1
|
Lee JH, Son S, Ko Y, Lim H, Lee M, Kang MG, Kim H, Lee KM, Shin I. Nidogen-1 suppresses cell proliferation, migration, and glycolysis via integrin β1-mediated HIF-1α downregulation in triple-negative breast cancer. Sci Rep 2025; 15:10633. [PMID: 40148359 PMCID: PMC11950294 DOI: 10.1038/s41598-024-84880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 03/29/2025] Open
Abstract
Nidogen-1 (NID1) is a secreted glycoprotein widely distributed in basement membranes. NID1 interacts with extracellular matrix proteins such as collagen and laminin and has been implicated in the progression of various cancers. However, study on the role of NID1 in breast cancer is scarce and inconsistent. In this work, we found that the expression of NID1 is significantly lower in breast cancer tissue than in normal tissue. In addition, NID1 expression correlated negatively with a poor prognosis for breast cancer patients. Based on those findings, we speculated that NID1 might act as a cancer suppressor in breast cancer. To investigate the role of NID1 in breast cancer, we constructed NID1-overexpressing cell lines. NID1 overexpression decreased breast cancer cell proliferation, migration, and in vivo tumor growth. Moreover, glucose metabolism, which is known to enhance cancer cell proliferation and migration, was also decreased by NID1 overexpression. Mechanistically, NID1 overexpression downregulated hypoxia-inducible factor-1α (HIF-1α) expression at the transcription level. Furthermore, we found that NID1 reduced integrin β1 stability and downregulated the transcription of HIF-1α through the FAK/Src/NF-κB p65 signaling axis, which is downstream of integrin β1. Together, the results of this study demonstrate the tumor suppressive role of NID1 in triple-negative breast cancer.
Collapse
Affiliation(s)
- Joo-Hyung Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hogeun Lim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Minhyeok Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Min-Gyeong Kang
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Kyung-Min Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Korea.
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
2
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Borik RM, Hussein MA. Design, Synthesis, and Molecular Docking of Quinazolines Bearing Caffeoyl Moiety for Targeting of PGK1/PKM2/STAT3 Signaling Pathway in the Human Breast Cancer. Curr Pharm Des 2025; 31:957-980. [PMID: 39506445 DOI: 10.2174/0113816128337881241016064641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies. The present study aims to synthesize quinazolines containing caffeoyl moiety for developing innovative anticancer agents against the human breast cancer cell line (MCF-7). METHODS A new quinazoline 2 was synthesized by reacting caffeic acid with 5-amino-phenylpyrazole carboxylate 1 in the presence of PCl3. Compound 2 reacted with NH2NH2.H2O to produce compound 3 through cyclo-condensation. Apoptosis and necrosis as well as inhibition activity compounds 2 and 3 against PGK1, and PKM2 were evaluated. The effect of compounds 2 and 3 on the levels of GSH, GR, SOD, GPx, CAT, MDA, Bax, Bcl-2, caspase-3, P53 and VEGF levels as well as PGK1, PKM2 and STAT3 gene expression were estimated in MCF-7 tumor cells. RESULTS The viability of MCF-7 cells was reduced to 22.42% and 45.86% after incubation with compounds 2 and 3 for 48 hours, respectively. The IC50 values for compounds 2 and 3 are 62.05 μg/mL and 16.73 μg/mL. Furthermore, compound 3 exhibited more significant apoptosis and necrosis than compound 2. IC50 values of compound 2 against PGK1, and PKM2 at interval concentration equals 1.04, and 0.32 μM/mL, respectively, after 210 minutes of incubation. Moreover, compound 3 were revealed strong inhibition of PGK1, and PKM2 with IC50 values equals 0.55 and 0.21 μg/mL, respectively after 210 minutes of incubation. Our results proved that the incubation of compounds 2 and 3 with MCF-7 cells increased the levels of apoptotic proteins, elevated MDA, Bax, caspase-3 and P53 levels, depleted GSH, GR, SOD, GPx, CAT, Bcl-2 levels and downregulated the levels of STAT3, PGK1, and PKM2 gene expression significantly. Our in silico results proved that compound 2 showed a stronger estimated binding affinity with a ΔG of -7.2, -7.5, and -7.9 kcal/mol., respectively towards PGK1, PKM2 and STAT3 proteins. Also, compound 3 exhibits a strong binding affinity with ΔG of -7.9, -8.5, and - 8.7 kcal/mol., towards PGK1, PKM2 and STAT3 proteins. CONCLUSION The results show that compounds 2 and 3 induce apoptotic activity by blocking the PGK1- PKM2-STAT3 signaling pathway. The present investigation opens exciting possibilities for developing innovative new anticancer quinazolines bearing caffeoyl moiety.
Collapse
Affiliation(s)
- Rita M Borik
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Mohammed A Hussein
- Biotechnology Department, Faculty of Applied Health Science Technology, October 6 University, Giza 28125, Egypt
| |
Collapse
|
4
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
5
|
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 2022; 23:10037. [PMID: 36077431 PMCID: PMC9456516 DOI: 10.3390/ijms231710037] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a "metabolically abnormal system". Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the "Warburg effect". Energy-metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the "Warburg effect", tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Collapse
Affiliation(s)
- Abekura Fukushi
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hee-Do Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
6
|
Wang W, He X, Wang Y, Liu H, Zhang F, Wu Z, Mo S, Chen D. LINC01605 promotes aerobic glycolysis through LDHA in triple-negative breast cancer. Cancer Sci 2022; 113:2484-2495. [PMID: 35411612 PMCID: PMC9357659 DOI: 10.1111/cas.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most prevalent cancer diagnosed in women and the major malignancy that threatens women health, thus we explored the role of long noncoding RNA LINC01605 in triple‐negative breast cancer (TNBC). We collected tissue samples from TNBC patients and cultured breast cancer cells to detect LINC01605 levels by RT‐PCR. We then constructed LINC01605 knockdown and LINC01605 overexpressed TNBC cell lines, cell proliferation was measured by CCK‐8 and colony formation assays, cell migration and invasion were measured by Transwell assay, and aerobic glycolysis of cells was detected. Furthermore, a downstream target gene was found, and its role was confirmed by mouse allogeneic tumor formation. It discovered that LINC01605 expression was significantly increased in TNBC patients, and its high expression predicted a low survival prognosis for TNBC patients. Stable knockdown of LINC01605 remarkably inhibited cell proliferation, migration, and invasion, as well as aerobic glycolysis by inhibiting lactate dehydrogenase A in TNBC cell lines. Notably, knockdown of LINC01605 suppressed in vivo tumor formation and migration in TNBC transplanted mice. In conclusion, targeting long noncoding RNA LINC01605 might serve as a therapeutic candidate strategy to treat patients with TNBC.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Hainan Province, Haikou, 570311, China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Hainan Province, Haikou, 570311, China
| | - Yiqing Wang
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Hainan Province, Haikou, 570311, China
| | - Haiying Liu
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Hainan Province, Haikou, 570311, China
| | - Fan Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Hainan Province, Haikou, 570311, China
| | - Zhong Wu
- Department of General Surgery, Hainan Maternal and Child Health Medical Center, Hainan Province, Haikou, 570200, China
| | - Shaowei Mo
- Department of Science and Education, Hainan Maternal and Child Health Medical Center, Hainan Province, Haikou, 570200, China
| | - Dong Chen
- Department of General Surgery, Hainan Ding An People's Hospital, Hainan Province, Dingan, 571200, China
| |
Collapse
|
7
|
Wang WL, Jiang ZR, Hu C, Chen C, Hu ZQ, Wang AL, Wang L, Liu J, Wang WC, Liu QS. Pharmacologically inhibiting phosphoglycerate kinase 1 for glioma with NG52. Acta Pharmacol Sin 2021; 42:633-640. [PMID: 32737469 PMCID: PMC8115168 DOI: 10.1038/s41401-020-0465-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/17/2020] [Indexed: 11/09/2022]
Abstract
Inhibition of glycolysis process has been an attractive approach for cancer treatment due to the evidence that tumor cells are more dependent on glycolysis rather than oxidative phosphorylation pathway. Preliminary evidence shows that inhibition of phosphoglycerate kinase 1 (PGK1) kinase activity would reverse the Warburg effect and make tumor cells lose the metabolic advantage for fueling the proliferation through restoration of the pyruvate dehydrogenase (PDH) activity and subsequently promotion of pyruvic acid to enter the Krebs cycle in glioma. However, due to the lack of small molecule inhibitors of PGK1 kinase activity to treat glioma, whether PGK1 could be a therapeutic target of glioma has not been pharmacologically verified yet. In this study we developed a high-throughput screening and discovered that NG52, previously known as a yeast cell cycle-regulating kinase inhibitor, could inhibit the kinase activity of PGK1 (the IC50 = 2.5 ± 0.2 μM). We showed that NG52 dose-dependently inhibited the proliferation of glioma U87 and U251 cell lines with IC50 values of 7.8 ± 1.1 and 5.2 ± 0.2 μM, respectively, meanwhile it potently inhibited the proliferation of primary glioma cells. We further revealed that NG52 (12.5-50 μM) effectively inhibited the phosphorylation of PDHK1 at Thr338 site and the phosphorylation of PDH at Ser293 site in U87 and U251 cells, resulting in more pyruvic acid entering the Krebs cycle with increased production of ATP and ROS. Therefore, NG52 could reverse the Warburg effect by inhibiting PGK1 kinase activity, and switched cellular glucose metabolism from anaerobic mode to aerobic mode. In nude mice bearing patient-derived glioma xenograft, oral administration of NG52 (50, 100, 150 mg· kg-1·d-1, for 13 days) dose-dependently suppressed the growth of glioma xenograft. Together, our results demonstrate that targeting PGK1 kinase activity might be a potential strategy for glioma treatment.
Collapse
Affiliation(s)
- Wen-Liang Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
| | - Zong-Ru Jiang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
| | - Zhen-Quan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ao-Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230036, China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Wen-Chao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, 230088, China.
| | - Qing-Song Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230036, China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, 230088, China.
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
8
|
Sellitto A, D’Agostino Y, Alexandrova E, Lamberti J, Pecoraro G, Memoli D, Rocco D, Coviello E, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061477. [PMID: 32516978 PMCID: PMC7353068 DOI: 10.3390/cancers12061477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Coviello
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi (SA), Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| |
Collapse
|
9
|
Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, Zhu Y, Zhang J, Luo P, Gu L. Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis. Drug Des Devel Ther 2020; 14:2091-2100. [PMID: 32546972 PMCID: PMC7261662 DOI: 10.2147/dddt.s248872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemia threatens so many lives around the world. Dihydroartemisinin (DHA), as a typical derivative of artemisinin (ART), can efficiently inhibit leukemia, but the controversial mechanisms are still controversial. Many reports showed that tumor cells acquire energy through the glycolysis pathway, pyruvate kinase M2 (PKM2) plays a crucial role in regulating glycolysis. However, it is unclear whether PKM2 or other key molecules are involved in DHA induced cytotoxicity in leukemia cells. Thus, this paper systematically investigated the anticancer effect and mechanism of DHA on human chronic myeloid leukemia K562 cells. METHODS In vitro, cytotoxicity was detected with CCK-8. Glucose uptake, lactate production and pyruvate kinase activity were investigated to evaluate the effect of DHA on K562 cells. To elucidate the cellular metabolism alterations induced by DHA, the extracellular acidification rate was assessed using Seahorse XF96 extracellular flux analyzer. Immunofluorescence, real-time PCR, and Western blotting were used to investigate the molecular mechanism. RESULTS We found that DHA prevented cell proliferation in K562 cells through inhibiting aerobic glycolysis. Lactate product and glucose uptake were inhibited after DHA treatment. Results showed that DHA modulates glucose uptake through downregulating glucose transporter 1 (GLUT1) in both gene and protein levels. The cytotoxicity of DHA on K562 cells was significantly reversed by PKM2 agonist DASA-58. Pyruvate kinase activity was significantly reduced after DHA treatment, decreased expression of PKM2 was confirmed in situ. CONCLUSION The present study implicated that DHA inhibits leukemia cell proliferation by regulating glycolysis and metabolism, which mediated by downregulating PKM2 and GLUT1 expression. Our finding might enrich the artemisinins' antitumor mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou730050, People’s Republic of China
| | - Dandan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yuqing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yanqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yongping Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Piao Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| |
Collapse
|