1
|
Qiu S, Pan Z, Jiang X, Lv G, Feng A, Chen H. The synergistic effect of phototherapy and active substances on hair growth. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113008. [PMID: 39146875 DOI: 10.1016/j.jphotobiol.2024.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Androgenic alopecia (AGA) typically manifests post-puberty, resulting in decreases in hair density, disruptions in the hair growth cycle, and alterations in hair follicle micro structure. Dihydrotestosterone (DHT) is a key hormone implicated in hair loss, especially on male. In this study, we found that each of arginine (Arg), arterial extract (AE) or biotin tripeptide-1 (BT-1), when combined with low level light therapy (LLLT, at 630 nm, 2 J/cm2), showed the efficacy in enhancing mitochondrial functions, cell proliferation and collagen synthesis in fibroblasts. Additionally, CARRIPOWER (the complexes of AE, BT-1, Arg, and Diaminopyrimidine derivatives), in conjunction with LLLT (630 nm, 2 J/cm2), showed promising results in dermal papilla cells (DPCs). The promising results contained not also inflammatory cytokines (IL-1β and IL-6) and cell pro apoptotic factor (TGF-β2) reduction, but also Wnt pathway inhibition by decreasing DKK1 level, and pro-hair growth factors (vascular endothelial growth factor (VEGF) and β-catenin) increase. This innovative combination therapy offers a potential solution for the treatment of AGA, addressing both hormonal and cellular factors involved in hair loss.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Zhi Pan
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao Jiang
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Guowen Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anqi Feng
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
2
|
Jin SE, Kim J, Sung JH. Recent approaches of antibody therapeutics in androgenetic alopecia. Front Pharmacol 2024; 15:1434961. [PMID: 39221145 PMCID: PMC11362041 DOI: 10.3389/fphar.2024.1434961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Therapeutic antibodies (Abs) have been anticipated as promising alternatives to conventional treatments such as topical minoxidil and oral finasteride for androgenetic alopecia (AGA). Due to the high molecular weight of typical Abs, the half-life of subcutaneous Abs exceeds 2 weeks, allowing an administration intervals of once a month or longer. Direct injection into the areas of hair loss is also feasible, potentially enhancing treatment efficacy while minimizing systemic side effects. However, therapeutic Abs are rarely developed for AGA therapy due to the requirement to be responsiveness to androgens and to exist in the extracellular fluid or cell surface surrounding the hair follicle. In this review, we introduce recent progress of antibody therapeutics in AGA targeting the prolactin receptor, Interleukin-6 receptor, C-X-C motif chemokine ligand 12, and dickkopf 1. As therapeutic Abs for AGA are still in the early stages, targets need further validation and optimization for clinical application.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon, Republic of Korea
| | - Jino Kim
- New Hair Plastic Surgery Clinic, Seoul, Republic of Korea
| | | |
Collapse
|
3
|
Lim HW, Kim HJ, Jeon CY, Lee Y, Kim M, Kim J, Kim SR, Lee S, Lim DC, Park HD, Park BC, Shin DW. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int J Mol Sci 2024; 25:7485. [PMID: 39000592 PMCID: PMC11242524 DOI: 10.3390/ijms25137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.
Collapse
Affiliation(s)
- Hye Won Lim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Hak Joong Kim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Chae Young Jeon
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Yurim Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Mujun Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Jinsick Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Soon Re Kim
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
| | - Sanghwa Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Dong Chul Lim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Hee Dong Park
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Byung Cheol Park
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| |
Collapse
|
4
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences. Int J Mol Sci 2024; 25:4409. [PMID: 38673994 PMCID: PMC11049978 DOI: 10.3390/ijms25084409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA;
| |
Collapse
|
5
|
Choi N, Hwang J, Kim DY, Kim J, Song SY, Sung J. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif 2024; 57:e13562. [PMID: 37991164 PMCID: PMC10905327 DOI: 10.1111/cpr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.
Collapse
Affiliation(s)
| | | | - Doo Yeong Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| | - Jino Kim
- New Hair Plastic Surgery ClinicSeoulSouth Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- Epi Biotech Co., Ltd.IncheonSouth Korea
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| |
Collapse
|
6
|
Mogawer RM, Fawzy MM, Mourad A, Ahmed H, Nasr M, Nour ZA, Hafez V. Topical sodium valproate-loaded nanospanlastics versus conventional topical steroid therapy in alopecia areata: a randomized controlled study. Arch Dermatol Res 2024; 316:64. [PMID: 38170256 PMCID: PMC10764371 DOI: 10.1007/s00403-023-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A myriad of therapeutic modalities for alopecia areata are available; however, none is of high level of evidence, creating an immense need for the evaluation of other treatment modalities, of which topical sodium valproate is of potential role via proposed decrease in beta-catenin breakdown, despite its well-known side effect of hair fall as an oral therapy. OBJECTIVE Evaluating the efficacy and the safety of sodium valproate (SV)-loaded nanospanlastics, in comparison to topical corticosteroids, this is the currently available gold standard topical treatment for patchy AA. METHODOLOGY A total of 66 patients with patchy AA were randomly assigned to receive either topical mometasone furoate lotion or topical SV applied twice daily to all patches except a control patch, which was left untreated. Clinical, trichoscopic and biochemical assessments of beta-catenin tissue levels and Axin-2 gene expression were carried out at baseline and after 3 months. RESULTS Both therapeutic modalities were comparable. Potential efficacy was highlighted by significant improvement in the representative patch, the largest treated patch, to the control patch, the smallest untreated patch in both steroid and valproate groups (p = 0.027, 0.003 respectively). Both beta-catenin levels and Axin-2 gene expression were reduced after treatment, pointing to the inhibitory effect of dominating uncontrolled inflammatory milieu. Baseline beta-catenin was found to significantly negatively correlate with improvement in the representative patch in patients with baseline level above 0.42 ng/ml (p = - 0.042). CONCLUSION Both topical SV and steroids are of comparable modest efficacy. Thus, further evaluation of SV is due in combination with intralesional steroids and other anti-inflammatory treatment modalities, together with developing individualized approaches based on baseline beta-catenin level. CLINICALTRIALS GOV IDENTIFIER NCT05017454, https://clinicaltrials.gov/ct2/show/NCT05017454 .
Collapse
Affiliation(s)
- Rania M Mogawer
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Mohamed Fawzy
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Mourad
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Ahmed
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Nasr
- Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zeinab Ahmed Nour
- Biochemistry Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Vanessa Hafez
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Wang J, Ma Y, Li T, Li J, Yang X, Hua G, Cai G, Zhang H, Liu Z, Wu K, Deng X. MiR-199a-3p Regulates the PTPRF/β-Catenin Axis in Hair Follicle Development: Insights into the Pathogenic Mechanism of Alopecia Areata. Int J Mol Sci 2023; 24:17632. [PMID: 38139460 PMCID: PMC10743674 DOI: 10.3390/ijms242417632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Alopecia areata is an autoimmune disease characterized by the immune system attacking self hair follicles, mainly in the scalp. There is no complete cure, and the pathogenesis is still not fully understood. Here, sequencing of skin tissues collected from 1-month-old coarse- and fine-wool lambs identified miR-199a-3p as the only small RNA significantly overexpressed in the fine-wool group, suggesting a role in hair follicle development. MiR-199a-3p expression was concentrated in the dermal papillae cells of sheep hair follicles, along with enhanced β-catenin expression and the inhibition of PTPRF protein expression. We also successfully constructed a mouse model of alopecia areata by intracutaneous injection with an miR-199a-3p antagomir. Injection of the miR-199a-3p agomir resulted in hair growth and earlier anagen entry. Conversely, local injection with the miR-199a-3p antagomir resulted in suppressed hair growth at the injection site, upregulation of immune system-related genes, and downregulation of hair follicle development-related genes. In vivo and in vitro analyses demonstrated that miR-199a-3p regulates hair follicle development through the PTPRF/β-catenin axis. In conclusion, a mouse model of alopecia areata was successfully established by downregulation of a small RNA, suggesting the potential value of miR-199a-3p in the study of alopecia diseases. The regulatory role of miR-199a-3p in the PTPRF/β-catenin axis was confirmed, further demonstrating the link between alopecia areata and the Wnt-signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & State Key Laboratory of Animal Biotech Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (J.W.); (Y.M.); (T.L.); (J.L.); (X.Y.); (G.H.); (G.C.); (H.Z.); (Z.L.); (K.W.)
| |
Collapse
|
8
|
Papukashvili D, Liu C, Rcheulishvili N, Xie F, Wang X, Feng S, Sun X, Zhang C, Li Y, He Y, Wang PG. DKK1-targeting cholesterol-modified siRNA implication in hair growth regulation. Biochem Biophys Res Commun 2023; 668:55-61. [PMID: 37244035 DOI: 10.1016/j.bbrc.2023.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
Despite advancements in medical research, androgenetic alopecia (AGA) remains a humankind problem that still needs to be overcome. To date, clinical practice lacks an ideal treatment for AGA. The Wnt/β-catenin signaling pathway is evidenced to play a key role in hair regrowth, hence, modulating this signaling pathway for AGA therapy appears to be rational. One of the major inhibitors of the canonical Wnt/β-catenin signaling pathway is dickkopf-related protein 1 (DKK1). In this report, we have selected a small interfering RNA (siRNA) targeting DKK1 in vitro via qPCR and then tested its efficacy in vivo on the depilated dorsal skin of the mice. The changes in hair growth in different groups were observed over time. Moreover, the visual observation of the hair growth and hematoxylin and eosin (HE) staining showed that DKK1-targeting siRNA reveals non-inferior results compared with the mice treated with the Food and Drug Administration (FDA)-approved, commercially available minoxidil (5%) topical solution that was used as a positive control. Both- positive control and DKK1-targeting siRNA groups demonstrated significantly superior results compared with the control group that received negative control siRNA. Consequently, siRNAs targeting DKK1 may promote hair growth regulation in the AGA population via potentially activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Fengfei Xie
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xingyun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xiu Sun
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yingyu Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Ho CY, Wu CY, Chen JYF, Wu CY. Clinical and Genetic Aspects of Alopecia Areata: A Cutting Edge Review. Genes (Basel) 2023; 14:1362. [PMID: 37510267 PMCID: PMC10379312 DOI: 10.3390/genes14071362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia areata (AA) is a chronic, non-scarring, immune-mediated skin disease that affects approximately 0.5-2% of the global population. The etiology of AA is complex and involves genetic and environmental factors, with significant advancements in genetic research occurring in recent years. In addition to well-known genes such as PTPN22, CTLA4, and IL2, which have been widely supported as being associated with AA, an increasing number of specific gene-related loci have been discovered through advances in genetic research. For instance, gene analysis of microRNAs can reveal the critical role of miRNAs in regulating gene expression, aiding in the understanding of cellular and organismal functional regulatory mechanisms. Furthermore, numerous studies have confirmed the existence of correlations between AA and other immune-related diseases. Examples include hyperthyroidism and rheumatoid arthritis. By understanding the interrelationships between AA and other immune diseases, we can further comprehend potential shared genetic foundations or pathogenic mechanisms among different diseases. Genetic research plays a crucial role in unraveling the pathogenesis of AA, as the identification of genetic variations associated with AA can assist in formulating more effective and targeted treatment strategies.
Collapse
Affiliation(s)
- Chih-Yi Ho
- Department of Dermatology, College of Medicine and Post Baccalaureat Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Chiu-Yen Wu
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, College of Medicine and Post Baccalaureat Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Dou J, Zhang Z, Xu X, Zhang X. Exploring the effects of Chinese herbal ingredients on the signaling pathway of alopecia and the screening of effective Chinese herbal compounds. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115320. [PMID: 35483562 DOI: 10.1016/j.jep.2022.115320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE alopecia is a hair disorder that can add a significant medical and psychological burden to patients. Currently, the FDA-approved drugs for the treatment of androgenetic alopecia (AGA) are minoxidil and finasteride and immunosuppressives are therapeutic options for alopecia areata (AA), but the objective adverse effects and high cost of these treatments reduce patient compliance and thus the effectiveness of the drugs. Traditional Chinese medicine (TCM) has good efficacy, a high safety profile and low treatment costs, but its mechanism of action is still not fully understood. The use of signaling pathways to modulate hair loss is a major direction in the study of the pathogenesis and pharmacology of alopecia. AIM OF THE STUDY This review aims to collect the results of experimental studies related to alopecia, to screen previously documented combinations of herbs claimed to be effective based on the herbs and their constituent compounds used in the identified studies, and to uncover other useful information that we hope will better guide the clinical application and scientific research of drug combinations or individual herbs for the treatment of alopecia. MATERIALS AND METHODS We have reviewed experimental studies to determine the methods used and the mechanisms of action of the herbs and constituent compounds. The following keywords were searched in databases, including PubMed, EMBASE, CNKI and CSTJ." Medicinal plants" "Chinese herbal medicine", "hair loss", " alopecia", "androgenetic alopecia" and " alopecia areata ". We also collected combinations of drugs from books approved by various schools for screening. RESULTS Using known combinations of compounds within herbal medicine to match the documented combinations, 34 topical combinations and 74 oral combinations were identified, and among the 108 herbal combinations screened Angelica, Rehmannia glutinosaLigusticum chuanxiong hort, Radix Rehmanniae, etc. The number of occurrences was very high, and the association with vascular drugs was also found to be very close. CONCLUSIONS This review further elucidates the therapeutic mechanisms of the compounds within the herbal components associated with alopecia and screens for other combinations that may be dominated by this component for the treatment of alopecia, uncovering compounds from other drugs that may be key factors in the treatment of alopecia. This improvement will provide a better quality of evidence for the effectiveness of herbs and compounds used to treat alopecia.
Collapse
Affiliation(s)
- Jinjin Dou
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Zhiming Zhang
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xianrong Xu
- The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiwu Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
11
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
12
|
Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets 2019; 23:755-771. [PMID: 31456448 DOI: 10.1080/14728222.2019.1659779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: In the past 30 years, only two drugs have received FDA approval for the treatment of androgenetic alopecia reflecting a lack of success in unraveling novel targets for pharmacological intervention. However, as our knowledge of hair biology improves, new signaling pathways and organogenesis processes are being uncovered which have the potential to yield more effective therapeutic modalities. Areas covered: This review focuses on potential targets for drug development to treat hair loss. The physiological processes underlying the promise of regenerative medicine to recreate new functional hair follicles in bald scalp are also examined. Expert opinion: The discovery of promising new targets may soon enable treatment options that modulate the hair cycle to preserve or extend the growth phase of the hair follicle. These new targets could also be leveraged to stimulate progenitor cells and morphogenic pathways to reactivate miniaturized follicles in bald scalp or to harness the potential of wound healing and embryogenic development as an emerging paradigm to generate new hair follicles in barren skin.
Collapse
Affiliation(s)
- Alain P Vasserot
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Mikhail Geyfman
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Neil J Poloso
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| |
Collapse
|
13
|
Toshima S, Kurihara Y, Wang E, Nomura H, Hayashi Y, Christiano A, Amagai M, Umegaki‐Arao N. Alopecia areata multiplex following autologous dermal micrograft injection for treatment of androgenetic alopecia. J Eur Acad Dermatol Venereol 2019; 33:e397-e399. [DOI: 10.1111/jdv.15701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. Toshima
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - Y. Kurihara
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - E.H.C. Wang
- Departments of Dermatology and Genetics & Development Columbia University New York NY USA
| | - H. Nomura
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - Y. Hayashi
- Department of Pathology Keio University School of Medicine Tokyo Japan
| | - A.M. Christiano
- Departments of Dermatology and Genetics & Development Columbia University New York NY USA
| | - M. Amagai
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - N. Umegaki‐Arao
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| |
Collapse
|
14
|
Villarreal‐Villarreal C, Sinclair R, Martínez‐Jacobo L, Garza‐Rodríguez V, Rodríguez‐León S, Lamadrid‐Zertuche A, Rodríguez‐Gutierrez R, Ortiz‐Lopez R, Rojas‐Martinez A, Ocampo‐Candiani J. Prostaglandins in androgenetic alopecia in 12 men and four female. J Eur Acad Dermatol Venereol 2019; 33:e214-e215. [DOI: 10.1111/jdv.15479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C.D. Villarreal‐Villarreal
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario, Departamento de Dermatología Monterrey Mexico
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud Monterrey Mexico
| | - R.D. Sinclair
- Epworth Hospital East Melbourne Vic. Australia
- Sinclair Dermatology Clinical Trial Centre East Melbourne Vic. Australia
| | - L. Martínez‐Jacobo
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud Monterrey Mexico
- Vicerrectoría de Ciencias de la Salud Departamento de Ciencias Básicas Universidad de Monterrey San Pedro Garza García Mexico
- Facultad de Medicina Departamento de Bioquímica y Medicina Molecular Universidad Autónoma de Nuevo León Monterrey Mexico
| | - V. Garza‐Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario, Departamento de Dermatología Monterrey Mexico
| | - S.A. Rodríguez‐León
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario, Departamento de Dermatología Monterrey Mexico
| | - A.C. Lamadrid‐Zertuche
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud Monterrey Mexico
| | - R. Rodríguez‐Gutierrez
- Facultad de Medicina Departamento de Medicina Interna Servicio de Endocrinología Universidad Autónoma de Nuevo León Monterrey Mexico
| | - R. Ortiz‐Lopez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud Monterrey Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Monterrey Mexico
| | - A. Rojas‐Martinez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud Monterrey Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Monterrey Mexico
| | - J. Ocampo‐Candiani
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario, Departamento de Dermatología Monterrey Mexico
| |
Collapse
|
15
|
Mahmoud EA, Elgarhy LH, Hasby EA, Mohammad L. Dickkopf-1 Expression in Androgenetic Alopecia and Alopecia Areata in Male Patients. Am J Dermatopathol 2019; 41:122-127. [PMID: 30640755 DOI: 10.1097/dad.0000000000001266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Androgenetic alopecia (AGA) results from shortening of the anagen phase of the hair cycle and, subsequently, miniaturization of hair follicles. Alopecia areata (AA) is a disease of autoimmunity where T cells attack anagen hair follicles and shows multifactorial etiology. Dickkopf-1 (DKK-1) is a gene that is responsible for transformation of anagen to catagen, which suggests that it is involved in development of both diseases. OBJECTIVES To evaluate the tissue levels of dickkopf-1 in male patients with AGA and AA in comparison with controls, in an attempt to know its role in the pathogenesis of both disorders. METHODS DKK-1 immunohistochemical expression was evaluated in lesional scalp biopsies taken from 20 male patients with AGA evaluated clinically by the modified Norwood-Hamilton score, 20 male patients with AA evaluated clinically by SALT score, and 20 healthy controls within the same age and sex of the studied patients. RESULTS A highly significant difference in DKK-1 expression between patients with AGA and healthy controls was found (P2 < 0.001). There were also significant differences in DKK-1 expression between patients with AA and healthy controls (P3 = 0.013), and between both patient groups (P1 = 0.002). CONCLUSIONS Both AGA and AA showed significant increase in DKK-1 immunohistochemical expression. This may enhance the idea of its possible role in the pathogenesis of AGA and AA, and being a new target for treatment of these hair disorders.
Collapse
|
16
|
Abstract
Wnt/β-catenin signaling pathway is essential for embryo development and adult tissue homeostasis and regeneration, abnormal regulation of the pathway is tightly associated with many disease types, suggesting that Wnt/β-catenin signaling pathway is an attractive target for disease therapy. While the Wnt inhibitors have been extensively reviewed, small molecules activating Wnt/β-catenin signaling were rarely addressed. In this article, we firstly reviewed the diseases that were associated with disruption of Wnt/β-catenin signaling pathway, including hair loss, pigmentary disorders, wound healing, bone diseases, neurodegenerative diseases and chronic obstructive pulmonary diseases, etc. We also comprehensively summarized small molecules that activated Wnt/β-catenin signaling pathway in various models in vitro and in vivo. To evaluate the therapeutic potential of Wnt activation, we focused on the discovery strategies, phenotypic characterization, and target identification of the Wnt activators. Finally, we proposed the challenges and opportunities in development of Wnt activators for pharmacological agents in term of targeting safety and selectivity.
Collapse
|
17
|
Martinez-Jacobo L, Ancer-Arellano CI, Ortiz-Lopez R, Salinas-Santander M, Villarreal-Villarreal CD, Ancer-Rodriguez J, Camacho-Zamora B, Zomosa-Signoret V, Medina-De la Garza CE, Ocampo-Candiani J, Rojas-Martinez A. Evaluation of the Expression of Genes Associated with Inflammation and Apoptosis in Androgenetic Alopecia by Targeted RNA-Seq. Skin Appendage Disord 2018; 4:268-273. [PMID: 30410894 DOI: 10.1159/000484530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Androgenetic alopecia (AGA) or male pattern baldness is the most common form of hair loss in humans. Despite being a very frequent dermatological entity, molecular pathophysiology remains unclear. Several authors relate the presentation of AGA with a premature apoptotic process during the anagen phase and with an inflammatory microenvironment in the hair follicle. We evaluated a panel of 30 genes associated with inflammation and apoptosis in 5 AGA patients by targeted RNA-Seq. WNT7A gene was highly expressed in patients in stages 3V to 5 on the Hamilton-Norwood scale compared to patients with 5A stage. CASP7 and TNF genes were overexpressed in stages 3V and 4 compared to stages 5 and 5A. Overexpression of these genes detected only at early stages of AGA proves the role of WNT pathway, apoptosis, and inflammation in the development of this disorder.
Collapse
Affiliation(s)
- Lizeth Martinez-Jacobo
- Universidad Autonoma de Nuevo Leon, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina.,Centro de Investigación y Desarrollo en Ciencias de la Salud, UANL, Mexico.,Universidad de Monterrey, Vicerrectoría de Ciencias de la Salud, Departamento de Ciencias Básicas, San Pedro Garza García, Mexico
| | | | - Rocio Ortiz-Lopez
- Centro de Investigación y Desarrollo en Ciencias de la Salud, UANL, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico
| | | | | | | | - Bianka Camacho-Zamora
- Universidad Autonoma de Nuevo Leon, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina.,Centro de Investigación y Desarrollo en Ciencias de la Salud, UANL, Mexico
| | - Viviana Zomosa-Signoret
- Universidad Autonoma de Nuevo Leon, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina
| | | | | | - Augusto Rojas-Martinez
- Centro de Investigación y Desarrollo en Ciencias de la Salud, UANL, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico
| |
Collapse
|
18
|
Redler S, Messenger AG, Betz RC. Genetics and other factors in the aetiology of female pattern hair loss. Exp Dermatol 2017; 26:510-517. [DOI: 10.1111/exd.13373] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Silke Redler
- Institute of Human Genetics; University Clinic Düsseldorf; Heinrich-Heine-University; Düsseldorf Germany
| | | | - Regina C. Betz
- Institute of Human Genetics; University of Bonn; Bonn Germany
| |
Collapse
|
19
|
Tosti A, Zaiac MN, Canazza A, Sanchis-Gomar F, Pareja-Galeano H, Alis R, Lucia A, Emanuele E. Topical application of the Wnt/β-catenin activator methyl vanillate increases hair count and hair mass index in women with androgenetic alopecia. J Cosmet Dermatol 2016; 15:469-474. [DOI: 10.1111/jocd.12225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Antonella Tosti
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Martin N. Zaiac
- Greater Miami Skin and Laser Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - Agnese Canazza
- Greater Miami Skin and Laser Center; Mount Sinai Medical Center; Miami Beach FL USA
| | | | - Helios Pareja-Galeano
- Research Institute of the Hospital 12 de Octubre (“i + 12”); Madrid Spain
- European University of Madrid; Madrid Spain
| | - Rafael Alis
- Research Institute “Dr. Viña Giner”; Molecular and Mitochondrial Medicine; Catholic University of Valencia San Vicente Mártir; Valencia Spain
- School of Medicine; Catholic University of Valencia San Vicente Mártir; Valencia Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre (“i + 12”); Madrid Spain
- European University of Madrid; Madrid Spain
| | | |
Collapse
|