1
|
Girsang E, Ginting CN, Lister INE, Widowati W, Yati A, Widya Kusuma HS, Azis R. Antiaging properties of chlorogenic acid through protein and gene biomarkers in human skin fibroblast cells as photoaging model. Res Pharm Sci 2024; 19:746-753. [PMID: 39911898 PMCID: PMC11792716 DOI: 10.4103/rps.rps_177_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/03/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Chlorogenic acid (CA) is a natural chemical that promises antiaging activity against photoaging skin damage. This research examined CA activities in mitigating skin photoaging. Experimental approach UV-exposed human skin fibroblast cells were subjected to CA at 6.25, 12.5, and 25 μg/mL. The protein levels of cell secretion, such as cyclooxygenase (COX)-2, nitric oxide (NO), and interleukin (IL)-6 were measured using ELISA and colorimetry methods. Meanwhile, the mRNA expressions of glutathione peroxidase (GPX)-1, tissue inhibitor metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-1, caspase (CASP)-3, CASP-8, and fibroblast growth factor (FGF)-2 were quantified using the qRT-PCR method. Findings/Results CA treatment reduced inflammatory and aging biomarkers. CA at 6.25 μg/mL lowered NO, COX-2, and IL-6 levels to 89.44 μmol/L, 8.10 ng/mL, and 62.75 pg/mL, respectively. CA at 25 μg/mL resulted in the most significant down-regulation of MMP-1, CASP-3, and CASP-8 genes' expression (3.27, 1.25, and 3.59, respectively). Furthermore, treatment with CA at 25 µg/mL demonstrated the most notable activity in up-regulating antioxidant markers, specifically GPX-1, and extracellular matrix (ECM) integrity markers, including TIMP-1 and FGF-2 genes' expression. Conclusion and implications CA imposes its anti-aging activity by decreasing inflammatory and aging biomarkers, and increasing cellular antioxidant and ECM integrity.
Collapse
Affiliation(s)
- Ermi Girsang
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Sampul No. 4, Medan 20118, North Sumatera, Indonesia
| | - Chrismis N. Ginting
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Sampul No. 4, Medan 20118, North Sumatera, Indonesia
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Sampul No. 4, Medan 20118, North Sumatera, Indonesia
| | - Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung 40164, West Java, Indonesia
| | - Afif Yati
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Rizal Azis
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
- Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
2
|
Duan H, Liu G, Feng D, Wang Z, Yan W. Research Progress on New Functions of Animal and Plant Proteins. Foods 2024; 13:1223. [PMID: 38672894 PMCID: PMC11048783 DOI: 10.3390/foods13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Protein is composed of peptides, essential nutrients for human survival and health, and the easy absorption of peptides further promotes human health. According to the source of the protein, it can be divided into plants, animals, and micro-organisms, which have important physiological effects on the health of the body, especially in enhancing immunity. The most widely used raw materials are animal protein and plant protein, and the protein composition formed by the two in a certain proportion is called "double protein". In recent years, China's State Administration for Market Regulation has issued an announcement on the "Implementation Rules for the Technical Evaluation of New Functions and Products of Health Foods (Trial)", which provides application conditions and listing protection for the research and development of new functions of health foods. At present, some researchers and enterprises have begun to pay attention to the potential of animal and plant proteins to be used in new functions. In this article, the research progress of animal and plant proteins in the new functions of Chinese health food is reviewed in detail, and suggestions for future research on animal and plant proteins are put forward.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Gaigai Liu
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Zhuoye Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (H.D.); (G.L.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China;
| |
Collapse
|
3
|
Wang K, Deng Y, He Y, Cao J, Zhang L, Qin L, Qu C, Li H, Miao J. Protective Effect of Mycosporine-like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:15055. [PMID: 37894736 PMCID: PMC10606268 DOI: 10.3390/ijms242015055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1β, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yashan Deng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Hongmei Li
- Key Laboratory of Biomedical Polymers, Shandong Academy of Pharmaceutical Science, Jinan 250100, China;
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (K.W.); (Y.D.); (Y.H.); (J.C.); (L.Z.); (L.Q.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
4
|
Ham SM, Song MJ, Yoon HS, Lee DH, Chung JH, Lee ST. SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway. Int J Mol Sci 2023; 24:12179. [PMID: 37569556 PMCID: PMC10419001 DOI: 10.3390/ijms241512179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The matricellular secreted protein acidic and rich in cysteine (SPARC; also known as osteonectin), is involved in the regulation of extracellular matrix (ECM) synthesis, cell-ECM interactions, and bone mineralization. We found decreased SPARC expression in aged skin. Incubating foreskin fibroblasts with recombinant human SPARC led to increased type I collagen production and decreased matrix metalloproteinase-1 (MMP-1) secretion at the protein and mRNA levels. In a three-dimensional culture of foreskin fibroblasts mimicking the dermis, SPARC significantly increased the synthesis of type I collagen and decreased its degradation. In addition, SPARC also induced receptor-regulated SMAD (R-SMAD) phosphorylation. An inhibitor of transforming growth factor-beta (TGF-β) receptor type 1 reversed the SPARC-induced increase in type I collagen and decrease in MMP-1, and decreased SPARC-induced R-SMAD phosphorylation. Transcriptome analysis revealed that SPARC modulated expression of genes involved in ECM synthesis and regulation in fibroblasts. RT-qPCR confirmed that a subset of differentially expressed genes is induced by SPARC. These results indicated that SPARC enhanced ECM integrity by activating the TGF-β signaling pathway in fibroblasts. We inferred that the decline in SPARC expression in aged skin contributes to process of skin aging by negatively affecting ECM integrity in fibroblasts.
Collapse
Affiliation(s)
- Seung Min Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Sun Yoon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Department of Dermatology, Seoul National University Boramae Hospital, Seoul 07061, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|
5
|
Galvan A, Cappellozza E, Pellequer Y, Conti A, Pozza ED, Vigato E, Malatesta M, Calderan L. An Innovative Fluid Dynamic System to Model Inflammation in Human Skin Explants. Int J Mol Sci 2023; 24:ijms24076284. [PMID: 37047256 PMCID: PMC10094544 DOI: 10.3390/ijms24076284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Skin is a major administration route for drugs, and all transdermal formulations must be tested for their capability to overcome the cutaneous barrier. Therefore, developing highly reliable skin models is crucial for preclinical studies. The current in vitro models are unable to replicate the living skin in all its complexity; thus, to date, excised human skin is considered the gold standard for in vitro permeation studies. However, skin explants have a limited life span. In an attempt to overcome this problem, we used an innovative bioreactor that allowed us to achieve good structural and functional preservation in vitro of explanted human skin for up to 72 h. This device was then used to set up an in vitro inflammatory model by applying two distinct agents mimicking either exogenous or endogenous stimuli: i.e., dithranol, inducing the contact dermatitis phenotype, and the substance P, mimicking neurogenic inflammation. Our in vitro system proved to reproduce inflammatory events observed in vivo, such as vasodilation, increased number of macrophages and mast cells, and increased cytokine secretion. This bioreactor-based system may therefore be suitably and reliably used to simulate in vitro human skin inflammation and may be foreseen as a promising tool to test the efficacy of drugs and cosmetics.
Collapse
|
6
|
Yang CY, Pan CC, Tseng CH, Yen FL. Antioxidant, Anti-Inflammation and Antiaging Activities of Artocarpus altilis Methanolic Extract on Urban Particulate Matter-Induced HaCaT Keratinocytes Damage. Antioxidants (Basel) 2022; 11:2304. [PMID: 36421490 PMCID: PMC9687219 DOI: 10.3390/antiox11112304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 μg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function.
Collapse
Affiliation(s)
- Chun-Yin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Feng-Lin Yen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung County 900, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Lee S, Choi YJ, Lee S, Kang KS, Jang TS, Kim KH. Protective Effects of Withagenin A Diglucoside from Indian Ginseng ( Withania somnifera) against Human Dermal Fibroblast Damaged by TNF-α Stimulation. Antioxidants (Basel) 2022; 11:2248. [PMID: 36421436 PMCID: PMC9686661 DOI: 10.3390/antiox11112248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
Human skin is constructed with many proteins such as collagen and elastin. Collagen and elastin play a key role in providing strength and elasticity to the human skin and body. However, damage to collagen causes various symptoms such as wrinkles and freckles, which suggests that they are important to maintain skin condition. Extrinsic or intrinsic skin aging produces an excess of skin destructive factors such as tumor necrosis factor (TNF)-α, which is a major mediator of the aging process. In aged skin, TNF-α provokes the generation of intracellular ROS (reactive oxygen species). It triggers the excessive secretion of MMP-1, which is a collagen-degrading enzyme that causes the collapse of skin collagen. Therefore, we aimed to search for a natural-product-derived candidate that inhibits the skin damage caused by TNF-α in human dermal fibroblasts. In this study, the protective effect of withagenin A diglucoside (WAD) identified from Withania somnifera against TNF-α-stimulated human dermal fibroblasts is investigated. W. somnifera (Solanaceae), well-known as 'ashwagandha', is an Ayurvedic medicinal plant useful for promoting health and longevity. Our experimental results reveal that WAD from W. somnifera suppresses the generation of intercellular ROS. Suppressing intracellular ROS generation inhibits MMP-1 secretion and the collapse of type 1 collagen. The effect of WAD is shown to depend on the inhibition of MAPK phosphorylation, Akt phosphorylation, c-Jun phosphorylation, COX-2 expression, and NF-κB phosphorylation. Further, WAD-depressed expression of the pro-inflammatory cytokines IL-6 and IL-8 triggers various inflammatory reactions in human skin. These findings suggest that WAD has protective effects against skin damage. Accordingly, our study provides experimental evidence that WAD can be a potential agent that can be applied in various industrial fields, such as cosmetics and pharmaceuticals related to skin aging.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seulah Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Tae Su Jang
- Department of Health Administration, Dankook University, Cheonan 31116, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
9
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
10
|
Sklenarova R, Svrckova M, Hodek P, Ulrichova J, Frankova J. Effect of the natural flavonoids myricetin and dihydromyricetin on the wound healing process in vitro. J Appl Biomed 2021; 19:149-158. [PMID: 34907758 DOI: 10.32725/jab.2021.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2021] [Indexed: 11/05/2022] Open
Abstract
Myricetin (MYR) and dihydromyricetin (DHM) are classified as natural flavonoids. Both substances are known for their anti-inflammatory and antioxidant properties. In this study, an in vitro model of inflammation was demonstrated on monolayers of scratched fibroblasts or keratinocytes exposed to LPS from Pseudomonas aeruginosa for six hours. MYR and DHM were subsequently applied to the cells for 24 hours at sub toxic concentrations (5-15 µM). Inflammatory parameters were analysed in collected cell medium and lysate after the incubation period using the Enzyme-Linked ImmuneSorbent Assay (ELISA) and Western blot. Both flavonoids inhibit the production of pro-inflammatory cytokines (IL-6, IL-8) in LPS-stimulated skin cells as well as the decreased level of MMP-1 in fibroblasts. However, the application of MYR and DHM dose dependently increased the level of MMP-1 in keratinocytes. In our experiments, we focused on the anti-glycation activity of MYR and DHM, where the higher concentration of MYR seems to be more effective.
Collapse
Affiliation(s)
- Renata Sklenarova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Marika Svrckova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Petr Hodek
- Charles University, Faculty of Science, Department of Biochemistry, Prague 2, Czech Republic
| | - Jitka Ulrichova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| | - Jana Frankova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Olomouc, Czech Republic
| |
Collapse
|
11
|
Jo S, Jung YS, Cho YR, Seo JW, Lim WC, Nam TG, Lim TG, Byun S. Oral Administration of Rosa gallica Prevents UVB-Induced Skin Aging through Targeting the c-Raf Signaling Axis. Antioxidants (Basel) 2021; 10:antiox10111663. [PMID: 34829534 PMCID: PMC8614869 DOI: 10.3390/antiox10111663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/05/2022] Open
Abstract
Rosa gallica is a widely used Rosa species for medicinal and culinary purposes. Rosa gallica has been reported to display antioxidant, anti−inflammatory, and antibacterial activities. However, the effect of Rosa gallica against skin aging in vivo is unknown and its active components have not been fully understood. Oral administration of Rosa gallica prevented UVB−mediated skin wrinkle formation and loss of collagen/keratin fibers in the dorsal skin of mice. Examination of biomarkers at the molecular level showed that Rosa gallica downregulates UVB−induced COX−2 and MMP−1 expression in the skin. Through a direct comparison of major compounds identified using the UHPLC−MS/MS system, we discovered gallic acid as the primary component contributing to the anti-skin aging effect exhibited by Rosa gallica. Examination of the molecular mechanism revealed that gallic acid can potently and selectively target the c−Raf/MEK/ERK/c−Fos signaling axis. In addition, both gallic acid and MEK inhibitor blocked UVB−induced MMP−1 expression and restored collagen levels in a reconstructed 3D human skin model. Collectively, Rosa gallica could be used as a functional ingredient in the development of nutraceuticals against skin aging.
Collapse
Affiliation(s)
- Seongin Jo
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
| | - Young-Sung Jung
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
| | - Ye-Ryeong Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
| | - Ji-Won Seo
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Won-Chul Lim
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
| | - Tae-Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon 16227, Korea;
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea
- Correspondence: (T.-G.L.); (S.B.); Tel.: +82-2-3408-3260 (T.-G.L.); +82-2-2123-5896 (S.B.)
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
- Correspondence: (T.-G.L.); (S.B.); Tel.: +82-2-3408-3260 (T.-G.L.); +82-2-2123-5896 (S.B.)
| |
Collapse
|
12
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
13
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Feng M, Kim J, Field K, Reid C, Chatzistamou I, Shim M. Aspirin ameliorates the long-term adverse effects of doxorubicin through suppression of cellular senescence. FASEB Bioadv 2019; 1:579-590. [PMID: 32123852 PMCID: PMC6996307 DOI: 10.1096/fba.2019-00041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/17/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023] Open
Abstract
A number of childhood cancer survivors develop adverse, late onset side effects of earlier cancer treatments, known as the late effects of cancer therapy. As the number of survivors continues to increase, this growing population is at increased risk for a number of health-related problems. In the present study, we have examined the effect of aspirin on the late effects of chemotherapy by treating juvenile mice with doxorubicin (DOX). This novel mouse model produced various long-term adverse effects, some of which resemble premature aging phenotypes. DOX also resulted in the tissue accumulation of senescent cells and up-regulation of cyclooxygenase-2 (COX2) expression. However, treatment with aspirin following juvenile exposure to DOX improved body weight gain, ameliorated the long-term adverse effects, and reduced the levels of senescence markers. Moreover, aspirin reduced p53 and p21 accumulation in DOX-treated human and mouse fibroblasts. However, the suppressive effect of aspirin on DOX-induced p53 accumulation was significantly decreased in COX2 knockout mouse embryonic fibroblasts. Additionally, treatment of senescent fibroblasts with aspirin or celecoxib, a COX2 specific inhibitor, reduced cell viability and decreased the levels of Bcl-xL protein. Taken together, these studies suggest that aspirin may be able to reduce the late effects of chemotherapy through the suppression of cellular senescence.
Collapse
Affiliation(s)
- Mingxiao Feng
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Joohwee Kim
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Kevin Field
- UNC School of MedicineUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Christine Reid
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & ImmunologySchool of MedicineUniversity of South CarolinaColumbiaSCUSA
| | - Minsub Shim
- Department of BiochemistryCollege of Graduate Studies and Arizona College of Osteopathic MedicineMidwestern UniversityGlendaleAZUSA
| |
Collapse
|
15
|
Perez‐Aso M, Roca A, Bosch J, Martínez‐Teipel B. Striae reconstructed, a full thickness skin model that recapitulates the pathology behind stretch marks. Int J Cosmet Sci 2019; 41:311-319. [DOI: 10.1111/ics.12538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- M. Perez‐Aso
- Provital, S.A. Gorgs Llado 200, 08210 Barbera del Valles Barcelona Spain
| | - A. Roca
- Provital, S.A. Gorgs Llado 200, 08210 Barbera del Valles Barcelona Spain
| | - J. Bosch
- Provital, S.A. Gorgs Llado 200, 08210 Barbera del Valles Barcelona Spain
| | - B. Martínez‐Teipel
- Provital, S.A. Gorgs Llado 200, 08210 Barbera del Valles Barcelona Spain
| |
Collapse
|
16
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
17
|
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 2018; 124:1-9. [PMID: 30118847 DOI: 10.1016/j.ejps.2018.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 μM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Natalia Pieńkowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
18
|
Kim J, Vaish V, Feng M, Field K, Chatzistamou I, Shim M. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice. Aging (Albany NY) 2017; 8:2392-2406. [PMID: 27750221 PMCID: PMC5115895 DOI: 10.18632/aging.101060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.
Collapse
Affiliation(s)
- Joohwee Kim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Vivek Vaish
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Mingxiao Feng
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Field
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Wu PY, Lyu JL, Liu YJ, Chien TY, Hsu HC, Wen KC, Chiang HM. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice. Int J Mol Sci 2017; 18:ijms18102118. [PMID: 28994699 PMCID: PMC5666800 DOI: 10.3390/ijms18102118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404, Taiwan.
- School of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Jia-Ling Lyu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
- Ph. D Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan.
| | - Yi-Jung Liu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
- Ph. D Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan.
| | - Ting-Yi Chien
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Hao-Cheng Hsu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
20
|
Kim JE, Heo YS, Lee KW. Osajin Inhibits Solar UV-Induced Cyclooxygenase-2 Expression Through Direct Inhibition of RSK2. J Cell Biochem 2017; 118:4080-4087. [PMID: 28409880 DOI: 10.1002/jcb.26063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 01/10/2023]
Abstract
Solar ultraviolet light (sUV) has been shown to promote the development of skin disorders including inflammation, photoaging, and skin carcinogenesis. Osajin is the major bioactive isoflavone present in the fruit of Maclura pomifera, commonly referred to as the Osage orange. In this study, we observed that osajin inhibited sUV-induced cyclooxygenase (COX)-2 protein expression in both HaCaT and JB6 cells. COX-2 is a major mediator of skin inflammation. sUV activated the transcription factors nuclear factor-κB and activator protein-1 which, in turn, induces COX-2 expression. Osajin inhibited transactivation of these transcription factors. We identified RSK2 as an inhibitory target of osajin by screening against 68 kinases related to inflammation. Osajin binds with RSK2 directly in an ATP-competitive manner. Computer modeling simulated a plausible binding orientation between osajin and RSK2. Osajin inhibited sUV-induced phosphorylation of histone H3, a substrate of RSK2. However, sUV-induced phosphorylation of extracellular signal-regulated kinases, p38 kinase, c-Jun N-terminal kinase and Akt, which are signaling factors upstream of RSK2, was unchanged in the presence of osajin. The anti-inflammatory effects and molecular mechanism of osajin suggest that it may have utility as a functional food for skin health and cosmetic ingredient. J. Cell. Biochem. 118: 4080-4087, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang, Republic of Korea.,WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.,Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Alleviation of Ultraviolet B-Induced Photodamage by Coffea arabica Extract in Human Skin Fibroblasts and Hairless Mouse Skin. Int J Mol Sci 2017; 18:ijms18040782. [PMID: 28387707 PMCID: PMC5412366 DOI: 10.3390/ijms18040782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 12/26/2022] Open
Abstract
Coffea arabica extract (CAE) containing 48.3 ± 0.4 mg/g of chlorogenic acid and a trace amount of caffeic acid was found to alleviate photoaging activity in human skin fibroblasts. In this study, polyphenol-rich CAE was investigated for its antioxidant and antiinflammatory properties, as well as for its capability to alleviate ultraviolet B (UVB)-induced photodamage in BALB/c hairless mice. The results indicated that 500 μg/mL of CAE exhibited a reducing power of 94.7%, ferrous ion chelating activity of 46.4%, and hydroxyl radical scavenging activity of 20.3%. The CAE dose dependently reduced UVB-induced reactive oxygen species (ROS) generation in fibroblasts. Furthermore, CAE inhibited the UVB-induced expression of cyclooxygenase-2 and p-inhibitor κB, and the translocation of nuclear factor-kappa B (NF-κB) to the nucleus of fibroblasts. In addition, CAE alleviated UVB-induced photoaging and photodamage in BALB/c hairless mice by restoring the collagen content and reduced UVB-induced epidermal hyperplasia. CAE also inhibited UVB-induced NF-κB, interleukin-6, and matrix metalloproteinase-1 expression in the hairless mouse skin. The results indicated that CAE exhibits antiphotodamage activity by inhibiting UV-induced oxidative stress and inflammation. Therefore, CAE is a candidate for use in antioxidant, antiinflammatory, and antiphotodamage products.
Collapse
|
22
|
Kim JE, Lee KW. Silkworm Thorn Stem Extract Targets RSK2 and Suppresses Solar UV-Induced Cyclooxygenase-2 Expression. Int J Mol Sci 2015; 16:25096-107. [PMID: 26506342 PMCID: PMC4632792 DOI: 10.3390/ijms161025096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/10/2015] [Indexed: 12/27/2022] Open
Abstract
Excessive exposure to solar UV (sUV) is associated with numerous human skin disorders, such as carcinogenesis, skin photoaging and skin inflammation. Silkworm Thorn (Cudraniatricuspidata, SW) is a plant belonging to the Moraceae family and widely present throughout Korea, China, and Japan. Most parts of the tree (including the fruit, leaf, stem, root, and bark) is consumable as a functional food or tea. In this study, we found that SW extract (SWE) inhibited the elevated expression of sUV-induced cyclooxygenase (COX)-2 levels in both HaCaT and JB6 cells. Levels of nuclear factor-κB and activator protein-1, two crucial transcription factors involved in COX-2 expression, were elevated by sUV treatment. Treatment with SWE abolished this activation. SWE also inhibited sUV-induced histone H3 phosphorylation. However, sUV-induced phosphorylation of Akt, c-Jun N-terminal kinase and p38 kinase remained unchanged in the presence of SWE. SWE inhibited RSK2 activity, and pull-down assays using SWE-Sepharose beads revealed that SWE binds directly with RSK2 in an ATP-competitive manner. These results suggest a potential for SWE to be developed as a cosmeceutical material and functional food constituent for the promotion of skin health.
Collapse
Affiliation(s)
- Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| |
Collapse
|