1
|
Romero-Carmona CE, Chávez-Corona JI, Lima E, Cortés H, Quintanar-Guerrero D, Bernad-Bernad MJ, Ramos-Martínez I, Peña-Corona SI, Sharifi-Rad J, Leyva-Gómez G. Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis. J Nanobiotechnology 2024; 22:802. [PMID: 39734205 DOI: 10.1186/s12951-024-03045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetes mellitus (DM) prevalence is rising worldwide. Current therapies comprising subcutaneous insulin injections can cause adverse effects such as lipodystrophy, local reactions like redness and swelling, fluid retention, and allergic reactions. Nanoparticle carriers for oral insulin are groundbreaking compared to existing methods because they are non-invasive treatments, showing operational convenience, controlled release profile, and ability to simulate the physiological delivery route into the bloodstream. These systems improve patient adherence and have demonstrated the potential to lower blood glucose levels in DM. We present a systematic review and meta-analysis aimed at compiling relevant data to pave the way for developing innovative nano- and microparticles for the oral delivery of insulin. Our analysis of 85 articles revealed that the diminution of glucose levels is not proportional to the administered insulin dosage, which ranged from 1 to 120 International Units (IU). The meta-analysis data indicated that 25 IU of encapsulated porcine insulin did not produce a statistically significant outcome (p = 0.93). In contrast, a dosage of 30 IU was efficacious in eliciting an optimal hypoglycemic effect compared to excipient controls. Parameters such as a high degree of encapsulation (~ 90%), particle size (200-400 nm), and polydispersity index (0.086-0.3) are all associated with lower blood glucose levels. These parameters were also significant in the linear regression analysis. Among the excipients employed, chitosan emerged as a prevalent excipient in formulations due to its biocompatible and biodegradable properties and its ability to establish stable polymeric matrices. Even though oral insulin administration is a promising therapeutic method, it cannot guarantee preclinical safety and therapeutic efficacy yet in regulating glucose levels in diabetic conditions.
Collapse
Affiliation(s)
- Carlos E Romero-Carmona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Juan I Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), 14389, Ciudad de Mexico, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, 54714, Cuautitlán Izcalli, Mexico
| | - María J Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Iván Ramos-Martínez
- Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Mohamed AA, Abo-Elmatty DM, Wahba AS, Esmail OE, Salim HSM, Hegab WSM, Ghanem MMF, Riad NY, Ghaith D, Daker LI, Issa S, Radwan NH, Sultan E, Azzam OM, El-Shoura EAM. Leptin Rs7799039 polymorphism is associated with type 2 diabetes mellitus Egyptian patients. Arch Physiol Biochem 2024; 130:742-754. [PMID: 37840222 DOI: 10.1080/13813455.2023.2265078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Leptin (LEP) is an anti-obesity hormone that regulates food intake, energy expenditure, and glucose metabolism. The genetic variants in LEP and the LEP receptor (LEPR) gene may play an important role in the pathogenesis of type 2 diabetes mellitus (T2DM) and obesity. The current study aimed to investigate the association of serum LEP levels, and LEP polymorphisms in LEP (rs7799039, 2548 G/A) with T2DM in Egyptian patients. METHODS A total of 205 subjects were included in the present case-control study, consisting of 100 T2DM patients and 105 healthy controls. The anthropometric, psychometric, and biochemical measurements were taken from all the subjects. The genotyping of LEP gene variants was carried out by polymerase chain reaction TaqMan technology. Serum LEP levels were measured by the ELISA technique. RESULTS T2DM patients had significantly elevated levels of glycated haemoglobin (HbA1c), fasting blood sugar (FBS), postprandial blood sugar (PPBS), international normalisation ratio (INR), creatinine, urea, cholesterol, triglyceride (TG), and low-density lipoproteins (LDL) and significantly decreased high-density lipoprotein (HDL) compared to healthy subjects. serum LEP levels were significantly decreased p (<0.001) as compared to the control group. LEP gene SNP rs7799039 was associated with an increased diabetic risk with A allele being more frequent in T2DM patients than control subjects. The distribution of the AA genotype and GA genotype of LEP SNP rs7799039 was higher in the diabetic group than control one. In addition, AA + GA genotype carriers had significantly elevated HbA1c, FBS, PPBS, TG, and LDL levels and on the contrary, decreased serum LEP levels compared to GG homozygotes. CONCLUSION The genetic polymorphism rs7799039 showed a highly significant correlation with blood LEP. The co-dominant and dominant models of the LEP genetic polymorphism (rs7799039, 2548 G/A) were shown to have a significant correlation with complicated and uncomplicated diabetes individuals, but we have found that serum LEP levels were inversely related with control and diabetes patients. A positive significant association was found between LEP genetic polymorphism (rs7799039, 2548 G/A) and serum LEP in patients and controls. LEP levels and its rs7799039 genetic variant may play a vital role in increasing T2DM susceptibility.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry, National Hepatology and Molecular Biology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Alaa S Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Omnia Ezzat Esmail
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Egypt
| | | | | | | | - Nadia Youssef Riad
- Department of Clinical Pathology, National Heart Institute, Cairo, Egypt
| | - Doaa Ghaith
- Department of Clinical Pathology, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lamiaa I Daker
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Shorouk Issa
- Department of Endocrinology and Metabolism, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Noha Hassan Radwan
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo, Egypt
| | - Eman Sultan
- Department of Endocrinology, The National Nutrition Institute, Cairo, Egypt
| | - Omar Mohamoud Azzam
- Department of Internal Medicine, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | | |
Collapse
|
3
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Qiu S, He S, Wang J, Wang H, Bhattacharjee A, Li X, Saeed M, Dupree JL, Han X. Adult-Onset CNS Sulfatide Deficiency Causes Sex-Dependent Metabolic Disruption in Aging. Int J Mol Sci 2023; 24:10483. [PMID: 37445661 PMCID: PMC10341976 DOI: 10.3390/ijms241310483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The interconnection between obesity and central nervous system (CNS) neurological dysfunction has been widely appreciated. Accumulating evidence demonstrates that obesity is a risk factor for CNS neuroinflammation and cognitive impairment. However, the extent to which CNS disruption influences peripheral metabolism remains to be elucidated. We previously reported that myelin-enriched sulfatide loss leads to CNS neuroinflammation and cognitive decline. In this study, we further investigated the impact of CNS sulfatide deficiency on peripheral metabolism while considering sex- and age-specific effects. We found that female sulfatide-deficient mice gained significantly more body weight, exhibited higher basal glucose levels, and were glucose-intolerant during glucose-tolerance test (GTT) compared to age-matched controls under a normal diet, whereas male sulfatide-deficient mice only displayed glucose intolerance at a much older age compared to female sulfatide-deficient mice. Mechanistically, we found that increased body weight was associated with increased food intake and elevated neuroinflammation, especially in the hypothalamus, in a sex-specific manner. Our results suggest that CNS sulfatide deficiency leads to sex-specific alterations in energy homeostasis via dysregulated hypothalamic control of food intake.
Collapse
Affiliation(s)
- Shulan Qiu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sijia He
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Moawiz Saeed
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23284, USA
- McGuire Veterans Affairs Medical Center, Research Division, Richmond, VA 23249, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (S.Q.); (S.H.)
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Rodríguez-Ramírez AM, Alcántara-Garcés MT, Hernández-Jiménez S, García-Ulloa AC, Arcila-Martínez D, Velázquez-Jurado H, Arizmendi-Rodríguez RE. Long-Term Effects of Anxiety on the Metabolic Control of Recently Diagnosed Type 2 Diabetes Patients: Results from the CAIPaDi Cohort Study. Neuropsychiatr Dis Treat 2023; 19:197-207. [PMID: 36714164 PMCID: PMC9882413 DOI: 10.2147/ndt.s392672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Anxiety disorders (AXD) are among the most prevalent mental health conditions in patients with type 2 diabetes (T2D). Previous data have established an association of other psychiatric conditions with poor metabolic control and increased odds of diabetes-related complications. Nonetheless, follow-up information about the effects of AXD on the metabolic control of patients with TD2 is still limited. OBJECTIVE Evaluate the effects of AXD on the metabolic parameters of patients with T2D over 12 months of follow-up in a multidisciplinary comprehensive care model. METHODS Prospective study of T2D subjects enrolled in a comprehensive care program with follow-up at 3 and 12 months of treatment. Patients were assessed using the Mini-International Neuropsychiatric Interview and the Hospital Anxiety and Depression Scale (HADS). We registered clinical and metabolic characteristics from each visit. Metabolic parameters over time were analyzed with a mixed model of repeated measures using AXD and time as interaction variables. RESULTS Our sample included 2703 patients at baseline, and 1161 (43%) subjects continued the follow-up at 12 months. The AXD group had more females, lower age, and fewer years of formal education compared with subjects without AXD at baseline, 3 and 12 months. Patients with AXD also reported higher mean fasting glucose at three months, and higher HbA1c at three and 12 months. Our MMRM for HbA1c reported significant differences over time in subjects with and without AXD. The differences in means between groups increased from 0.17% at three months to 0.31% at 12 months. The variables from the HADS anxiety score, sex, age, years of diagnosis, and insulin treatment were also associated with HbA1c parameters over time. CONCLUSION Patients with AXD had the worst glycemic control at 3 and 12 months of follow-up. HbA1c differences in patients with AXD compared with non-AXD subjects increases over time in association with anxiety symptoms.
Collapse
Affiliation(s)
- Alejandra Monserrat Rodríguez-Ramírez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Teresa Alcántara-Garcés
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Hernández-Jiménez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ana Cristina García-Ulloa
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Denise Arcila-Martínez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Velázquez-Jurado
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rodrigo Eduardo Arizmendi-Rodríguez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi) Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
6
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Morina IY, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Hypothalamic Signaling and Expression of Hepatic Gluconeogenesis Genes in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zhang L, Koller J, Gopalasingam G, Qi Y, Herzog H. Central NPFF signalling is critical in the regulation of glucose homeostasis. Mol Metab 2022; 62:101525. [PMID: 35691527 PMCID: PMC9234230 DOI: 10.1016/j.molmet.2022.101525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons. METHODS We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons. RESULTS Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control. CONCLUSIONS NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia.
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia; St. Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, NSW Australia
| |
Collapse
|
8
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Hagemann CA, Jensen MS, Holm S, Gasbjerg LS, Byberg S, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Vilsbøll T, Christensen MB, Holst B, Knop FK. LEAP2 reduces postprandial glucose excursions and ad libitum food intake in healthy men. Cell Rep Med 2022; 3:100582. [PMID: 35492241 PMCID: PMC9043997 DOI: 10.1016/j.xcrm.2022.100582] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
The gastric hormone ghrelin stimulates food intake and increases plasma glucose through activation of the growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) has been proposed to inhibit actions of ghrelin through inverse effects on GHSR activity. Here, we investigate the effects of exogenous LEAP2 on postprandial glucose metabolism and ad libitum food intake in a randomized, double-blind, placebo-controlled, crossover trial of 20 healthy men. We report that LEAP2 infusion lowers postprandial plasma glucose and growth hormone concentrations and decreases food intake during an ad libitum meal test. In wild-type mice, plasma glucose and food intake are reduced by LEAP2 dosing, but not in GHSR-null mice, pointing to GHSR as a potential mediator of LEAP2’s glucoregulatory and appetite-suppressing effects in mice. Exogenous LEAP2 lowers postprandial plasma glucose excursions Exogenous LEAP2 suppresses ad libitum food intake During fasting, exogenous LEAP2 increases insulin secretion and suppresses lipolysis The GHSR is required for eliciting LEAP2 effects in mice
Collapse
Affiliation(s)
- Christoffer A Hagemann
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark; Gubra, Hørsholm, Denmark
| | - Malene S Jensen
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Stephanie Holm
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Byberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Filip K Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
10
|
da Silva AA, Hall JE, Dai X, Wang Z, Salgado MC, do Carmo JM. Chronic Antidiabetic Actions of Leptin: Evidence From Parabiosis Studies for a CNS-Derived Circulating Antidiabetic Factor. Diabetes 2021; 70:2264-2274. [PMID: 34344788 PMCID: PMC8576509 DOI: 10.2337/db21-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
We used parabiosis to determine whether the central nervous system (CNS)-mediated antidiabetic effects of leptin are mediated by release of brain-derived circulating factors. Parabiosis was surgically induced at 4 weeks of age, and an intracerebroventricular (ICV) cannula was placed in the lateral cerebral ventricle at 12 weeks of age for ICV infusion of leptin or saline vehicle. Ten days after surgery, food intake, body weight, and blood glucose were measured for 5 consecutive days, and insulin-deficiency diabetes was induced in all rats by a single streptozotocin (STZ) injection (40 mg/kg). Five days after STZ injection, leptin or vehicle was infused ICV for 7 days, followed by 5-day recovery period. STZ increased blood glucose and food intake. Chronic ICV leptin infusion restored normoglycemia in leptin-infused rats while reducing blood glucose by ∼27% in conjoined vehicle-infused rats. This glucose reduction was caused mainly by decreased hepatic gluconeogenesis. Chronic ICV leptin infusion also reduced net cumulative food intake and increased GLUT4 expression in skeletal muscle in leptin/vehicle compared with vehicle/vehicle conjoined rats. These results indicate that leptin's CNS-mediated antidiabetic effects are mediated, in part, by release into the systemic circulation of leptin-stimulated factors that enhance glucose utilization and reduce liver gluconeogenesis.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Xuemei Dai
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Zhen Wang
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Mateus C Salgado
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
- Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|