1
|
Gáspárdy A, Gulyás L, Polland I, Alpár A, Fekete SG, Harmat L. Determination of Natural Blood Plasma Melatonin Concentration of Tsigai Ewes Characteristic for Gestation and Early Postpartum Period Between Autumnal Equinox and Winter Solstice. Vet Sci 2025; 12:336. [PMID: 40284838 PMCID: PMC12031133 DOI: 10.3390/vetsci12040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The aim of this investigation was to measure the natural nocturnal plasma melatonin concentration in gestating and fresh ewes. Studies in humans showed that maternal melatonin had a significant increase as pregnancy progressed and then decreased after birth. Two studies conducted in sheep so far, considering the entire gestation, have led to conflicting results. The breed of 16 pregnant ewes selected for the research was the Tsigai. Blood samples were taken into EDTA vacutainers predetermined times a night at different stages of their gestation. The RIA method was used to determine the melatonin concentrations. For estimation of its variations during gestation, population genetic statistics was applied. It was found that the average plasma melatonin concentration of 134 pg mL-1 is characteristic for the investigated period, and that it rises between the autumnal equinox and the winter solstice. Secondly, it was revealed that the average melatonin concentration adjusted for midnight is 162.4 pg mL-1, and its moderate variation is characteristic for the night. The investigation showed that there is no connection between the plasma melatonin concentration of the ewes and their gestational age in the Tsigai breed in Middle Europe. Our result is consistent with the results of single studies in sheep and donkey, in contrast to human observations. With regard to the nocturnal plasma melatonin, the concentration is reduced at the same level (30 pg mL-1) in ewes and lambs during the early postpartum period without nightly fluctuation. The expelled placenta, the constant vigilance between the mother and her lamb, and the opposition between melatonin and prolactin may provide a plausible explanation for this.
Collapse
Affiliation(s)
- András Gáspárdy
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - László Gulyás
- Department of Animal Sciences, Faculty of Agriculture and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary;
| | - Ida Polland
- Veterinær Ida Marie Polland AS, 3330 Skotselv, Norway;
| | - Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary;
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Sándor György Fekete
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Levente Harmat
- Experimental Farm, University of Veterinary Medicine Budapest, 2225 Üllő, Hungary;
| |
Collapse
|
2
|
Gomez A, Wu Y, Zhang C, Boyd L, Wee TL, Gewolb J, Amor C, Cheadle L, Borniger JC. A brain-body feedback loop driving HPA-axis dysfunction in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612923. [PMID: 39314280 PMCID: PMC11419152 DOI: 10.1101/2024.09.13.612923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Breast cancer patients often exhibit disrupted circadian rhythms in circulating glucocorticoids (GCs), such as cortisol. This disruption correlates with reduced quality of life and higher cancer mortality 1-3 . The exact cause of this phenomenon - whether due to treatments, stress, age, co-morbidities, lifestyle factors, or the cancer itself remains unclear. Here, we demonstrate that primary breast cancer alone blunts host GC rhythms by disinhibiting neurons in the hypothalamus, and that circadian phase-specific neuromodulation of these neurons can attenuate tumor growth by enhancing anti-tumor immunity. We find that mice with mammary tumors exhibit blunted GC rhythms before tumors are palpable, alongside increased activity in paraventricular hypothalamic neurons expressing corticotropin-releasing hormone (i.e., PVN CRH neurons). Tumor-bearing mice have fewer inhibitory synapses contacting PVN CRH neurons and reduced miniature inhibitory post-synaptic current (mIPSC) frequency, leading to net excitation. Tumor-bearing mice experience impaired negative feedback on GC production, but adrenal and pituitary gland functions are largely unaffected, indicating that alterations in PVN CRH neuronal activity are likely a primary cause of hypothalamic-pituitary-adrenal (HPA) axis dysfunction in breast cancer. Using chemogenetics (hM3Dq) to stimulate PVN CRH neurons at different circadian phases, we show that stimulation just before the light-to-dark transition restores normal GC rhythms and reduces tumor progression. These mice have significantly more effector T cells (CD8+) within the tumor than non-stimulated controls, and the anti-tumor effect of PVN CRH neuronal stimulation is absent in mice lacking CD8+ T cells. Our findings demonstrate that breast cancer distally regulates neurons in the hypothalamus that control output of the HPA axis and provide evidence that therapeutic targeting of these neurons could mitigate tumor progression.
Collapse
|
3
|
Ramos EN, Jiron GM, Danoff JS, Anderson Z, Carter CS, Perkeybile AM, Connelly JJ, Erisir A. The central oxytocinergic system of the prairie vole. Brain Struct Funct 2024; 229:1737-1756. [PMID: 39042140 PMCID: PMC11374920 DOI: 10.1007/s00429-024-02832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Oxytocin (OXT) is a peptide hormone and a neuropeptide that regulates various peripheral physiological processes and modulates behavioral responses in the central nervous system. While the humoral release occurs from the axons arriving at the median eminence, the neuropeptide is also released from oxytocinergic cell axons in various brain structures that contain its receptor, and from their dendrites in hypothalamic nuclei and potentially into the cerebrospinal fluid (CSF). Understanding oxytocin's complex functions requires the knowledge on patterns of oxytocinergic projections in relationship to its receptor (OXTR). This study provides the first comprehensive examination of the oxytocinergic system in the prairie vole (Microtus ochrogaster), an animal exhibiting social behaviors that mirror human social behaviors linked to oxytocinergic functioning. Using light and electron microscopy, we characterized the neuroanatomy of the oxytocinergic system in this species. OXT+ cell bodies were found primarily in the hypothalamus, and axons were densest in subcortical regions. Examination of the OXT+ fibers and their relationship to oxytocin receptor transcripts (Oxtr) revealed that except for some subcortical structures, the presence of axons was not correlated with the amount of Oxtr across the brain. Of particular interest, the cerebral cortex that had high expression of Oxtr transcripts contained little to no fibers. Electron microscopy is used to quantify dense cored vesicles (DCV) in OXT+ axons and to identify potential axonal release sites. The ependymal cells that line the ventricles were frequently permissive of DCV-containing OXT+ dendrites reaching the third ventricle. Our results highlight a mechanism in which oxytocin is released directly into the ventricles and circulates throughout the ventricular system, may serve as the primary source for oxytocin that binds to OXTR in the cerebral cortex.
Collapse
Affiliation(s)
- E N Ramos
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - G M Jiron
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - J S Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Z Anderson
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - C S Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - A M Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - J J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - A Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Zhan S, Qi Z, Cai F, Gao Z, Xie J, Hu J. Oxytocin neurons mediate stress-induced social memory impairment. Curr Biol 2024; 34:36-45.e4. [PMID: 38103551 DOI: 10.1016/j.cub.2023.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Oxytocin has long been thought to play a substantial role in social behaviors, such as social attachment and parenting behavior. However, how oxytocin neurons respond to social and non-social stimuli is largely unknown, especially in high temporal resolution. Here, we recorded the in vivo real-time responses of oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) in freely behaving mice. Our results revealed that oxytocin neurons were activated more significantly by stressors than social stimuli. The activation of oxytocin neurons was precisely correlated with struggling behavior during stress. Furthermore, we found that oxytocin mediated stress-induced social memory impairment. Our results reveal an important role of PVN oxytocin neurons in stress-induced social amnesia.
Collapse
Affiliation(s)
- Shulu Zhan
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Neuroscience, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing (CIBR), Bldg. 3, No. 9, YIKE Rd, Zhongguancun Life Science Park, Changping District, Beijing 102206, China.
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
5
|
Wang YF, Kendrick KM, Chen XQ, Sha L. Editorial: Neuroendocrine research in health and disease, volume II. Front Neurosci 2023; 17:1253725. [PMID: 37645369 PMCID: PMC10461568 DOI: 10.3389/fnins.2023.1253725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Yu-Feng Wang
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keith Maurice Kendrick
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Qun Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Chen Z, Wang Q, Xue X, Huang Z, Wang Y. The neural connections of oxytocin-mediated parental behavior in male mice. Front Mol Neurosci 2023; 16:1091139. [PMID: 36910264 PMCID: PMC9998477 DOI: 10.3389/fnmol.2023.1091139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Zhichao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals (Basel) 2022; 12:ani12243589. [PMID: 36552508 PMCID: PMC9774276 DOI: 10.3390/ani12243589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.
Collapse
|
8
|
Ugartemendia L, De Guzman RM, Cai J, Rajamanickam S, Jiang Z, Tao J, Zuloaga DG, Justice NJ. A subpopulation of oxytocin neurons initiate expression of CRF receptor 1 (CRFR1) in females post parturition. Psychoneuroendocrinology 2022; 145:105918. [PMID: 36116320 PMCID: PMC9881188 DOI: 10.1016/j.psyneuen.2022.105918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) is essential for successful reproduction, particularly during parturition and lactation. During the postpartum period, OT also influences maternal behavior to promote bonding between mothers and their newborns, and increases stress resilience. However, the mechanism by which stress influences OT neuron activity and OT release has remained unclear. Here, we provide evidence that a subpopulation of OT neurons initiate expression of the receptor for the stress neuropeptide Corticotropin Releasing Factor (CRF), CRFR1, in reproductive females. OT neuron expression of CRFR1 begins at the first parturition and increases during the postpartum period until weaning. The percentage of OT neurons that express CRFR1 increases with successive breeding cycles until it reaches a plateau of 20-25% of OT neurons. OT neuron expression of CRFR1 in reproductive females is maintained after they are no longer actively breeding. CRFR1 expression leads to activation of OT neurons when animals are stressed. We propose a model in which direct CRF signaling to OT neurons selectively in reproductive females potentiates OT release to promote stress resilience in mothers.
Collapse
Affiliation(s)
- Lierni Ugartemendia
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jing Cai
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Shivakumar Rajamanickam
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Zhiying Jiang
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Jonathan Tao
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States.
| |
Collapse
|
9
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
10
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
11
|
Moore AM, Coolen LM, Lehman MN. In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proc Natl Acad Sci U S A 2022; 119:e2117767119. [PMID: 35110409 PMCID: PMC8833213 DOI: 10.1073/pnas.2117767119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is composed of arcuate "KNDy" cells, the abbreviation based on coexpression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as "leaders" and others as "followers" during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy "leader" from "follower" cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, OH 44242;
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, OH 44242
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH 44242
- Department of Biological Sciences, Kent State University, Kent, OH 44242
| |
Collapse
|
12
|
Thirtamara Rajamani K, Leithead AB, Kim M, Barbier M, Peruggia M, Niblo K, Barteczko L, Lefevre A, Grinevich V, Harony-Nicolas H. Efficiency of cell-type specific and generic promoters in transducing oxytocin neurons and monitoring their neural activity during lactation. Sci Rep 2021; 11:22541. [PMID: 34795340 PMCID: PMC8602291 DOI: 10.1038/s41598-021-01818-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Hypothalamic oxytocin (OXT) and arginine-vasopressin (AVP) neurons have been at the center of several physiological and behavioral studies. Advances in viral vector biology and the development of transgenic rodent models have allowed for targeted gene expression to study the functions of specific cell populations and brain circuits. In this study, we compared the efficiency of various adeno-associated viral vectors in these cell populations and demonstrated that none of the widely used promoters were, on their own, effective at driving expression of a down-stream fluorescent protein in OXT or AVP neurons. As anticipated, the OXT promoter could efficiently drive gene expression in OXT neurons and this efficiency is solely attributed to the promoter and not the viral serotype. We also report that a dual virus approach using an OXT promoter driven Cre recombinase significantly improved the efficiency of viral transduction in OXT neurons. Finally, we demonstrate the utility of the OXT promoter for conducting functional studies on OXT neurons by using an OXT specific viral system to record neural activity of OXT neurons in lactating female rats across time. We conclude that extreme caution is needed when employing non-neuron-specific viral approaches/promoters to study neural populations within the paraventricular nucleus of the hypothalamus.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda B Leithead
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Kim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie Barbier
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Peruggia
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristi Niblo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara Barteczko
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hala Harony-Nicolas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|