen-lined ground squirrel. Cryobiology 2022; 107:48-56. [DOI: 10.1016/j.cryobiol.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
|
19
|
HORII Y, OKADERA K, MIYAWAKI S, SHIINA T, SHIMIZU Y. <i>Suncus murinus</i> as a novel model animal that is suitable for elucidating the mechanism of daily torpor. Biomed Res 2022; 43:53-57. [DOI: 10.2220/biomedres.43.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuuki HORII
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Kanako OKADERA
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Shingo MIYAWAKI
- Laboratory of Veterinary Surgery, Faculty of Applied Biological Sciences, Gifu University
| | - Takahiko SHIINA
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Yasutake SHIMIZU
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
20
|
Wellbrock AHJ, Eckhardt LRH, Kelsey NA, Heldmaier G, Rozman J, Witte K. Cool birds: first evidence of energy-saving nocturnal torpor in free-living common swifts Apus apus resting in their nests. Biol Lett 2022; 18:20210675. [PMID: 35414223 PMCID: PMC9006018 DOI: 10.1098/rsbl.2021.0675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Daily torpor is a means of saving energy by controlled lowering of the metabolic rate (MR) during resting, usually coupled with a decrease in body temperature. We studied nocturnal daily torpor under natural conditions in free-living common swifts Apus apus resting in their nests as a family using two non-invasive approaches. First, we monitored nest temperature (Tnest) in up to 50 occupied nests per breeding season in 2010-2015. Drops in Tnest were the first indication of torpor. Among 16 673 observations, we detected 423 events of substantial drops in Tnest of on average 8.6°C. Second, we measured MR of the families inside nest-boxes prepared for calorimetric measurements during cold periods in the breeding seasons of 2017 and 2018. We measured oxygen consumption and carbon dioxide production using a mobile indirect respirometer and calculated the percentage reduction in MR. During six torpor events observed, MR was gradually reduced by on average 56% from the reference value followed by a decrease in Tnest of on average 7.6°C. By contrast, MR only decreased by about 33% on nights without torpor. Our field data gave an indication of daily torpor, which is used as a strategy for energy saving in free-living common swifts.
Collapse
Affiliation(s)
- Arndt H J Wellbrock
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany.,Institute of Avian Research 'Vogelwarte Helgoland', Wilhelmshaven, Germany
| | - Luca R H Eckhardt
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany
| | - Natalie A Kelsey
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany.,Institute of Avian Research 'Vogelwarte Helgoland', Wilhelmshaven, Germany
| | - Gerhard Heldmaier
- Animal Physiology, Faculty of Biology, Marburg University, Marburg, Germany
| | - Jan Rozman
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Klaudia Witte
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
21
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
22
|
Giroud S, Chery I, Arrivé M, Prost M, Zumsteg J, Heintz D, Evans AL, Gauquelin-Koch G, Arnemo JM, Swenson JE, Lefai E, Bertile F, Simon C, Blanc S. Hibernating brown bears are protected against atherogenic dyslipidemia. Sci Rep 2021; 11:18723. [PMID: 34548543 PMCID: PMC8455566 DOI: 10.1038/s41598-021-98085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Isabelle Chery
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Mathilde Arrivé
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | | | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institute of Plant Molecular Biology, CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Etienne Lefai
- University of Auvergne, INRAE, UNH UMR1019, 63122, Saint-Genès Champanelle, France
| | - Fabrice Bertile
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| | - Chantal Simon
- CARMEN, INSERM U1060/University of Lyon / INRA U1235, Oullins, France
| | - Stéphane Blanc
- University of Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
- CNRS, UMR7178, Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du Loess, 67087, Strasbourg, France
| |
Collapse
|
23
|
Huang YG, Flaherty SJ, Pothecary CA, Foster RG, Peirson SN, Vyazovskiy VV. The relationship between fasting-induced torpor, sleep, and wakefulness in laboratory mice. Sleep 2021; 44:zsab093. [PMID: 33838033 PMCID: PMC8436144 DOI: 10.1093/sleep/zsab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/03/2021] [Indexed: 11/30/2022] Open
Abstract
STUDY OBJECTIVES Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice. METHODS Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG), and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding. RESULTS All animals showed bouts of hypothermia that became progressively deeper and longer as fasting progressed. EEG and EMG were markedly affected by hypothermia, although the typical electrophysiological signatures of non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, and wakefulness enabled us to perform vigilance-state classification in all cases. Consistent with previous studies, hypothermic bouts were initiated from a state indistinguishable from NREM sleep, with EEG power decreasing gradually in parallel with decreasing surface body temperature. During deep hypothermia, REM sleep was largely abolished, and we observed shivering-associated intense bursts of muscle activity. CONCLUSIONS Our study highlights important similarities between EEG signatures of fasting-induced torpor in mice, daily torpor in Djungarian hamsters and hibernation in seasonally hibernating species. Future studies are necessary to clarify the effects on fasting-induced torpor on subsequent sleep.
Collapse
Affiliation(s)
- Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT,UK
| | - Sarah J Flaherty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT,UK
| | - Carina A Pothecary
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE,UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE,UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE,UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT,UK
| |
Collapse
|
24
|
Role of Brown and Beige Adipose Tissues in Seasonal Adaptation in the Raccoon Dog ( Nyctereutes procyonoides). Int J Mol Sci 2021; 22:ijms22179623. [PMID: 34502532 PMCID: PMC8431801 DOI: 10.3390/ijms22179623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.
Collapse
|
25
|
Nightly torpor use in response to weather conditions and individual state in an insectivorous bat. Oecologia 2021; 197:129-142. [PMID: 34455495 PMCID: PMC8445878 DOI: 10.1007/s00442-021-05022-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Torpor is a well-known energy conservation strategy in many mammal and bird species. It is often employed when environmental conditions are unfavourable to maximize survival probabilities. However, torpor often carries with it the physiological costs of a low body temperature and of rewarming in addition to potential missed opportunities for foraging. Therefore, we hypothesised that decision making regarding when to use torpor should reflect the most important environmental conditions for species distributions, and thus how they may be impacted by ongoing climate change. We investigated how weather conditions affect nightly torpor patterns in the nocturnal insectivorous Australian eastern long-eared bat (Nyctophilus bifax). By measuring the skin temperature of 37 free-ranging individuals, we confirmed that torpor was used more frequently during the winter and at subtropical compared to tropical locations. Using mixed-effect models we show that lower ambient temperatures were the main driver of individual torpor use, probably due to lower roost temperatures and prey availability. However, increased rain, wind and humidity, and decreasing barometric pressure, as well as brighter moonlight, also led to more time spent torpid per night. We suggest that bats evaluate multiple environmental cues to make decisions regarding torpor use versus active foraging based upon their expectations of the energetic benefits, prey availability and relative predation risk. Interactions between some of these effects and body mass (whilst controlling for forearm length) indicate that individual variation in body size and/or state-dependent effects of energy reserves also partly determined the use of nightly torpor in these bats.
Collapse
|
26
|
Haugg E, Herwig A, Diedrich V. Body Temperature and Activity Adaptation of Short Photoperiod-Exposed Djungarian Hamsters ( Phodopus sungorus): Timing, Traits, and Torpor. Front Physiol 2021; 12:626779. [PMID: 34305626 PMCID: PMC8294097 DOI: 10.3389/fphys.2021.626779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
To survive the Siberian winter, Djungarian hamsters (Phodopus sungorus) adjust their behavior, morphology, and physiology to maintain energy balance. The reduction of body mass and the improvement of fur insulation are followed by the expression of spontaneous daily torpor, a state of reduced metabolism during the resting phase to save additional energy. Since these complex changes require time, the upcoming winter is anticipated via decreasing photoperiod. Yet, the extent of adaptation and torpor use is highly individual. In this study, adaptation was triggered by an artificially changed light regime under laboratory conditions with 20°C ambient temperature and food and water ad libitum. Two approaches analyzed data on weekly measured body mass and fur index as well as continuously recorded core body temperature and activity during: (1) the torpor period of 60 hamsters and (2) the entire adaptation period of 11 hamsters, aiming to identify parameters allowing (1) a better prediction of torpor expression in individuals during the torpor period as well as (2) an early estimation of the adaptation extent and torpor proneness. In approach 1, 46 torpor-expressing hamsters had a median torpor incidence of 0.3, covering the spectrum from no torpor to torpor every day within one representative week. Torpor use reduced the body temperature during both photo- and scotophase. Torpor was never expressed by 14 hamsters. They could be identified by a high, constant body temperature during the torpor period and a low body mass loss during adaptation to a short photoperiod. Already in the first week of short photoperiod, approach 2 revealed that the hamsters extended their activity over the prolonged scotophase, yet with reduced scotophase activity and body temperature. Over the entire adaptation period, scotophase activity and body temperature of the scoto- and photophases were further reduced, later accompanied by a body mass decline and winter fur development. Torpor was expressed by those hamsters with the most pronounced adaptations. These results provide insights into the preconditions and proximate stimuli of torpor expression. This knowledge will improve experimental planning and sampling for neuroendocrine and molecular research on torpor regulation and has the potential to facilitate acute torpor forecasting to eventually unravel torpor regulation processes.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
27
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|
28
|
Reitsema VA, Oosterhof MM, Henning RH, Bouma HR. Phase specific suppression of neutrophil function in hibernating Syrian hamster. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104024. [PMID: 33503449 DOI: 10.1016/j.dci.2021.104024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Hibernation consists of alternating periods of reduced metabolism (torpor) with brief periods of metabolism similar to summer euthermia (arousal). The function of the innate immune system is reduced during hibernation, of which the underlying mechanisms are incompletely understood. Here, we studied neutrophil functionality during hibernation in Syrian hamsters. The inflammatory response to LPS-induced endotoxemia is inhibited in hibernation, partly mediated by reduced IL-6 production in early arousal. Furthermore, neutrophil pathogen binding, phagocytosis and oxidative burst is profoundly reduced in early arousal. Functionality of both summer and early arousal neutrophils was repressed in plasma from early arousal and mixed plasma from early arousal and summer euthermic, but restored by summer euthermic plasma, signifying that a plasma factor in early arousal inhibits TLR-recognition. Identification of the inhibiting factor may offer a target to modulate neutrophil function with relevance to (auto-)inflammatory diseases.
Collapse
Affiliation(s)
- Vera A Reitsema
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marloes M Oosterhof
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert H Henning
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hjalmar R Bouma
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine, Section Acute Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Miller A, Jentz E, Duncan C, Merriman D. Progestogen metabolites for use in pregnancy monitoring of 13-lined ground squirrels ( Ictidomys tridecemlineatus). REPRODUCTION AND FERTILITY 2021; 2:81-88. [PMID: 35128444 PMCID: PMC8812425 DOI: 10.1530/raf-20-0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/31/2023] Open
Abstract
13-lined ground squirrels (TLGS; Ictidomys tridecemlineatus) are small, omnivorous, fossorial, hibernating sciurids. TLGS are seasonal induced ovulators, with a ~28-day gestation period. The main goal of this study was to ascertain whether enzyme-linked immunosorbent assay (ELISA) of TLGS fecal samples can be used to non-invasively detect pregnancy. Competitive ELISAs for progestogen metabolites were conducted on feces collected from a group of (n =13) females. Feces were collected thrice weekly during the breeding season and frozen for subsequent analysis. Competitive ELISAs were run using progesterone kits ), setting data against seven different time-points between hibernation, emergence, and litter birthdate. Eleven females produced litters. ELISA data from the (n = 2) non-pregnant females demonstrated no rise in progestogen metabolites at any point over 28 days. In contrast, data from the (n = 11) pregnant females all demonstrated a pronounced rise in progestogen metabolites, with most animals displaying progesterone withdrawal in the final week of gestation. A >20-fold rise in progestogen metabolite was observed halfway through gestation (P < 005). Analysis on litter size and progestogen metabolite concentration showed no significant correlation (r2 = -0.615). Initial correlation analysis done on sex ratio of litters vs progestogen metabolites showed no significant effect of progesterone on sex ratios (males: r2 = -0.772, females: r2 = 0.375). This work demonstrated that TLGS also undergo progesterone withdrawal about a week before parturition. We have ascertained that a commercially available progesterone assay kit can detect a significant elevation in progestogen metabolites in this species about halfway through gestation. LAY SUMMARY This research was conducted to discover whether pregnancy prediction is possible in female 13-lined ground squirrels (TLGS; a small hibernating ground squirrel named for their number of stripes). Pregnancy status in this species, we postulated, could be anticipated by generating profiles for individuals via a non-invasive technique known as fecal endocrine hormone profiling. Fecal samples were collected from 13 females thrice weekly for 4 weeks post-hibernation in the breeding season of 2016. Fecal samples were then processed and run through an assay known as an ELISA giving concentrations of hormone metabolites excreted through feces. We then set these samples against time points to develop a profile for each female. We have ascertained that elevated progesterone (potential pregnancy) can be detected by a commercially available assay kit. Understanding hormone patterns in animals gives researchers a better idea of best husbandry practices, including breeding in managed care.
Collapse
Affiliation(s)
- Amy Miller
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA,Correspondence should be addressed to A Miller:
| | - Elainna Jentz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| | - Cassandra Duncan
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| | - Dana Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
30
|
Panchin Y, Kovalzon VM. Total Wake: Natural, Pathological, and Experimental Limits to Sleep Reduction. Front Neurosci 2021; 15:643496. [PMID: 33897357 PMCID: PMC8058214 DOI: 10.3389/fnins.2021.643496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is not considered a pathological state, but it consumes a third of conscious human life. This share is much more than most optimistic life extension forecasts that biotechnologies or experimental and medical interventions can offer. Are there insurmountable physical or biological limitations to reducing the duration of sleep? How far can it be avoided without fatal consequences? What means can reduce the length of sleep? It is widely accepted that sleep is necessary for long-term survival. Here we review the limited yet intriguing evidence that is not consistent with this notion. We concentrate on clinical cases of complete and partial loss of sleep and on human mutations that result in a short sleep phenotype. These observations are supported by new animal studies and are discussed from the perspective of sleep evolution. Two separate hypotheses suggest distinct approaches for remodeling our sleep machinery. If sleep serves an unidentified vital physiological function, this indispensable function has to be identified before "sleep prosthesis" (technical, biological, or chemical) can be developed. If sleep has no vital function, but rather represents a timing mechanism for adaptive inactivity, sleep could be reduced by forging the sleep generation system itself, with no adverse effects.
Collapse
Affiliation(s)
- Yuri Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Department of Mathematical Methods in Biology, Belozersky Institute, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir M. Kovalzon
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Shimaoka H, Shiina T, Suzuki H, Horii Y, Horii K, Shimizu Y. Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat. J Physiol Sci 2021; 71:10. [PMID: 33784982 PMCID: PMC10717611 DOI: 10.1186/s12576-021-00794-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to establish a novel method for inducing deep hypothermia in rats. Cooling rats anesthetized with isoflurane caused a time-dependent decrease in rectal temperature, but cardiac arrest occurred before their body temperature reached 20 °C when isoflurane inhalation was continued during the cooling process. Stopping inhalation of isoflurane when the rectal temperature reached 22.5 °C successfully induced deep hypothermia, although stopping the inhalation at 27.5 °C resulted in spontaneous recovery of rectal temperature. The hypothermic condition was able to be maintained for up to 6 h. A large number of c-Fos-positive cells were detected in the hypothalamus during hypothermia. Both the maintenance of and recovery from hypothermia caused organ injury, but the damage was transient and recovered within 1 week. These findings indicate that the established procedure is appropriate for inducing deep hypothermia without accompanying serious organ injury in rats.
Collapse
Affiliation(s)
- Hiroki Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hayato Suzuki
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
32
|
Logan SM, Storey KB. Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator. Cell Signal 2021; 82:109975. [PMID: 33711429 DOI: 10.1016/j.cellsig.2021.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
The thirteen-lined ground squirrel is a model fat-storing hibernator that nearly doubles its weight in the fall to fuel metabolism with triglycerides throughout the winter months. Hibernator brown and white adipose tissue (BAT, WAT) are important to study in terms of their inflammatory profile and tissue remodeling mechanisms since controlled and natural regulation of these processes could inform new pharmacological interventions that limit oxidative stress and inflammation in the adipose tissues of humans suffering from obesity, promote non-shivering thermogenesis-mediated weight loss, or prevent tissue damage in transplantable organs emerging from cold-storage. Thus, markers of inflammation like cytokines and soluble receptors and tissue remodeling proteins such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) were investigated in normothermic, torpid, and arousing ground squirrels. Multiplex protein assays and western blotting revealed fewer changes in WAT compared to BAT. Pro-inflammatory IL-1α levels increased during torpor and soluble epidermal growth factor receptor protein levels increased during arousal in BAT. Given their known roles in other model systems, these proteins could regulate processes like adipogenesis, lipid catabolism, or cell motility. Decreased TIMP2 levels combined with maintained MMP2 or MMP3 protein levels suggested that BAT may avoid tissue remodeling until arousal. No changes in WAT inflammatory cytokines or soluble receptors as well as decreased MMP2 levels during torpor and arousal suggested inflammation and modification to the extracellular matrix is likely suppressed in WAT. This study emphasizes the fat-but-fit nature of the hibernating ground squirrel and the ability of its fat stores to suppress inflammation.
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
33
|
Huber N, Vetter S, Stalder G, Gerritsmann H, Giroud S. Dynamic Function and Composition Shift in Circulating Innate Immune Cells in Hibernating Garden Dormice. Front Physiol 2021; 12:620614. [PMID: 33746769 PMCID: PMC7970003 DOI: 10.3389/fphys.2021.620614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hibernation is characterized by successive torpor bouts during which metabolic rate is down-regulated to 2-4% of euthermic levels along with core body temperatures (T b ) ranging between 0 and 10°C. One characteristic of the torpid state, which is periodically interrupted by a few hours of euthermic phases or arousals during hibernation, resides in an overall impairment of the immune system. The most striking change during torpor is the reduction of circulating white blood cells up to 90%, while their numbers rise to near summer euthermic level upon rewarming. However, potential changes in responsiveness and function of neutrophil granulocytes, accounting for the primary cellular innate immune defense, are unknown. Here we present the first data on shifts in oxidative burst capacity, i.e., the ability to produce reactive oxygen species (ROS), of neutrophils during hibernation. Using a chemiluminescence assay, we measured real-time ROS production in whole blood of hibernating garden dormice (Eliomys quercinus) in early or late torpor, and upon arousals. Accounting for changes in neutrophil numbers along the torpor-arousal cycle, we found significant differences, between torpid and euthermic states, in the neutrophil oxidative burst capacity (NOC), with shallow cell responses during torpor and a highly significant increase by up to 30-fold during arousals. Further, we observed a significant reduction of NOC from aroused animals with euthermic T b of 36.95 ± 0.37°C, when tested at 6°C, whereas no change occurred in NOC from torpid individuals reaching constant T b of 4.67 ± 0.42°C, when measured at 35°C. This dynamic indicates that the reduction in NOC during torpor may be temperature-compensated. These results linked to the understanding of immune function during the torpor-arousal cycle might have clinical relevance in the context of therapeutic hypothermia and reperfusion injury.
Collapse
Affiliation(s)
- Nikolaus Huber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Vetter
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hanno Gerritsmann
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
34
|
Fuller A, Mitchell D, Maloney SK, Hetem RS, Fonsêca VFC, Meyer LCR, van de Ven TMFN, Snelling EP. How dryland mammals will respond to climate change: the effects of body size, heat load and a lack of food and water. J Exp Biol 2021; 224:224/Suppl_1/jeb238113. [PMID: 33627465 DOI: 10.1242/jeb.238113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammals in drylands are facing not only increasing heat loads but also reduced water and food availability as a result of climate change. Insufficient water results in suppression of evaporative cooling and therefore increases in body core temperature on hot days, while lack of food reduces the capacity to maintain body core temperature on cold nights. Both food and water shortage will narrow the prescriptive zone, the ambient temperature range over which body core temperature is held relatively constant, which will lead to increased risk of physiological malfunction and death. Behavioural modifications, such as shifting activity between night and day or seeking thermally buffered microclimates, may allow individuals to remain within the prescriptive zone, but can incur costs, such as reduced foraging or increased competition or predation, with consequences for fitness. Body size will play a major role in predicting response patterns, but identifying all the factors that will contribute to how well dryland mammals facing water and food shortage will cope with increasing heat loads requires a better understanding of the sensitivities and responses of mammals exposed to the direct and indirect effects of climate change.
Collapse
Affiliation(s)
- Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa .,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Human Sciences, Faculty of Science, University of Western Australia, Crawley 6009, WA, Australia
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Human Sciences, Faculty of Science, University of Western Australia, Crawley 6009, WA, Australia
| | - Robyn S Hetem
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Vinicius F C Fonsêca
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Innovation Group of Biometeorology and Animal Welfare (INOBIO-MANERA), Universidade Federal da Paraíba, Areia, 58397000, Brazil
| | - Leith C R Meyer
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Tanja M F N van de Ven
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
35
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
36
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
37
|
Zhang Z, Reis FMCV, He Y, Park JW, DiVittorio JR, Sivakumar N, van Veen JE, Maesta-Pereira S, Shum M, Nichols I, Massa MG, Anderson S, Paul K, Liesa M, Ajijola OA, Xu Y, Adhikari A, Correa SM. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat Commun 2020; 11:6378. [PMID: 33311503 PMCID: PMC7732979 DOI: 10.1038/s41467-020-20050-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Johnathon R DiVittorio
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nilla Sivakumar
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Shum
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - India Nichols
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Shawn Anderson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ketema Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Avishek Adhikari
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Parallel Accelerated Evolution in Distant Hibernators Reveals Candidate Cis Elements and Genetic Circuits Regulating Mammalian Obesity. Cell Rep 2020; 29:2608-2620.e4. [PMID: 31775032 PMCID: PMC6910134 DOI: 10.1016/j.celrep.2019.10.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is a clinical problem and an important adaptation in many species. Hibernating mammals, for example, become obese, insulin resistant, and hyperinsulinemic to store fat. Here, we combine comparative phylogenomics with large-scale human genome data to uncover candidate cis elements and genetic circuits in different cell types. The Fat Mass and Obesity (FTO) locus, the strongest genetic risk factor for human obesity, is an enriched site for hibernator pARs. Our results uncover noncoding cis elements with putative roles in obesity and hibernation. Obesity is a clinical problem but also an important adaptation in hibernators. By using comparative genomics approaches to analyze the genomes of hibernators from different clades and contrasting the results with human obesity risk loci, Ferris and Gregg found 364 conserved cis elements with putative roles in regulating obesity and hibernation.
Collapse
|
39
|
Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA. Is Oxytocin "Nature's Medicine"? Pharmacol Rev 2020; 72:829-861. [PMID: 32912963 PMCID: PMC7495339 DOI: 10.1124/pr.120.019398] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - William M Kenkel
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Evan L MacLean
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Steven R Wilson
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jason R Yee
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Craig F Ferris
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Hossein P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Stephen W Porges
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - John M Davis
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jessica J Connelly
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Marcy A Kingsbury
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| |
Collapse
|
40
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Takahashi TM, Sunagawa GA, Soya S, Abe M, Sakurai K, Ishikawa K, Yanagisawa M, Hama H, Hasegawa E, Miyawaki A, Sakimura K, Takahashi M, Sakurai T. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 2020; 583:109-114. [PMID: 32528181 DOI: 10.1038/s41586-020-2163-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Hibernating mammals actively lower their body temperature to reduce energy expenditure when facing food scarcity1. This ability to induce a hypometabolic state has evoked great interest owing to its potential medical benefits2,3. Here we show that a hypothalamic neuronal circuit in rodents induces a long-lasting hypothermic and hypometabolic state similar to hibernation. In this state, although body temperature and levels of oxygen consumption are kept very low, the ability to regulate metabolism still remains functional, as in hibernation4. There was no obvious damage to tissues and organs or abnormalities in behaviour after recovery from this state. Our findings could enable the development of a method to induce a hibernation-like state, which would have potential applications in non-hibernating mammalian species including humans.
Collapse
Affiliation(s)
- Tohru M Takahashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kiyomi Ishikawa
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Japan
| | - Emi Hasegawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan. .,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
42
|
Geiser F. Seasonal Expression of Avian and Mammalian Daily Torpor and Hibernation: Not a Simple Summer-Winter Affair †. Front Physiol 2020; 11:436. [PMID: 32508673 PMCID: PMC7251182 DOI: 10.3389/fphys.2020.00436] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Daily torpor and hibernation (multiday torpor) are the most efficient means for energy conservation in endothermic birds and mammals and are used by many small species to deal with a number of challenges. These include seasonal adverse environmental conditions and low food/water availability, periods of high energetic demands, but also reduced foraging options because of high predation pressure. Because such challenges differ among regions, habitats and food consumed by animals, the seasonal expression of torpor also varies, but the seasonality of torpor is often not as clear-cut as is commonly assumed and differs between hibernators and daily heterotherms expressing daily torpor exclusively. Hibernation is found in mammals from all three subclasses from the arctic to the tropics, but is known for only one bird. Several hibernators can hibernate for an entire year or express torpor throughout the year (8% of species) and more hibernate from late summer to spring (14%). The most typical hibernation season is the cold season from fall to spring (48%), whereas hibernation is rarely restricted to winter (6%). In hibernators, torpor expression changes significantly with season, with strong seasonality mainly found in the sciurid and cricetid rodents, but seasonality is less pronounced in the marsupials, bats and dormice. Daily torpor is diverse in both mammals and birds, typically is not as seasonal as hibernation and torpor expression does not change significantly with season. Torpor in spring/summer has several selective advantages including: energy and water conservation, facilitation of reproduction or growth during development with limited resources, or minimisation of foraging and thus exposure to predators. When torpor is expressed in spring/summer it is usually not as deep and long as in winter, because of higher ambient temperatures, but also due to seasonal functional plasticity. Unlike many other species, subtropical nectarivorous blossom-bats and desert spiny mice use more frequent and pronounced torpor in summer than in winter, which is related to seasonal availability of nectar or water. Thus, seasonal use of torpor is complex and differs among species and habitats.
Collapse
Affiliation(s)
- Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology CO2, University of New England, Armidale, NSW, Australia
| |
Collapse
|
43
|
Luu BE, Lefai E, Giroud S, Swenson JE, Chazarin B, Gauquelin-Koch G, Arnemo JM, Evans AL, Bertile F, Storey KB. MicroRNAs facilitate skeletal muscle maintenance and metabolic suppression in hibernating brown bears. J Cell Physiol 2020; 235:3984-3993. [PMID: 31643088 DOI: 10.1002/jcp.29294] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Hibernating brown bears, Ursus arctos, undergo extended periods of inactivity and yet these large hibernators are resilient to muscle disuse atrophy. Physiological characteristics associated with atrophy resistance in bear muscle have been examined (e.g., muscle mechanics, neural activity) but roles for molecular signaling/regulatory mechanisms in the resistance to muscle wasting in bears still require investigation. Using quantitative reverse transcription PCR (RT-qPCR), the present study characterized the responses of 36 microRNAs linked with development, metabolism, and regeneration of skeletal muscle, in the vastus lateralis of brown bears comparing winter hibernating and summer active animals. Relative levels of mRNA of selected genes (mef2a, pax7, id2, prkaa1, and mstn) implicated upstream and downstream of the microRNAs were examined. Results indicated that hibernation elicited a myogenic microRNA, or "myomiR", response via MEF2A-mediated signaling. Upregulation of MEF2A-controlled miR-1 and miR-206 and respective downregulation of pax7 and id2 mRNA are suggestive of responses that promote skeletal muscle maintenance. Increased levels of metabolic microRNAs, such as miR-27, miR-29, and miR-33, may facilitate metabolic suppression during hibernation via mechanisms that decrease glucose uptake and fatty acid oxidation. This study identified myomiR-mediated mechanisms for the promotion of muscle regeneration, suppression of ubiquitin ligases, and resistance to muscle atrophy during hibernation mediated by observed increases in miR-206, miR-221, miR-31, miR-23a, and miR-29b. This was further supported by the downregulation of myomiRs associated with a muscle injury and inflammation (miR-199a and miR-223) during hibernation. The present study provides evidence of myomiR-mediated signaling pathways that are activated during hibernation to maintain skeletal muscle functionality in brown bears.
Collapse
Affiliation(s)
- Bryan E Luu
- Department of Biology, Carleton University, Ottawa, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Etienne Lefai
- Université d'Auvergne, INRA, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Blandine Chazarin
- Centre National d'Etudes Spatiales, CNES, Paris, France
- Université de Strasbourg, CNRS, IPHC, Strasbourg, France
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | | | | |
Collapse
|
44
|
CHANGE OF INDICES OF THE AMINO ACID COMPOSITION OF RATS’ HEARTS AT ARTIFICIAL HYPOBIOSIS. EUREKA: LIFE SCIENCES 2019. [DOI: 10.21303/2504-5695.2019.001073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of unsolved questions in such sciences as: medicine, veterinary, biology still exist in the modern world. One of them is a search for new promising ways of anaesthetization, at which it would be unnecessary to use apparatuses as an “artificial heart”, “artificial ventilation of lungs” at short-term surgical interventions. Just artificial hypobiosis may become one of such methods. Main conditions for creation are a synchronous effect of such factors as hypoxia, hypercapnia, hypothermia. That is why for confirming the safety of this method in pre-clinical studies with a further perspective of using at clinical ones, it is necessary to study the mechanism of an effect and influence of the hypobiotic condition on the homeostasis of the living organism in detail. Rats are the best research object in this case. Just they have a similar physiological structure of such organs as a heart. An urgent question about changes that take place in the amino acid composition under the hypobiotic effect still be unexplained. That is why the aim of the study was to investigate amino acid changes of the rat heart under condition of artificial hypobiosis. White outbred male rats with mass 180–200 g were used in the experiments. The animals were divided in groups: control (intact) and experimental: the condition of artificial hypobiosis (first group) and 24 hours after release from artificial hypobiosis (second group). The number of animals in each group n=5. The experiments were conducted according to requirements of “The European convention about protection of vertebral animals, used with experimental or other scientific aims” (Strasbourg, France 1985), by general ethical principles of experiments with animals, approved by the First national congress of Ukraine on bioethics (2001). As a result of the conducted studies, a little decrease of several amino acids under condition of artificial hypobiosis was demonstrated. First of all, a decrease of such amino acids as aminosuccinic, glutamic, isoleucine, leucine, lysine, arginine was observed in rats’ hearths under artificial hypobiosis. There was also demonstrated an increase of the level of these amino acids in rats’ hearts after 24 hours after release from it.
Collapse
|
45
|
Zduniak M, Pillay N, Schradin C. Basking African striped mice choose warmer locations to heat up: evidence from a field study. J Zool (1987) 2019. [DOI: 10.1111/jzo.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Zduniak
- Department of Systematic Zoology Adam Mickiewicz University Poznań Poland
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - N. Pillay
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - C. Schradin
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHC, UNISTRA, CNRS Strasbourg France
| |
Collapse
|
46
|
Dittner C, Lindsund E, Cannon B, Nedergaard J. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Mol Metab 2019; 25:20-34. [PMID: 31151797 PMCID: PMC6601127 DOI: 10.1016/j.molmet.2019.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Hyperthyroidism is associated with increased metabolism ("thyroid thermogenesis") and elevated body temperature, often referred to as hyperthermia. Uncoupling protein-1 (UCP1) is the protein responsible for nonshivering thermogenesis in brown adipose tissue. We here examine whether UCP1 is essential for thyroid thermogenesis. METHODS We investigated the significance of UCP1 for thyroid thermogenesis by using UCP1-ablated (UCP1 KO) mice. To avoid confounding factors from cold-induced thermogenesis and to approach human conditions, the experiments were conducted at thermoneutrality, and to resemble conditions of endogenous release, thyroid hormone (thyroxine, T4) was injected peripherally. RESULTS Both short-term and chronic thyroxine treatment led to a marked increase in metabolism that was largely UCP1-independent. Chronic thyroxine treatment led to a 1-2 °C increase in body temperature. This increase was also UCP1-independent and was maintained even at lower ambient temperatures. Thus, it was pyrexia, i.e. a defended increase in body temperature, not hyperthermia. In wildtype mice, chronic thyroxine treatment induced a large relative increase in the total amounts of UCP1 in the brown adipose tissue (practically no UCP1 in brite/beige adipose tissue), corresponding to an enhanced thermogenic response to norepinephrine injection. The increased UCP1 amount had minimal effects on thyroxine-induced thermogenesis and pyrexia. CONCLUSIONS These results establish that thyroid thermogenesis is a UCP1-independent process. The fact that the increased metabolism coincides with elevated body temperature and thus with accelerated kinetics accentuates the unsolved issue of the molecular background for thyroid thermogenesis.
Collapse
Affiliation(s)
- Claudia Dittner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
47
|
Nordeen CA, Martin SL. Engineering Human Stasis for Long-Duration Spaceflight. Physiology (Bethesda) 2019; 34:101-111. [PMID: 30724130 DOI: 10.1152/physiol.00046.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Suspended animation for deep-space travelers is moving out of the realm of science fiction. Two approaches are considered: the first elaborates the current medical practice of therapeutic hypothermia; the second invokes the cascade of metabolic processes naturally employed by hibernators. We explore the basis and evidence behind each approach and argue that mimicry of natural hibernation will be critical to overcome the innate limitations of human physiology for long-duration space travel.
Collapse
Affiliation(s)
- Claire A Nordeen
- Department of Emergency Medicine, Harborview Medical Center, University of Washington , Seattle, Washington
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
48
|
Giroud S, Chery I, Bertile F, Bertrand-Michel J, Tascher G, Gauquelin-Koch G, Arnemo JM, Swenson JE, Singh NJ, Lefai E, Evans AL, Simon C, Blanc S. Lipidomics Reveals Seasonal Shifts in a Large-Bodied Hibernator, the Brown Bear. Front Physiol 2019; 10:389. [PMID: 31031634 PMCID: PMC6474398 DOI: 10.3389/fphys.2019.00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Prior to winter, heterotherms retain polyunsaturated fatty acids (“PUFA”), resulting in enhanced energy savings during hibernation, through deeper and longer torpor bouts. Hibernating bears exhibit a less dramatic reduction (2–5°C) in body temperature, but lower their metabolism to a degree close to that of small hibernators. We determined the lipid composition, via lipidomics, in skeletal muscle and white adipose tissues (“WAT”), to assess lipid retention, and in blood plasma, to reflect lipid trafficking, of winter hibernating and summer active wild Scandinavian brown bears (Ursus arctos). We found that the proportion of monounsaturated fatty acids in muscle of bears was significantly higher during winter. During hibernation, omega-3 PUFAs were retained in WAT and short-length fatty acids were released into the plasma. The analysis of individual lipid moieties indicated significant changes of specific fatty acids, which are in line with the observed seasonal shift in the major lipid categories and can be involved in specific regulations of metabolisms. These results strongly suggest that the shift in lipid composition is well conserved among hibernators, independent of body mass and of the animals’ body temperature.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabelle Chery
- IPHC, University of Strasbourg, Strasbourg, France.,UMR7178, CNRS, Strasbourg, France
| | - Fabrice Bertile
- IPHC, University of Strasbourg, Strasbourg, France.,UMR7178, CNRS, Strasbourg, France
| | | | - Georg Tascher
- IPHC, University of Strasbourg, Strasbourg, France.,UMR7178, CNRS, Strasbourg, France
| | | | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.,Norwegian Institute for Nature Research, Trondheim, Norway
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Etienne Lefai
- CARMEN, INSERM U1060, University of Lyon, INRA U1235, Oullins, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Chantal Simon
- CARMEN, INSERM U1060, University of Lyon, INRA U1235, Oullins, France
| | - Stéphane Blanc
- IPHC, University of Strasbourg, Strasbourg, France.,UMR7178, CNRS, Strasbourg, France
| |
Collapse
|
49
|
Chayama Y, Ando L, Sato Y, Shigenobu S, Anegawa D, Fujimoto T, Taii H, Tamura Y, Miura M, Yamaguchi Y. Molecular Basis of White Adipose Tissue Remodeling That Precedes and Coincides With Hibernation in the Syrian Hamster, a Food-Storing Hibernator. Front Physiol 2019; 9:1973. [PMID: 30745884 PMCID: PMC6360343 DOI: 10.3389/fphys.2018.01973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian hibernators store fat extensively in white adipose tissues (WATs) during pre-hibernation period (Pre-HIB) to prepare for hibernation. However, the molecular mechanisms underlying the pre-hibernation remodeling of WAT have not been fully elucidated. Syrian hamsters, a food-storing hibernator, can hibernate when exposed to a winter-like short day photoperiod and cold ambient temperature (SD-Cold). Animals subjected to prolonged SD-Cold had smaller white adipocytes and beige-like cells within subcutaneous inguinal WAT (iWAT). Time-course analysis of gene expression with RNA-sequencing and quantitative PCR demonstrated that the mRNA expression of not only genes involved in lipid catabolism (lipolysis and beta-oxidation) but also lipid anabolism (lipogenesis and lipid desaturation) was simultaneously up-regulated prior to hibernation onset in the animals. The enhanced capacity of both lipid catabolism and lipid anabolism during hibernation period (HIB) is striking contrast to previous observations in fat-storing hibernators that only enhance catabolism during HIB. The mRNA expression of mTORC1 and PPAR signaling molecules increased, and pharmacological activation of PPARs indeed up-regulated lipid metabolism genes in iWAT explants from Syrian hamsters. These results suggest that the Syrian hamster rewires lipid metabolisms while preparing for hibernation to effectively utilize body fat and synthesize it from food intake during HIB.
Collapse
Affiliation(s)
- Yuichi Chayama
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Lisa Ando
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuya Sato
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Daisuke Anegawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Fujimoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Taii
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Tamura
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
Hibernating astronauts-science or fiction? Pflugers Arch 2018; 471:819-828. [PMID: 30569200 PMCID: PMC6533228 DOI: 10.1007/s00424-018-2244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
For long-duration manned space missions to Mars and beyond, reduction of astronaut metabolism by torpor, the metabolic state during hibernation of animals, would be a game changer: Water and food intake could be reduced by up to 75% and thus reducing payload of the spacecraft. Metabolic rate reduction in natural torpor is linked to profound changes in biochemical processes, i.e., shift from glycolysis to lipolysis and ketone utilization, intensive but reversible alterations in organs like the brain and kidney, and in heart rate control via Ca2+. This state would prevent degenerative processes due to organ disuse and increase resistance against radiation defects. Neuro-endocrine factors have been identified as main targets to induce torpor although the exact mechanisms are not known yet. The widespread occurrence of torpor in mammals and examples of human hypometabolic states support the idea of human torpor and its beneficial applications in medicine and space exploration.
Collapse
|