1
|
Rosillo I, Germosen C, Agarwal S, Rawal R, Colon I, Bucovsky M, Kil N, Shane E, Walker M. Patella fractures are associated with bone fragility - a retrospective study. J Bone Miner Res 2024; 39:1752-1761. [PMID: 39385460 PMCID: PMC11638554 DOI: 10.1093/jbmr/zjae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
Patella fractures are not typically considered osteoporotic fractures. We compared bone mineral density (BMD) and microstructure in elderly women from a multiethnic population-based study in New York City with any history of a patella fracture (n = 27) to those without historical fracture (n = 384) and those with an adult fragility forearm fracture (n = 28) using dual energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HR-pQCT). Compared to those without fracture, women with patella fracture had 6.5% lower areal BMD (aBMD) by DXA only at the total hip (p=.007), while women with forearm fracture had lower aBMD at multiple sites and lower trabecular bone score (TBS), adjusted for age, body mass index, race and ethnicity (all p<.05). By HR-pQCT, adjusted radial total and trabecular (Tb) volumetric BMD (vBMD) and Tb number were 10%-24% lower while Tb spacing was 12-23% higher (all p<.05) in the fracture groups versus women without fracture. Women with a forearm, but not a patella, fracture also had lower adjusted radial cortical (Ct) area and vBMD and 21.8% (p<.0001) lower stiffness vs. women without fracture. At the tibia, the fracture groups had 9.3%-15.7% lower total and Tb vBMD (all p<.05) compared to the non-fracture group. Women with a forearm fracture also had 10.9, and 14.7% lower tibial Ct area and thickness versus those without fracture. Compared to women without fracture, tibial stiffness was 9.9% and 12% lower in the patella and forearm fracture groups, respectively (all p<.05). By HR-pQCT, the patella vs. forearm fracture group had 36% higher radial Tb heterogeneity (p<.05). In summary, women with patella fracture had Tb deterioration by HR-pQCT associated with lower tibial mechanical competence that was similar to those with fragility forearm fracture, a more universally accepted "osteoporotic" fracture. These data suggest patella fractures are associated with skeletal fragility and warrant skeletal evaluation.
Collapse
Affiliation(s)
- Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ragyie Rawal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
2
|
Sarfati M, Chapurlat R, Dufour AB, Sornay-Rendu E, Merle B, Boyd SK, Whittier DE, Hanley DA, Goltzman D, Szulc P, Wong AKO, Lespessailles E, Khosla S, Ferrari S, Biver E, Ohlsson C, Lorentzon M, Mellström D, Nethander M, Samelson EJ, Kiel DP, Hannan MT, Bouxsein ML. Short-term risk of fracture is increased by deficits in cortical and trabecular bone microarchitecture independent of DXA BMD and FRAX: Bone Microarchitecture International Consortium (BoMIC) prospective cohorts. J Bone Miner Res 2024; 39:1574-1583. [PMID: 39236248 PMCID: PMC11523184 DOI: 10.1093/jbmr/zjae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Identifying individuals at risk for short-term fracture is essential to offer prompt beneficial treatment, especially since many fractures occur in those without osteoporosis by DXA-aBMD. We evaluated whether deficits in bone microarchitecture and density predict short-term fracture risk independent of the clinical predictors, DXA-BMD and FRAX. We combined data from eight cohorts to conduct a prospective study of bone microarchitecture at the distal radius and tibia (by HR-pQCT) and 2-year incidence of fracture (non-traumatic and traumatic) in 7327 individuals (4824 women, 2503 men, mean 69 ± 9 years). We estimated sex-specific hazard ratios (HR) for associations between bone measures and 2-year fracture incidence, adjusted for age, cohort, height, and weight, and then additionally adjusted for FN aBMD or FRAX for major osteoporotic fracture. Only 7% of study participants had FN T-score ≤ -2.5, whereas 53% had T-scores between -1.0 and -2.5 and 37% had T-scores ≥-1.0. Two-year cumulative fracture incidence was 4% (296/7327). Each SD decrease in radius cortical bone measures increased fracture risk by 38%-76% for women and men. After additional adjustment for FN-aBMD, risks remained increased by 28%-61%. Radius trabecular measures were also associated with 2-year fracture risk independently of FN-aBMD in women (HRs range: 1.21 per SD for trabecular separation to 1.55 for total vBMD). Decreased failure load (FL) was associated with increased fracture risk in both women and men (FN-aBMD ranges of adjusted HR = 1.47-2.42). Tibia measurement results were similar to radius results. Findings were also similar when models were adjusted for FRAX. In older adults, FL and HR-pQCT measures of cortical and trabecular bone microarchitecture and density with strong associations to short-term fractures improved fracture prediction beyond aBMD and FRAX. Thus, HR-pQCT may be a useful adjunct to traditional assessment of short-term fracture risk in older adults, including those with T-scores above the osteoporosis range.
Collapse
Affiliation(s)
- Marine Sarfati
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Alyssa B Dufour
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Blandine Merle
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary AB, Canada
| | - David Goltzman
- Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Andy Kin On Wong
- Toronto General Hospital and University Health Network and Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dan Mellström
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics and Data Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, and the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School, Center for Advanced Orthopedic Studies, BIDMC, Boston, MA, United States
| |
Collapse
|
3
|
Cirovic AV, Cirovic AV, Vujacic MD, Djonic DD, Djuric MP, Milovanovic PD. Ex vivo analysis of cortical microarchitecture of the distal clavicle: implications for surgical management of fractures. Arch Orthop Trauma Surg 2024; 144:2583-2590. [PMID: 38691146 DOI: 10.1007/s00402-024-05345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cortical thickness and porosity are two main determinants of cortical bone strength. Thus, mapping variations in these parameters across the full width of the distal end of the clavicle may be helpful for better understanding the basis of distal clavicle fractures and for selecting optimal surgical treatment. METHODS Distal ends of 11 clavicles (6 men, 5 women; age: 81.9 ± 15.1 years) were scanned by micro-computed tomography at 10-µm resolution. We first analyzed cortical thickness and porosity of each 500-μm-wide area across the superior surface of distal clavicle at the level of conoid tubercle in an antero-posterior direction. This level was chosen for detailed evaluation because previous studies have demonstrated its superior microarchitecture relative to the rest of the distal clavicle. Subsequently, we divided the full width of distal clavicle to three subregions (anterior, middle, and posterior) and analyzed cortical porosity, pore diameter, pore separation, and cortical thickness. RESULTS We found the largest number of low-thickness and high-porosity areas in the anterior subregion. Cortical porosity, pore diameter, pore separation, and cortical thickness varied significantly among the three subregions (p < 0.001 p = 0.016, p = 0.001, p < 0.001, respectively). Cortex of the anterior subregion was more porous than that of the middle subregion (p < 0.001) and more porous and thinner than that of the posterior subregion (p < 0.001, p = 0.030, respectively). Interaction of site and sex revealed higher porosity of the anterior subregion in women (p < 0.001). The anterior subregion had larger pores than the middle subregion (p = 0.019), whereas the middle subregion had greater pore separation compared with the anterior (p = 0.002) and posterior subregions (p = 0.006). In general, compared with men, women had thinner (p < 0.001) and more porous cortex (p = 0.03) with larger cortical pores (p < 0.001). CONCLUSIONS Due to high cortical porosity and low thickness, the anterior conoid subregion exhibits poor bone microarchitecture, particularly in women, which may be considered in clinical practice. LEVELS OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Aleksandar V Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Ana V Cirovic
- Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Marko D Vujacic
- Institute for Orthopedic Surgery "Banjica", Mihaila Avramovića 28, Belgrade, Serbia
| | - Danijela D Djonic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Marija P Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Petar D Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Ribeiro SCCR, Sales LP, Fernandes AL, Perez MO, Takayama L, Caparbo VF, Assad APL, Aiwaka NE, Goldenstein-Schainberg C, Borba EF, Domiciano DS, Figueiredo CP, Pereira RM. Bone erosions associated with systemic bone loss on HR-pQCT in women with longstanding polyarticular juvenile idiopathic arthritis. Semin Arthritis Rheum 2023; 63:152247. [PMID: 37595510 DOI: 10.1016/j.semarthrit.2023.152247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES To analyze longstanding polyarticular juvenile idiopathic arthritis (pJIA) for possible associations between localized bone damage (erosions), and systemic bone loss. Besides, to compare the systemic bone mass of pJIA with healthy controls. METHODS Thirty-four pJIA women and 99 healthy controls (HC) were included. Radius and tibia of all subjects were scanned by HR-pQCT. Volumetric bone mineral density (vBMD), bone microarchitecture, and -finite element parameters were analyzed. Patients underwent HR-pQCT of 2nd and 3rd metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the dominant hand, for bone erosions quantification. RESULTS The mean age of patients was 31.5 ± 7.4yrs with a mean disease duration of 21.7 ± 9.2yrs. Bone erosions were detectable in 79% of patients. The number of bone erosions was positively correlated with cortical porosity (Ct.Po) at tibia (r = 0.575, p = 0.001), and radius (r = 0.423, p = 0.018); and negatively correlated with cortical vBMD at tibia (r=-0.420, p = 0.015). In a logistic regression analysis, adjusted for anti-CCP, the presence of bone erosions was independently associated with Ct.Po at radius (p = 0.018) and cortical vBMD at tibia (p = 0.020). Moreover, cortical and trabecular vBMD, trabecular number, and μ-finite element parameters were decreased in patients compared to HC (p < 0.05). CONCLUSION Bone erosions in longstanding pJIA women were associated with decreased cortical bone parameters, and these patients showed systemic bone impairment at peripheral sites compared with healthy controls.
Collapse
Affiliation(s)
- Surian Clarisse C R Ribeiro
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas P Sales
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alan L Fernandes
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana O Perez
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Liliam Takayama
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Valeria F Caparbo
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula L Assad
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nadia E Aiwaka
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Cláudia Goldenstein-Schainberg
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo F Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Diogo S Domiciano
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Camille P Figueiredo
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Rosa Mr Pereira
- Bone Metabolism Laboratory, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Jaiswal R, Johansson H, Axelsson KF, Magnusson P, Harvey NC, Vandenput L, McCloskey E, Kanis JA, Litsne H, Johansson L, Lorentzon M. Hemoglobin Levels Improve Fracture Risk Prediction in Addition to FRAX Clinical Risk Factors and Bone Mineral Density. J Clin Endocrinol Metab 2023; 108:e1479-e1488. [PMID: 37406247 PMCID: PMC10655535 DOI: 10.1210/clinem/dgad399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT Anemia and decreasing levels of hemoglobin (Hb) have previously been linked to increased fracture risk, but the added value to FRAX, the most utilized fracture prediction tool worldwide, is unknown. OBJECTIVE To investigate the association between anemia, Hb levels, bone microstructure, and risk of incident fracture and to evaluate whether Hb levels improve fracture risk prediction in addition to FRAX clinical risk factors (CRFs). METHODS A total of 2778 community-dwelling women, aged 75-80 years, and part of a prospective population-based cohort study in Sweden were included. At baseline, information on anthropometrics, CRFs, and falls was gathered, blood samples were collected, and skeletal characteristics were investigated using dual-energy x-ray absorptiometry and high-resolution peripheral quantitative computed tomography. At the end of follow-up, incident fractures were retrieved from a regional x-ray archive. RESULTS The median follow-up time was 6.4 years. Low Hb was associated with worse total hip and femoral neck bone mineral density (BMD), and lower tibia cortical and total volumetric BMD, and anemia was associated with increased risk of major osteoporotic fracture (MOF; hazard ratio 2.04; 95% CI 1.58-2.64). Similar results were obtained for hip fracture and any fracture, also when adjusting for CRFs. The ratio between 10-year fracture probabilities of MOF assessed in models with Hb levels included and not included ranged from 1.2 to 0.7 at the 10th and 90th percentile of Hb, respectively. CONCLUSION Anemia and decreasing levels of Hb are associated with lower cortical BMD and incident fracture in older women. Considering Hb levels may improve the clinical evaluation of patients with osteoporosis and the assessment of fracture risk.
Collapse
Affiliation(s)
- Raju Jaiswal
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Helena Johansson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm, Health Centre, 549 40 Skövde, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Liesbeth Vandenput
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Eugene McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
- MRC Versus Arthritis Centre for Integrated research in Musculoskeletal Ageing, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - John A Kanis
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Orthopedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
6
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
7
|
One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density. NPJ Biofilms Microbiomes 2022; 8:84. [PMID: 36261538 PMCID: PMC9581899 DOI: 10.1038/s41522-022-00348-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Recent studies have shown that probiotic supplementation has beneficial effects on bone metabolism. In a randomized controlled trial (RCT) we demonstrated that supplementation of Lactobacillus reuteri ATCC PTA 6475 reduced bone loss in older women with low bone mineral density. To investigate the mechanisms underlying the effect of L. reuteri ATCC PTA 6475 on bone metabolism, 20 women with the highest changes (good responders) and the lowest changes (poor responders) in tibia total volumetric BMD after one-year supplementation were selected from our previous RCT. In the current study we characterized the gut microbiome composition and function as well as serum metabolome in good responders and poor responders to the probiotic treatment as a secondary analysis. Although there were no significant differences in the microbial composition at high taxonomic levels, gene richness of the gut microbiota was significantly higher (P < 0.01 by the Wilcoxon rank-sum test) and inflammatory state was improved (P < 0.05 by the Wilcoxon signed-rank test) in the good responders at the end of the 12-month daily supplementation. Moreover, detrimental changes including the enrichment of E. coli (adjusted P < 0.05 by DESeq2) and its biofilm formation (P < 0.05 by GSA) observed in the poor responders were alleviated in the good responders by the treatment. Our results indicate that L. reuteri ATCC PTA 6475 supplementation has the potential to prevent a deterioration of the gut microbiota and inflammatory status in elderly women with low bone mineral density, which might have beneficial effects on bone metabolism.
Collapse
|
8
|
Whittier DE, Manske SL, Billington E, Walker RE, Schneider PS, Burt LA, Hanley DA, Boyd SK. Hip Fractures in Older Adults Are Associated With the Low Density Bone Phenotype and Heterogeneous Deterioration of Bone Microarchitecture. J Bone Miner Res 2022; 37:1963-1972. [PMID: 35895080 PMCID: PMC9804299 DOI: 10.1002/jbmr.4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Femoral neck areal bone mineral density (FN aBMD) is a key determinant of fracture risk in older adults; however, the majority of individuals who have a hip fracture are not considered osteoporotic according to their FN aBMD. This study uses novel tools to investigate the characteristics of bone microarchitecture that underpin bone fragility. Recent hip fracture patients (n = 108, 77% female) were compared with sex- and age-matched controls (n = 216) using high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging of the distal radius and tibia. Standard morphological analysis of bone microarchitecture, micro-finite element analysis, and recently developed techniques to identify void spaces in bone microarchitecture were performed to evaluate differences between hip fracture patients and controls. In addition, a new approach for phenotyping bone microarchitecture was implemented to evaluate whether hip fractures in males and females occur more often in certain bone phenotypes. Overall, hip fracture patients had notable deterioration of bone microarchitecture and reduced bone mineral density compared with controls, especially at weight-bearing sites (tibia and femoral neck). Hip fracture patients were more likely to have void spaces present at either site and had void spaces that were two to four times larger on average when compared with non-fractured controls (p < 0.01). Finally, bone phenotyping revealed that hip fractures were significantly associated with the low density phenotype (p < 0.01), with the majority of patients classified in this phenotype (69%). However, female and male hip fracture populations were distributed differently across the bone phenotype continuum. These findings highlight how HR-pQCT can provide insight into the underlying mechanisms of bone fragility by using information about bone phenotypes and identification of microarchitectural defects (void spaces). The added information suggests that HR-pQCT can have a beneficial role in assessing the severity of structural deterioration in bone that is associated with osteoporotic hip fractures. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danielle E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sarah L Manske
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Emma Billington
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Richard Ea Walker
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Prism S Schneider
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lauren A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Cirovic A, Cirovic A, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-dimensional mapping of cortical porosity and thickness along the superolateral femoral neck in older women. Sci Rep 2022; 12:15544. [PMID: 36109611 PMCID: PMC9477875 DOI: 10.1038/s41598-022-19866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Although several studies have analyzed inter-individual differences in the femoral neck cortical microstructure, intra-individual variations have not been comprehensively evaluated. By using microCT, we mapped cortical pore volume fraction (Ct.Po) and thickness (Ct.Th) along the superolateral femoral neck in 14 older women (age: 77.1 ± 9.8 years) to identify subregions and segments with high porosity and/or low thickness-potential "critical" spots where a fracture could start. We showed that Ct.Po and Ct.Th significantly differed between basicervical, midcervical, and subcapital subregions of the femoral neck (p < 0.001), where the subcapital subregion showed the lowest mean Ct.Th and the highest mean Ct.Po. These cortical parameters also varied substantially with age and with the location of the analyzed microsegments along the individual's neck (p < 0.001), showing multiple microsegments with high porosity and/or low thickness. Although the highest ratio of these microsegments was found in the subcapital subregion, they were also present at other examined subregions, which may provide an anatomical basis for explaining the fracture initiation at various sites of the superolateral neck. Given that fractures likely start at structurally and mechanically weaker spots, intra-individual variability in Ct.Po and Ct.Th should be considered and the average values for the entire femoral neck should be interpreted with caution.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
10
|
Flehr A, Källgård J, Alvén J, Lagerstrand K, Papalini E, Wheeler M, Vandenput L, Kahl F, Axelsson KF, Sundh D, Mysore RS, Lorentzon M. Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2022; 33:1545-1556. [PMID: 35113175 PMCID: PMC9187531 DOI: 10.1007/s00198-021-06224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
UNLABELLED Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. RESULTS The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p < 0.001). CONCLUSION The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction.
Collapse
Affiliation(s)
- Alison Flehr
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Julius Källgård
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Alvén
- Dept. of Molecular and Clinical Medicine, Inst. of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Computer Vision and Medical Image Analysis, Dept. of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin Lagerstrand
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiation Physics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Evin Papalini
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Wheeler
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Liesbeth Vandenput
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Kahl
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Primary Care, Skövde, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Raghunath Shirish Mysore
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
11
|
Nissen FI, Andreasen C, Borgen TT, Bjørnerem Å, Hansen AK. Cortical bone structure of the proximal femur and incident fractures. Bone 2022; 155:116284. [PMID: 34875395 DOI: 10.1016/j.bone.2021.116284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Fracture risk is most frequently assessed using Dual X-ray absorptiometry to measure areal bone mineral density (aBMD) and using the Fracture Risk Assessment Tool (FRAX). However, these approaches have limitations and additional bone measurements may enhance the predictive ability of these existing tools. Increased cortical porosity has been associated with incident fracture in some studies, but not in others. In this prospective study, we examined whether cortical bone structure of the proximal femur predicts incident fractures independent of aBMD and FRAX score. METHODS We pooled 211 postmenopausal women with fractures aged 54-94 years at baseline and 232 fracture-free age-matched controls based on a prior nested case-control study from the Tromsø Study in Norway. We assessed baseline femoral neck (FN) aBMD, calculated FRAX 10-year probability of major osteoporotic fracture (MOF), and quantified femoral subtrochanteric cortical parameters: porosity, area, thickness, and volumetric BMD (vBMD) from CT images using the StrAx1.0 software. Associations between bone parameters and any incident fracture, MOF and hip fracture were determined using Cox's proportional hazard models to calculate hazard ratio (HR) with 95% confidence interval. RESULTS During a median follow-up of 7.2 years, 114 (25.7%) of 443 women suffered one or more incident fracture. Cortical bone structure did not predict any incident fracture or MOF after adjustment for age, BMI, and previous fracture. Each SD higher total cortical porosity, thinner cortices, and lower cortical vBMD predicted hip fracture with increased risk of 46-62% (HRs ranging from 1.46 (1.01-2.11) to 1.62 (1.02-2.57)). After adjustment for FN aBMD or FRAX score no association remained significant. Both lower FN aBMD and higher FRAX score predicted any incident fracture, MOF and hip fractures with HRs ranging from 1.45-2.56. CONCLUSIONS This study showed that cortical bone measurements using clinical CT did not add substantial insight into fracture risk beyond FN aBMD and FRAX. We infer from these results that fracture risk related to the deteriorated bone structure seems to be largely captured by a measurement of FN aBMD and the FRAX tool.
Collapse
Affiliation(s)
- Frida Igland Nissen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopedic Surgery, University Hospital of North Norway, Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway.
| | - Camilla Andreasen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopedic Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Tove Tveitan Borgen
- Department of Rheumatology, Vestre Viken Hospital Trust, Drammen Hospital, Drammen, Norway
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway; Norwegian Research Centre for Women's Health, Oslo University Hospital, Oslo, Norway
| | - Ann Kristin Hansen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopedic Surgery, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
12
|
Fujii N, Okimoto N, Tsukamoto M, Fujii N, Asano K, Ikejiri Y, Yoshioka T, Tajima T, Yamanaka Y, Zenke Y, Kawasaki M, Ozawa J, Umehara T, Takano S, Murata H, Kito N. Daily activity relates to not only femoral bone mineral density, but also hip structural analysis parameters: A cross-sectional observational study. Osteoporos Sarcopenia 2022; 7:127-133. [PMID: 35005248 PMCID: PMC8714472 DOI: 10.1016/j.afos.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives Physical activity to maintain bone mass and strength is important for hip fracture prevention. We aim to investigate the relationship between physical performance/activity status and bone mineral density (BMD)/hip structural analysis (HSA) parameters among postmenopausal women in Japan. Methods Sixty-two postmenopausal women diagnosed with osteoporosis (mean age: 72.61 ± 7.43 years) were enrolled in this cross-sectional observational study. They were evaluated for BMD and HSA in the proximal femur by dual-energy X-ray absorptiometry and underwent several physical performance tests, the Geriatric Locomotive Function Scale of 25 questions (GLFS-25). Principal component analysis (PCA) was used to summarize data on the BMD/HSA parameters. Partial correlation analysis, multiple regression analysis, and structural equation modeling (SEM) were performed to investigate the relationship between physical performance/activity status and BMD/HSA parameters of the proximal femur. Results In a partial correlation analysis adjusted for age and body mass index (BMI), GLFS-25 scores were correlated with HSA parameter (|r| = 0.260–0.396, P < 0.05). Principal component 1 (PC1) calculated by PCA was interpreted as more reflective of bone strength based on the value of BMD/HSA parameters. The SEM results showed that the model created by the 3 questions (Q13, brisk walking; Q15, keep walking without rest; Q20, load-bearing tasks and housework) of the GLFS-25 had the best fit and was associated with the PC1 score (β = −0.444, P = 0.001). Conclusions The GLFS-25 score was associated with the BMD/HSA parameter, which may reflect the bone strength of the proximal femur as calculated by PCA.
Collapse
Affiliation(s)
- Norifumi Fujii
- Department of Rehabilitation, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan.,Hiroshima International University Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, 555-36 Kurosegakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan
| | - Nobukazu Okimoto
- Okimoto Clinic, 185-4 Kubi, Yutaka-machi, Kure, Hiroshima, 734-0304, Japan.,Department of Orthopedic Surgery, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Norimitsu Fujii
- Department of Emergency, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kei Asano
- Department of Orthopedic Surgery, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Yoshiaki Ikejiri
- Department of Orthopedic Surgery, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Toru Yoshioka
- Department of Orthopedic Surgery, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Takafumi Tajima
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yukichi Zenke
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan
| | - Shogo Takano
- Department of Rehabilitation, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Hideaki Murata
- Department of Orthopedic Surgery, Shimura Hospital, 3-13 Funairimachi, Naka-ku, Hiroshima, 730-0841, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima-shi, Hiroshima, 739-2695, Japan
| |
Collapse
|
13
|
Bochud N, Laugier P. Axial Transmission: Techniques, Devices and Clinical Results. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:55-94. [DOI: 10.1007/978-3-030-91979-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Deminger A, Klingberg E, Lorentzon M, Hedberg M, Carlsten H, Jacobsson LTH, Forsblad-d'Elia H. Factors associated with changes in volumetric bone mineral density and cortical area in men with ankylosing spondylitis: a 5-year prospective study using HRpQCT. Osteoporos Int 2022; 33:205-216. [PMID: 34263348 PMCID: PMC8758642 DOI: 10.1007/s00198-021-06049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
Patients with ankylosing spondylitis (AS) have impaired volumetric bone mineral density (vBMD) assessed with high-resolution peripheral computed tomography (HRpQCT). This first longitudinal HRpQCT study in AS shows that cortical and trabecular vBMD decreased at tibia and that signs of inflammation were associated with cortical bone loss at tibia and radius. INTRODUCTION Patients with ankylosing spondylitis (AS) have reduced volumetric bone mineral density (vBMD) in the peripheral skeleton assessed with high-resolution peripheral quantitative computed tomography (HRpQCT). The aims were to investigate longitudinal changes in vBMD, cortical area, and microarchitecture and to assess factors associated with changes in vBMD and cortical area in men with AS. METHODS HRpQCT of radius and tibia was performed in 54 men with AS at baseline and after 5 years. Univariate and multivariable linear regression analyses were used. RESULTS At tibia, there were significant decreases exceeding least significant changes (LSC) in cortical and trabecular vBMD, mean (SD) percent change -1.0 (1.9) and -2.7 (5.0) respectively (p<0.001). In multivariable regression analyses, increase in disease activity measured by ASDAS_CRP from baseline to follow-up was associated with decreases in cortical vBMD (β -0.86, 95% CI -1.31 to -0.41) and cortical area (β -1.66, 95% CI -3.21 to -0.10) at tibia. At radius, no changes exceeded LSC. Nonetheless, increase in ASDAS_CRP was associated with decreases in cortical vBMD, and high time-averaged ESR was associated with decreases in cortical area. Treatment with TNF inhibitor ≥ 4 years during follow-up was associated with increases in cortical vBMD and cortical area at tibia, whereas exposure to bisphosphonates was associated with increases in cortical measurements at radius. No disease-related variables or treatments were associated with changes in trabecular vBMD. CONCLUSION The findings in this first longitudinal HRpQCT study in patients with AS strengthen the importance of controlling disease activity to maintain bone density in the peripheral skeleton.
Collapse
Affiliation(s)
- A Deminger
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| | - E Klingberg
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - M Lorentzon
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine Clinic, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - M Hedberg
- Section of Rheumatology, Region Västra Götaland, Södra Älvsborg Hospital, Borås, Sweden
| | - H Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - L T H Jacobsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
| | - H Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Cheung WH, Hung VWY, Cheuk KY, Chau WW, Tsoi KKF, Wong RMY, Chow SKH, Lam TP, Yung PSH, Law SW, Qin L. Best Performance Parameters of HR-pQCT to Predict Fragility Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2021; 36:2381-2398. [PMID: 34585784 PMCID: PMC9298023 DOI: 10.1002/jbmr.4449] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone mass and bone structural deterioration that may result in fragility fractures. Use of bone imaging modalities to accurately predict fragility fractures is always an important issue, yet the current gold standard of dual-energy X-ray absorptiometry (DXA) for diagnosis of osteoporosis cannot fully satisfy this purpose. The latest high-resolution peripheral quantitative computed tomography (HR-pQCT) is a three-dimensional (3D) imaging device to measure not only volumetric bone density, but also the bone microarchitecture in a noninvasive manner that may provide a better fracture prediction power. This systematic review and meta-analysis was designed to investigate which HR-pQCT parameters at the distal radius and/or distal tibia could best predict fragility fractures. A systematic literature search was conducted in Embase, PubMed, and Web of Science with relevant keywords by two independent reviewers. Original clinical studies using HR-pQCT to predict fragility fractures with available full text in English were included. Information was extracted from the included studies for further review. In total, 25 articles were included for the systematic review, and 16 articles for meta-analysis. HR-pQCT was shown to significantly predict incident fractures and/or major osteoporotic fractures (MOFs). Of all the HR-pQCT parameters, our meta-analysis revealed that cortical volumetric bone mineral density (Ct.vBMD), trabecular thickness (Tb.Th), and stiffness were better predictors. Meanwhile, HR-pQCT parameters indicated better performance in predicting MOFs than incident fractures. Between the two standard measurement sites of HR-pQCT, the non-weight-bearing distal radius was a more preferable site than distal tibia for fracture prediction. Furthermore, most of the included studies were white-based, whereas very few studies were from Asia or South America. These regions should build up their densitometric databases and conduct related prediction studies. It is expected that HR-pQCT can be used widely for the diagnosis of osteoporosis and prediction of future fragility fractures. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Vivian Wing-Yin Hung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Yee Cheuk
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Wang Chau
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Kam-Fai Tsoi
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man-Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Ping Lam
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung-Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Aróstica R, Aguilera A, Osses A, Minonzio JG. A simplified homogenization model applied to viscoelastic behavior of cortical bone at ultrasonic frequencies. J Biomech 2021; 131:110868. [PMID: 34923295 DOI: 10.1016/j.jbiomech.2021.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Cortical bone is a complex multiscale medium and its study is of importance for clinical fracture prevention. In particular, cortical attenuation is known to be linked with shock energy absorption and ability to resist fracture. However, the links between cortical bone absorption and its multiscale structure are still not well understood. This work is about the use of homogenized tensors in order to characterize the viscoelastic behavior of cortical bone at ultrasonic frequencies, i.e., about 0.1 to 10 MHz. Such tensors are derived from the cell problem via two-scale homogenization theory for linear elastic and Kelvin-Voigt viscoelastic descriptions. The elliptic formulations obtained from the cell problems are implemented within the range of medically-observed porosities. Microstructure is assessed considering cubic cells with cylindrical inclusion and transverse isotropic assumption. A simplified model, adding one temporal parameter τ per phase, allows a good agreement with experimental data. The corresponding attenuation is proportional to the square of the frequency, in agreement with Kramer-Kronig relations. This development is proposed in the context of robust clinical inverse problem approaches using a restricted number of parameter. Two main properties for the material filling the pores are adjusted and discussed: absorption and shear contribution. Best agreement with experimental data is observed for material inside the pores being solid and highly attenuating.
Collapse
Affiliation(s)
- Reidmen Aróstica
- Departamento de Ingeniería Matemática and Center for Mathematical Modeling UMI CNRS 2807, FCFM, Universidad de Chile, Av. Beaucheff 851, Santiago, Chile.
| | - Ana Aguilera
- Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso, Chile.
| | - Axel Osses
- Departamento de Ingeniería Matemática and Center for Mathematical Modeling UMI CNRS 2807, FCFM, Universidad de Chile, Av. Beaucheff 851, Santiago, Chile; Millenium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, Chile; Millenium Nucleus Applied Control and Inverse Problems, ACIP, Chile.
| | - Jean-Gabriel Minonzio
- Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
17
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
18
|
Ni X, Feng J, Jiang Y, Zhang L, Yu W, Wang O, Li M, Xing X, Matsumoto T, Xia W. Comparative effect of eldecalcitol and alfacalcidol on bone microstructure: A preliminary report of secondary analysis of a prospective trial. Osteoporos Sarcopenia 2021; 7:47-53. [PMID: 34277999 PMCID: PMC8261726 DOI: 10.1016/j.afos.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives To compare the effect of eldecalcitol and alfacalcidol on skeletal microstructure by high-resolution peripheral QCT (HR-pQCT). Methods This was a substudy of a randomized, double-blind, active comparator trial. Five female osteoporotic patients with 1-year 0.75 μg/day eldecalcitol and 5 with 1-year 1.0 μg/day alfacalcidol completed HR-pQCT scans before and after treatment were enrolled. Results Total vBMD [1.67 ± 1.06% (mean ± SD), P = 0.043 versus baseline] and trabecular vBMD (2.91 ± 1.72%, P = 0.043) at the radius increased in eldecalcitol group, while total, trabecular, and cortical vBMD tended to decrease in alfacalcidol group, with a significant reduction in cortical vBMD at the tibia (0.88 ± 0.62%, P = 0.043). Cortical area (1.82 ± 1.92%, P = 0.043) at the radius and thickness (0.87 ± 1.12%, P = 0.043) at the tibia increased in eldecalcitol group, while these parameters decreased with alfacalcidol at the tibia (1.77 ± 1.72%, P = 0.043 for cortical area; 1.40 ± 2.14%, P = 0.042 for cortical thickness). Trabecular thickness at the radius (1.97 ± 1.93%, P = 0.042) and number at the tibia (3.09 ± 3.04%, P = 0.043) increased by eldecalcitol but did not increase by alfacalcidol. Trabecular separation decreased by eldecalcitol (2.22 ± 2.43%, P = 0.043) but tended to increase by alfacalcidol at the tibia. Conclusions Eldecalcitol has the greater potential to improve cortical and trabecular microstructure at the peripheral bone than alfacalcidol which needs further more studies.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Feng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Fujii N, Tsukamoto M, Okimoto N, Mori M, Ikejiri Y, Yoshioka T, Kawasaki M, Kito N, Ozawa J, Nakamura R, Takano S, Fujiwara S. Differences in the effects of BMI on bone microstructure between loaded and unloaded bones assessed by HR-pQCT in Japanese postmenopausal women. Osteoporos Sarcopenia 2021; 7:54-62. [PMID: 34278000 PMCID: PMC8261728 DOI: 10.1016/j.afos.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objectives The relationship between weight-related load and bone mineral density (BMD)/bone microstructure under normal load conditions using high-resolution peripheral quantitative computed tomography (HR-pQCT) remains unconfirmed. The study aims to investigate the differences in effect of body mass index (BMI) on BMD/bone microstructure of loaded and unloaded bones, respectively, in Japanese postmenopausal women. Methods Fifty-seven postmenopausal women underwent HR-pQCT on the tibia and radius. Correlation analysis, principal component (PC) analysis, and hierarchical multiple regression were performed to examine the relationship between BMI and HR-pQCT parameters. Results Several microstructural parameters of the tibia and radius correlated with BMI through a simple correlation analysis, and these relationships remained unchanged even with an age-adjusted partial correlation analysis. PC analysis was conducted using seven bone microstructure parameters. The first PC (PC1) reflected all parameters of trabecular and cortical bone microstructures, except for cortical porosity, whereas the second PC (PC2) reflected only cortical bone microstructure. Hierarchical multiple regression analysis indicated that BMI was more strongly related to BMD/bone microstructure in the tibia than in the radius. Furthermore, BMI was associated with trabecular/cortical BMD, and PC1 (not PC2) of the tibia and radius. Thus, BMI was strongly related to the trabecular bone microstructure rather than the cortical bone microstructure. Conclusions Our data confirmed that BMI is associated with volumetric BMD and trabecular bone microstructure parameters in the tibia and radius. However, although BMI may be more related to HR-pQCT parameters in the tibia than in the radius, the magnitude of association is modest.
Collapse
Affiliation(s)
- Norifumi Fujii
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan.,Hiroshima International University Major in Medical Engineering and Technology Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima, Japan
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobukazu Okimoto
- Okimoto Clinic, Hiroshima, Japan.,Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Miyuki Mori
- Department of Radiology, Shimura Hospital, Hiroshima, Japan
| | - Yoshiaki Ikejiri
- Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Toru Yoshioka
- Department of Orthopedic Surgery, Shimura Hospital, Hiroshima, Japan
| | - Makoto Kawasaki
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Ryoichi Nakamura
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan
| | - Shogo Takano
- Department of Rehabilitation, Shimura Hospital, Hiroshima, Japan
| | - Saeko Fujiwara
- Department of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
20
|
Cha YH, Yoo JI. Comparison of hip structure analysis and grip strength between femoral neck and basicervical fractures. BMC Musculoskelet Disord 2021; 22:461. [PMID: 34011356 PMCID: PMC8135173 DOI: 10.1186/s12891-021-04363-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to analyze differences in geometrical properties of the proximal femur and predict the occurrence of basicervical fractures through a comparative study of femoral neck and basicervical fractures in patients undergoing hip structural analysis (HSA). Methods All patients with hip fractures who were at least 65 years old and admitted to our hospital between March 2017 and December 2019 were eligible for this study. During the study period, 149 femur neck fractures (FNF) and basicervical fractures (intertrochanteric fractures of A31.2) were included in this study. Fifty-nine patients were included in the final analysis. Factors considered to be important confounders affecting the occurrence of basicervical hip fractures were chosen for propensity-score analysis. A logistic model with basicervical hip fracture as the outcome and age, sex, weight, spinal T-score, hip T-score, and vitamin D levels as confounders was used to estimate the propensity score. Results The cross-sectional moment of inertia (CSMI) of the intertrochanter was significantly lower in patients with basicervical hip fracture (HF) than in patients with FNF (p = 0.045). However, there was no significant differences in any other HSA variable between the two groups. Receiver operating characteristic (ROC) analysis showed that cutoff point for HSA was 100 for hip axis length (HAL) (AUC = 0.659, p < 0.001) and 5.712 for CSMI of the intertrochanter (AUC = 0.676, p < 0.001). ROC analysis showed that cutoff points of HAL, CSMI of intertrochanter, and handgrip strength were 104.8, 8.75, and 16.9, respectively (AUC = 0.726, p < 0.001). Conclusions Proximal femoral geometric analysis using HSA is a useful method for predicting the type of hip fracture. Additionally, a lower CSMI, a shorter HAL, and a lower grip strength are major predictors of basicervical fractures.
Collapse
Affiliation(s)
- Yong-Han Cha
- Department of Orthopaedic Surgery, Eulji University hospital, Daejeon, South Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang national university hospital, Jinju, Gyeongnamdo, South Korea.
| |
Collapse
|
21
|
Tripto-Shkolnik L, Vered I, Peltz-Sinvani N, Kowal D, Goldshtein I. Bone Mineral Density of the 1/3 Radius Refines Osteoporosis Diagnosis, Correlates With Prevalent Fractures, and Enhances Fracture Risk Estimates. Endocr Pract 2021; 27:408-412. [PMID: 33934751 DOI: 10.1016/j.eprac.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To investigate the added value of 1/3 radius (1/3R) for the diagnosis of osteoporosis by spine and hip sites and its correlation with prevalent fractures and predicted fracture risk. METHODS Fracture Risk Assessment Tool (FRAX) scores for hip and major osteoporotic fractures (MOF) with/without trabecular bone score were considered proxy for fracture risk. The contribution of 1/3R to risk prediction was depicted via linear regression models with FRAX score as the dependent variable-first only with central and then with radius T-score as an additional covariate. Significance of change in the explained variance was compared by F-test. RESULTS The study included 1453 patients, 86% women, aged 66 ± 10 years. A total of 32% (n = 471) were osteoporotic by spine/hip and 8% (n = 115) by radius only, constituting a 24.4% increase in the number of subjects defined as osteoporotic (n = 586, 40%). Prior fracture prevalence was similar among patients with osteoporosis by spine/hip (17.4%) and radius only (19.1%) (P = .77). FRAX prediction by a regression model using spine/hip T-score yielded explained variance of 51.8% and 49.9% for MOF and 39.8% and 36.4% for hip (with/without trabecular bone score adjustment, respectively). The contribution of 1/3R was statistically significant (P < .001) and slightly increased the explained variance to 52.3% and 50.4% for MOF and 40.9% and 37.4% for hip, respectively. CONCLUSION Reclassification of BMD results according to radius measurements results in higher diagnostic output. Prior fractures were equally prevalent among patients with radius-only and classic-site osteoporosis. FRAX tool performance slightly improved by incorporating radius BMD. Whether this approach may lead to a better fracture prediction warrants further prospective evaluation.
Collapse
Affiliation(s)
- Liana Tripto-Shkolnik
- Division of Endocrinology, Diabetes and Metabolism, Chaim Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| | - Iris Vered
- Division of Endocrinology, Diabetes and Metabolism, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Naama Peltz-Sinvani
- Division of Endocrinology, Diabetes and Metabolism, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - David Kowal
- Division of Endocrinology, Diabetes and Metabolism, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Inbal Goldshtein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel; Maccabitech Institute of Research and Innovation, Maccabi Healthcare Services, Israel
| |
Collapse
|
22
|
Wallin M, Barregard L, Sallsten G, Lundh T, Sundh D, Lorentzon M, Ohlsson C, Mellström D. Low-level cadmium exposure is associated with decreased cortical thickness, cortical area and trabecular bone volume fraction in elderly men: The MrOS Sweden study. Bone 2021; 143:115768. [PMID: 33232837 DOI: 10.1016/j.bone.2020.115768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
It is well known that high-level exposure to cadmium can cause bone disease such as osteoporosis, osteomalacia and fractures. However, the effect of low-level exposure, as found in the general population (mainly derived from diet and smoking), has only been assessed recently. The aim of this study was to examine if cadmium exposure in the general Swedish population causes other bone changes than decreased areal bone mineral density as measured by traditional DXA technology, e.g. changes in microstructure and geometry, such as cortical thickness or area, cortical porosity and trabecular bone volume. The study population consisted of 444 men, aged 70-81 years at inclusion year 2002-2004, from the Swedish cohort of the Osteoporotic Fractures in Men Study (MrOS). Cadmium was analyzed in baseline urine samples (U-Cd). Different parameters of bone geometry and microstructure were measured at the distal tibia at follow-up in 2009, including examination with high-resolution peripheral quantitative computed tomography (HR-pQCT). Associations between bone parameters and U-Cd in tertiles were estimated in multivariable analyses, including potential confounding factors (age, smoking, BMI, and physical activity). We found significant associations between U-Cd and several bone geometry or microstructure parameters, with 9% lower cortical thickness (p = 0.03), 7% lower cortical area (p = 0.04), and 5% lower trabecular bone volume fraction (p = 0.02) in the third tertile of U-Cd, using the first tertile as the reference. Furthermore, significant negative associations were found between log-transformed U-Cd and cortical thickness, cortical area, trabecular number and trabecular bone volume fraction, and a significant positive association with trabecular separation. The results indicate that low-level Cd exposure in the general population has negative effects on both cortical and trabecular bone.
Collapse
Affiliation(s)
- Maria Wallin
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Lundh
- Department of Occupational and Environmental Medicine, Skåne University Hospital, Lund, Sweden
| | - Daniel Sundh
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Geriatric Medicine Clinic, Sahlgrenska University Hospital Mölndal, Sweden
| | - Claes Ohlsson
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Department of Geriatric Medicine, Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research (CBAR), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Huang M, Hung VWY, Li TK, Law SW, Wang Y, Chen S, Qin L. Performance of HR-pQCT, DXA, and FRAX in the discrimination of asymptomatic vertebral fracture in postmenopausal Chinese women. Arch Osteoporos 2021; 16:125. [PMID: 34480663 PMCID: PMC8418592 DOI: 10.1007/s11657-021-00939-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Volumetric bone density (vBMD) and trabecular microarchitecture measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) can discriminate the patients with high risk of asymptomatic vertebral fracture (VF) in postmenopausal Chinese women. These findings suggested that HR-pQCT could provide additional information on bone quality of the patients with asymptomatic VF. INTRODUCTION Although there were several studies using HR-pQCT to investigate asymptomatic VF, it remains uncertain if HR-pQCT parameters can discriminate asymptomatic VF patients, especially in Chinese population. The purpose of this study was to investigate whether bone quality measured by HR-pQCT could discriminate asymptomatic VF independent of hip areal bone mineral density (aBMD) measured by dual-energy x-ray absorptiometry (DXA) and fracture risks evaluated using built-in Fracture Risk Assessment Tool (FRAXBMD). METHODS This is a nested case-control study. One hundred seventy-five ambulatory Chinese postmenopausal women aged 60-79 years were retrieved from Normative Reference Standards (NRS) cohort in Hong Kong. DXA was used to identify VF from lateral spine images (VFA) using Genant's semi-quantitative method. Major osteoporotic fracture risk was calculated using FRAX tool. HR-pQCT was used to assess vBMD, microarchitecture, and estimated strength at both distal radius and tibia. Comparison of HR-pQCT parameters between asymptomatic VF and control was performed using covariance analysis. Logistic regression analysis was performed for calculating the adjusted odds ratio (OR) with 95% confidence intervals (CI) of fracture status as per SD decrease in HR-pQCT parameters. RESULTS Women with asymptomatic VF were older than those of the control in our NRS cohort. Nevertheless, after adjusted for covariance, asymptomatic VF showed significantly lower trabecular vBMD (Tb.vBMD) at radius but higher SMI at tibia as compared with those of the control. Tb.vBMD at radius yielded the highest value of area under the curve (AUC) as compared with total hip aBMD and FRAXBMD. However, no significant difference was found among each other. CONCLUSION Tb.vBMD at the radius and SMI at the tibia provided by HR-pQCT can discriminate asymptomatic VF independent of hip aBMD and FRAXBMD by DXA in postmenopausal women.
Collapse
Affiliation(s)
- Meiling Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Vivian Wing-Yin Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Kiu Li
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheung Wai Law
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shangjie Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Rehabilitation, Shenzhen Baoan Hospital Affiliated to Southern Medical University, Shenzhen, China.
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Yokota K, Chiba K, Okazaki N, Kondo C, Doi M, Yamada S, Era M, Nishino Y, Yonekura A, Tomita M, Osaki M. Deterioration of bone microstructure by aging and menopause in Japanese healthy women: analysis by HR-pQCT. J Bone Miner Metab 2020; 38:826-838. [PMID: 32519249 DOI: 10.1007/s00774-020-01115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Second-generation high-resolution peripheral quantitative computed tomography (HR-pQCT) has provide higher quality of bone images with a voxel size of 61 µm, enabling direct measurements of trabecular thickness. In addition to the standard parameters, the non-metric trabecular parameters such as trabecular morphology (plate to rod-like structures), connectivity, and anisotropy can also be analyzed. The purpose of this study is to investigate deterioration of bone microstructure in healthy Japanese women by measuring standard and non-metric parameters using HR-pQCT. MATERIALS AND METHODS Study participants were 61 healthy Japanese women (31-70 years). The distal radius and tibia were scanned using second-generation HR-pQCT, and microstructures of trabecular and cortical bone were measured. Non-metric trabecular parameters included structure model index (SMI), trabecular bone pattern factor (TBPf), connectivity density (Conn.D), number of nodes (N.Nd/TV), degree of anisotropy (DA), and star volume of marrow space (V*ms). Estimated bone strength was evaluated by micro finite element analysis. Associations between bone microstructure, estimated bone strength, age, and menopause were analyzed. RESULTS Trabecular number declined with age, and trabecular separation increased. SMI and TBPf increased, Conn.D and N.Nd/TV declined, and V*ms increased. Cortical BMD and thickness declined with age, and porosity increased. Stiffness and failure load decreased with age. Cortical thickness and estimated bone strength were affected by menopause. Cortical thickness was most associated with estimated bone strength. CONCLUSIONS Trabecular and cortical bone microstructure were deteriorated markedly with age. Cortical thickness decreased after menopause and was most related to bone strength. Non-metric parameters give additional information about osteoporotic changes of trabecular bone.
Collapse
Affiliation(s)
- Kazuaki Yokota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Choko Kondo
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mitsuru Doi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuta Yamada
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Era
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuichiro Nishino
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
25
|
Cirovic A, Cirovic A, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-Dimensional Microstructural Basis for Differential Occurrence of Subcapital versus Basicervical Hip Fractures in Men. Calcif Tissue Int 2020; 107:240-248. [PMID: 32601840 DOI: 10.1007/s00223-020-00717-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/20/2020] [Indexed: 12/29/2022]
Abstract
We analyzed the bone microarchitecture of the subcapital and basicervical subregions of the femoral neck in men, to determine whether microarchitectural differences of cortical or trabecular bone can explain differential frequency of subcapital vs. basicervical fractures, especially in aged persons. The study sample encompassed twenty male proximal femora obtained during autopsy. They were divided in two age groups: young (< 40 years, n = 10) and aged (> 60 years, n = 10). Micro-computed tomography was used to evaluate cortical and trabecular microarchitecture of the subcapital and basicervical regions of the superolateral femoral neck-typical fracture initiation site. Basicervical region showed significantly thicker and less porous cortex than subcapital region (p = 0.02, p < 0.001, respectively), along with increased distance between cortical pores (p = 0.004) and smaller pore diameters (p = 0.069). Higher trabecular number (Tb.N: p = 0.042), lower trabecular thickness (Tb.Th: p < 0.001), and lower trabecular separation (p = 0.003) were also hallmarks of the basicervical compared to subcapital region, although BV/TV was similar in both regions (p = 0.133). Age-related deterioration was mostly visible in trabecular bone (for BV/TV, Tb.Th, Tb.N and fractal dimension: p = 0.026, p = 0.049, p = 0.059, p = 0.009, respectively). Moreover, there were tendencies to age-specific patterns of trabecular separation (more pronounced inter-site differences in aged) and cortical thickness (more pronounced inter-site differences in young). Trabecular microarchitecture corresponded to cortical characteristics of each region. Our study revealed the microarchitectural basis for higher incidence of subcapital than basicervical fractures of the femoral neck. This is essential for better understanding of the fracture risk, as well as for future strategies to prevent hip fractures and their complications.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia
| | - Ana Cirovic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Marija Djuric
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia
| | - Petar Milovanovic
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| |
Collapse
|
26
|
Haraguchi A, Shigeno R, Horie I, Morimoto S, Ito A, Chiba K, Kawazoe Y, Tashiro S, Miyamoto J, Sato S, Yamamoto H, Osaki M, Kawakami A, Abiru N. The effect of luseogliflozin on bone microarchitecture in older patients with type 2 diabetes: study protocol for a randomized controlled pilot trial using second-generation, high-resolution, peripheral quantitative computed tomography (HR-pQCT). Trials 2020; 21:379. [PMID: 32370806 PMCID: PMC7201752 DOI: 10.1186/s13063-020-04276-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older patients with type 2 diabetes mellitus (T2DM) have an increased risk of bone fracture independent of their bone mineral density (BMD), which is explained mainly by the deteriorated bone quality in T2DM compared to that in non-diabetic adults. Sodium-glucose co-transporter (SGLT) 2 inhibitors have been studied in several trials in T2DM, and the Canagliflozin Cardiovascular Assessment Study showed an increased fracture risk related to treatment with the SGLT2 inhibitor canagliflozin, although no evidence of increased fracture risk with treatment with other SGLT2 inhibitors has been reported. The mechanism of the difference in the fracture risk between the SGLT2 inhibitors is unknown, but the differences among the SGLT2 inhibitors in the selectivity of SGLT2 against SGLT1 may affect bone metabolism, since among the SGLT2 inhibitors the selectivity of canagliflozin is lowest. We will investigate whether the SGLT2 inhibitor luseogliflozin, which has the higher SGLT2 selectivity, affects bone metabolism by using high-resolution, peripheral quantitative computed tomography (HR-pQCT) which provides direct in vivo morphometric information about the bone microarchitecture. METHODS/DESIGN This is a single-center, randomized, open-label, active-controlled, parallel pilot trial. Eligible participants are older (age ≥ 60 years) individuals with T2DM with HbA1c levels at 7.0-8.9%. A total of 24 participants will be allocated to either the luseogliflozin group (taking luseogliflozin) or the control group (taking metformin) in a 1:1 ratio to compare the groups' changes in bone microarchitecture of the radius and tibia which are analyzed by HR-pQCT before and at 48 weeks after the administration of each medication. The laboratory data associated with glycemic control and bone metabolism will be collected every 12 weeks during the study. Recruitment began in June 2019. DISCUSSION The reason that we use metformin as an active control is to avoid yielding differences in glycemic control between the luseogliflozin and control groups. Besides, metformin is considered to have a neutral effect on bone. This trial should reveal the effect of luseogliflozin on bone metabolism in older patients with T2DM. TRIAL REGISTRATION The study was registered with the University Hospital Medical Information Network (UMIN000036202) on 1 April 2019 and with the Japan Registry of Clinicla Trials (jRCTs071180061) on 14 March 2019.
Collapse
Affiliation(s)
- Ai Haraguchi
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Riyoko Shigeno
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan. .,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Shimpei Morimoto
- Innovation Platform and Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ayako Ito
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yurika Kawazoe
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Junya Miyamoto
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Yamamoto
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Division of Advanced Preventive Medical Sciences, Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
27
|
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, Unal M, Does MD, Nyman JS. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone 2020; 130:115126. [PMID: 31678497 PMCID: PMC6885131 DOI: 10.1016/j.bone.2019.115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
One possibility for the disproportionate increase in fracture risk with aging relative to the decrease in bone mass is an accumulation of changes to the bone matrix which deleteriously affect fracture resistance. In order to effectively develop new targets for osteoporosis, a preclinical model of the age-related loss in fracture resistance needs to be established beyond known age-related decreases in bone mineral density and bone volume fraction. To that end, we examined long bones of male and female BALB/c mice at 6-mo. and 20-mo. of age and assessed whether material and matrix properties of cortical bone significantly differed between the age groups. The second moment of area of the diaphysis (minimum and maximum principals for femur and radius, respectively) as measured by ex vivo micro-computed tomography (μCT) was higher at 20-mo. than at 6-mo. for both males and females, but ultimate moment as measured by three-point bending tests did not decrease with age. Cortical thickness was lower with age for males, but higher for old females. Partially accounting for differences in structure, material estimates of yield, ultimate stress, and toughness (left femur) were 12.6%, 11.1%, and 40.9% lower, respectively, with age for both sexes. The ability of the cortical bone to resist crack growth (right femur) was also 18.1% less for the old than for the young adult mice. These decreases in material properties were not due to changes in intracortical porosity as pore number decreased with age. Rather, age-related alterations in the matrix were observed for both sexes: enzymatic and non-enzymatic crosslinks by high performance liquid chromatography increased (femur), volume fraction of bound water by 1H-nuclear magnetic resonance relaxometry decreased (femur), cortical tissue mineral density by μCT increased (femur and radius), and an Amide I sub-peak ratio I1670/I1640 by Raman spectroscopy increased (tibia). Overall, there are multiple matrix changes to potentially target that could prevent the age-related decrease in fracture resistance observed in BALB/c mouse.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Madeline R Girard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Siegfried G Schlunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Chidi Amah
- Meharry Medical College, Nashville, TN 37208, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70100, Turkey
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
28
|
Westbury LD, Shere C, Edwards MH, Cooper C, Dennison EM, Ward KA. Cluster Analysis of Finite Element Analysis and Bone Microarchitectural Parameters Identifies Phenotypes with High Fracture Risk. Calcif Tissue Int 2019; 105:252-262. [PMID: 31187198 PMCID: PMC6694037 DOI: 10.1007/s00223-019-00564-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/10/2019] [Indexed: 12/02/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HRpQCT) is increasingly used for exploring associations between bone microarchitectural and finite element analysis (FEA) parameters and fracture. We hypothesised that combining bone microarchitectural parameters, geometry, BMD and FEA estimates of bone strength from HRpQCT may improve discrimination of fragility fractures. The analysis sample comprised of 359 participants (aged 72-81 years) from the Hertfordshire Cohort Study. Fracture history was determined by self-report and vertebral fracture assessment. Participants underwent HRpQCT scans of the distal radius and DXA scans of the proximal femur and lateral spine. Poisson regression with robust variance estimation was used to derive relative risks for the relationship between individual bone microarchitectural and FEA parameters and previous fracture. Cluster analysis of these parameters was then performed to identify phenotypes associated with fracture prevalence. Receiver operating characteristic analysis suggested that bone microarchitectural parameters improved fracture discrimination compared to aBMD alone, whereas further inclusion of FEA parameters resulted in minimal improvements. Cluster analysis (k-means) identified four clusters. The first had lower Young modulus, cortical thickness, cortical volumetric density and Von Mises stresses compared to the wider sample; fracture rates were only significantly greater among women (relative risk [95%CI] compared to lowest risk cluster: 2.55 [1.28, 5.07], p = 0.008). The second cluster in women had greater trabecular separation, lower trabecular volumetric density and lower trabecular load with an increase in fracture rate compared to lowest risk cluster (1.93 [0.98, 3.78], p = 0.057). These findings may help inform intervention strategies for the prevention and management of osteoporosis.
Collapse
Affiliation(s)
- Leo D Westbury
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Clare Shere
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mark H Edwards
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Queen Alexandra Hospital, Portsmouth, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - Kate A Ward
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- MRC Nutrition and Bone Health Research Group, Cambridge, UK
| |
Collapse
|
29
|
Boughton OR, Ma S, Cai X, Yan L, Peralta L, Laugier P, Marrow J, Giuliani F, Hansen U, Abel RL, Grimal Q, Cobb JP. Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties. Sci Rep 2019; 9:7416. [PMID: 31092837 PMCID: PMC6520408 DOI: 10.1038/s41598-019-43686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone's elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo.
Collapse
Affiliation(s)
- Oliver R Boughton
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom.
| | - Shaocheng Ma
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Xiran Cai
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Liye Yan
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Laura Peralta
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Pascal Laugier
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - James Marrow
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | - Finn Giuliani
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London, United Kingdom
| | - Ulrich Hansen
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Richard L Abel
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - Justin P Cobb
- The MSk Lab, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Schneider J, Ramiandrisoa D, Armbrecht G, Ritter Z, Felsenberg D, Raum K, Minonzio JG. In Vivo Measurements of Cortical Thickness and Porosity at the Proximal Third of the Tibia Using Guided Waves: Comparison with Site-Matched Peripheral Quantitative Computed Tomography and Distal High-Resolution Peripheral Quantitative Computed Tomography. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1234-1242. [PMID: 30777311 DOI: 10.1016/j.ultrasmedbio.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 05/09/2023]
Abstract
The aim of this study was to estimate cortical porosity (Ct.Po) and cortical thickness (Ct.Th) using 500-kHz bi-directional axial transmission (AT). Ct.ThAT and Ct.PoAT were obtained at the tibia in 15 patients from a 2-D transverse isotropic free plate model fitted to measured guided wave dispersion curves. The velocities of the first arriving signal (υFAS) and A0 mode (υA0) were also determined. Site-matched peripheral quantitative computed tomography (pQCT) provided volumetric cortical bone mineral density (Ct.vBMDpQCT) and Ct.ThpQCT. Good agreement was found between Ct.ThAT and Ct.ThpQCT (R2 = 0.62, root mean square error [RMSE] = 0.39 mm). Ct.vBMDpQCT correlated with Ct.PoAT (R2 = 0.57), υFAS (R2 = 0.43) and υA0 (R2 = 0.28). Furthermore, a significant correlation was found between AT and distal high-resolution pQCT. The measurement ofcortical parameters at the tibia using guided waves might improve the prediction of bone fractures in a cost-effective and radiation-free manner.
Collapse
Affiliation(s)
- Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Donatien Ramiandrisoa
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; BleuSolid, Pomponne, France
| | - Gabriele Armbrecht
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Zully Ritter
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Felsenberg
- Center for Muscle and Bone Research (ZMK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jean-Gabriel Minonzio
- Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne University, CNRS, INSERM, Paris, France; Escuela de Ingeniería Civil en Informática, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
31
|
Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S, Atkinson E, Berger C, Burt L, Chapurlat R, Chevalley T, Ferrari S, Goltzman D, Hanley DA, Hannan MT, Khosla S, Liu CT, Lorentzon M, Mellstrom D, Merle B, Nethander M, Rizzoli R, Sornay-Rendu E, Van Rietbergen B, Sundh D, Wong AKO, Ohlsson C, Demissie S, Kiel DP, Bouxsein ML. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 2019; 7:34-43. [PMID: 30503163 PMCID: PMC6354581 DOI: 10.1016/s2213-8587(18)30308-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although areal bone mineral density (aBMD) assessed by dual-energy x-ray absorptiometry (DXA) is the clinical standard for determining fracture risk, most older adults who sustain a fracture have T scores greater than -2·5 and thus do not meet the clinical criteria for osteoporosis. Importantly, bone fragility is due to low BMD and deterioration in bone structure. We assessed whether indices of high-resolution peripheral quantitative CT (HR-pQCT) were associated with fracture risk independently of femoral neck aBMD and the Fracture Risk Assessment Tool (FRAX) score. METHODS We assessed participants in eight cohorts from the USA (Framingham, Mayo Clinic), France (QUALYOR, STRAMBO, OFELY), Switzerland (GERICO), Canada (CaMos), and Sweden (MrOS). We used Cox proportional hazard ratios (HRs) to estimate the association between HR-pQCT bone indices (per 1 SD of deficit) and incident fracture, adjusting for age, sex, height, weight, and cohort, and then additionally for femoral neck DXA aBMD or FRAX. FINDINGS 7254 individuals (66% women and 34% men) were assessed. Mean baseline age was 69 years (SD 9, range 40-96). Over a mean follow-up of 4·63 years (SD 2·41) years, 765 (11%) participants had incident fractures, of whom 633 (86%) had femoral neck T scores greater than -2·5. After adjustment for age, sex, cohort, height, and weight, peripheral skeleton failure load had the greatest association with risk of fracture: tibia HR 2·40 (95% CI 1·98-2·91) and radius 2·13 (1·77-2·56) per 1 SD decrease. HRs for other bone indices ranged from 1·12 (95% CI 1·03-1·23) per 1 SD increase in tibia cortical porosity to 1·58 (1·45-1·72) per 1 SD decrease in radius trabecular volumetric bone density. After further adjustment for femoral neck aBMD or FRAX score, the associations were reduced but remained significant for most bone parameters. A model including cortical volumetric bone density, trabecular number, and trabecular thickness at the distal radius and a model including these indices plus cortical area at the tibia were the best predictors of fracture. INTERPRETATION HR-pQCT indices and failure load improved prediction of fracture beyond femoral neck aBMD or FRAX scores alone. Our findings from a large international cohort of men and women support previous reports that deficits in trabecular and cortical bone density and structure independently contribute to fracture risk. These measurements and morphological assessment of the peripheral skeleton might improve identification of people at the highest risk of fracture. FUNDING National Institutes of Health National Institute of Arthritis Musculoskeletal and Skin Diseases.
Collapse
Affiliation(s)
- Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Kerry E Broe
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Laiji Yang
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Steven Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pawel Szulc
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Jonathan Adachi
- Department of Medicine, Michael G DeGroote School of Medicine, St Joseph's Healthcare-McMaster University, Hamilton, ON, Canada
| | - Shreyasee Amin
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Claudie Berger
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lauren Burt
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Roland Chapurlat
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Thierry Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Goltzman
- Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - David A Hanley
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sundeep Khosla
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mattias Lorentzon
- Geriatric Medicine and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellstrom
- Geriatric Medicine and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Blandine Merle
- INSERM UMR1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Maria Nethander
- Geriatric Medicine and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Bioinformatics Core Facility, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Bert Van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology; Eindhoven, Netherlands
| | - Daniel Sundh
- Geriatric Medicine and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Claes Ohlsson
- Geriatric Medicine and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mary L Bouxsein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
32
|
Ex vivo cortical porosity and thickness predictions at the tibia using full-spectrum ultrasonic guided-wave analysis. Arch Osteoporos 2019; 14:21. [PMID: 30783777 PMCID: PMC6394459 DOI: 10.1007/s11657-019-0578-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/31/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED The estimation of cortical thickness (Ct.Th) and porosity (Ct.Po) at the tibia using axial transmission ultrasound was successfully validated ex vivo against site-matched micro-computed tomography. The assessment of cortical parameters based on full-spectrum guided-wave analysis might improve the prediction of bone fractures in a cost-effective and radiation-free manner. PURPOSE Cortical thickness (Ct.Th) and porosity (Ct.Po) are key parameters for the identification of patients with fragile bones. The main objective of this ex vivo study was to validate the measurement of Ct.Po and Ct.Th at the tibia using a non-ionizing, low-cost, and portable 500-kHz ultrasound axial transmission system. Additional ultrasonic velocities and site-matched reference parameters were included in the study to broaden the analysis. METHODS Guided waves were successfully measured ex vivo in 17 human tibiae using a novel 500-kHz bi-directional axial transmission probe. Theoretical dispersion curves of a transverse isotropic free plate model with invariant matrix stiffness were fitted to the experimental dispersion curves in order to estimate Ct.Th and Ct.Po. In addition, the velocities of the first arriving signal (υFAS) and A0 mode (υA0) were measured. Reference Ct.Po, Ct.Th, and vBMD were obtained from site-matched micro-computed tomography. Scanning acoustic microscopy (SAM) provided the acoustic impedance of the axial cortical bone matrix. RESULTS The best predictions of Ct.Po (R2 = 0.83, RMSE = 2.2%) and Ct.Th (R2 = 0.92, RMSE = 0.2 mm, one outlier excluded) were obtained from the plate model. The second best predictors of Ct.Po and Ct.Th were vBMD (R2 = 0.77, RMSE = 2.6%) and υA0 (R2 = 0.28, RMSE = 0.67 mm), respectively. CONCLUSIONS Ct.Th and Ct.Po were accurately predicted at the human tibia ex vivo using a transverse isotropic free plate model with invariant matrix stiffness. The model-based predictions were not further enhanced when we accounted for variations in axial tissue stiffness as reflected by the acoustic impedance from SAM.
Collapse
|
33
|
Kral R, Osima M, Vestgaard R, Richardsen E, Bjørnerem Å. Women with fracture, unidentified by FRAX, but identified by cortical porosity, have a set of characteristics that contribute to their increased fracture risk beyond high FRAX score and high cortical porosity. Bone 2018; 116:259-265. [PMID: 30153509 DOI: 10.1016/j.bone.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/12/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
The Fracture Risk Assessment Tool (FRAX) is widely used to identify individuals at increased risk for fracture. However, cortical porosity is associated with risk for fracture independent of FRAX and is reported to improve the net reclassification of fracture cases. We wanted to test the hypothesis that women with fracture who are unidentified by high FRAX score, but identified by high cortical porosity, have a set of characteristics that contribute to their fracture risk beyond high FRAX score and high cortical porosity. We quantified FRAX score with femoral neck areal bone mineral density (FN aBMD), and femoral subtrochanteric architecture, in 211 postmenopausal women aged 54-94 years with non-vertebral fractures, and 232 fracture-free controls in Tromsø, Norway, using StrAx software. Of 211 fracture cases, FRAX score > 20% identified 53 women (sensitivity 25.1% and specificity 93.5%), while cortical porosity cut-off > 80th percentile identified 61 women (sensitivity 28.9% and specificity 87.9%). The 43 (20.4%) additional fracture cases identified by high cortical porosity alone, had lower FRAX score (12.3 vs. 26.2%) than those identified by FRAX alone, they were younger, had higher FN aBMD (806 vs. 738 mg/cm2), and fewer had a prior fracture (23.3 vs. 62.9%), all p < 0.05. They had higher cortical porosity (48.7 vs. 42.1%), thinner cortices (3.75 vs. 4.12 mm), lower cortical and total volumetric BMD (942 vs. 1053 and 586 vs. 699 mg HA/cm3), larger medullary and total cross-sectional areas (245 vs. 190 and 669 vs. 593 mm2), and higher cross-sectional moment of inertia (2619 vs. 2388 cm4) all p < 0.001. When the fracture cases and controls with high cortical porosity were compared, cases had higher cortical porosity, lower cortical vBMD, lower total vBMD, smaller cortical CSA/Total CSA, larger medullary CSA and larger total CSA than controls (all p ≤ 0.05). Thus, fracture cases, unidentified by FRAX, but identified by cortical porosity, had an architecture where the positive impact of larger bone size did not offset the negative effect of thinner cortices with increased porosity. A measurement of cortical porosity may be a marker of other characteristics that capture additional fracture risk components, not captured by FRAX.
Collapse
Affiliation(s)
- Rita Kral
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Roald Vestgaard
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Elin Richardsen
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway; Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Åshild Bjørnerem
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
34
|
Fink HA, Langsetmo L, Vo TN, Orwoll ES, Schousboe JT, Ensrud KE. Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study. Bone 2018; 113:49-56. [PMID: 29751130 PMCID: PMC6040812 DOI: 10.1016/j.bone.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) assesses both volumetric bone mineral density (vBMD) and trabecular and cortical microarchitecture. However, studies of the association of HR-pQCT parameters with fracture history have been small, predominantly limited to postmenopausal women, often performed limited adjustment for potential confounders including for BMD, and infrequently assessed strength or failure measures. We used data from the Osteoporotic Fractures in Men (MrOS) study, a prospective cohort study of community-dwelling men aged ≥65 years, to evaluate the association of distal radius, proximal (diaphyseal) tibia and distal tibia HR-pQCT parameters measured at the Year 14 (Y14) study visit with prior clinical fracture. The primary HR-pQCT exposure variables were finite element analysis estimated failure loads (EFL) for each skeletal site; secondary exposure variables were total vBMD, total bone area, trabecular vBMD, trabecular bone area, trabecular thickness, trabecular number, cortical vBMD, cortical bone area, cortical thickness, and cortical porosity. Clinical fractures were ascertained from questionnaires administered every 4 months between MrOS study baseline and the Y14 visit and centrally adjudicated by masked review of radiographic reports. We used multivariate-adjusted logistic regression to estimate the odds of prior clinical fracture per 1 SD decrement for each Y14 HR-pQCT parameter. Three hundred forty-four (19.2%) of the 1794 men with available HR-pQCT measures had a confirmed clinical fracture between baseline and Y14. After multivariable adjustment, including for total hip areal BMD, decreased HR-pQCT finite element analysis EFL for each site was associated with significantly greater odds of prior confirmed clinical fracture and major osteoporotic fracture. Among other HR-pQCT parameters, decreased cortical area appeared to have the strongest independent association with prior clinical fracture. Future studies should explore associations of HR-pQCT parameters with specific fracture types and risk of incident fractures and the impact of age and sex on these relationships.
Collapse
Affiliation(s)
- Howard A Fink
- Geriatric Research Education & Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA; Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Tien N Vo
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, USA
| | - John T Schousboe
- Park Nicollet Institute, Minneapolis, MN, USA; Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA
| | - Kristine E Ensrud
- Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Langsetmo L, Peters KW, Burghardt AJ, Ensrud KE, Fink HA, Cawthon PM, Cauley JA, Schousboe JT, Barrett-Connor E, Orwoll ES. Volumetric Bone Mineral Density and Failure Load of Distal Limbs Predict Incident Clinical Fracture Independent HR-pQCT BMD and Failure Load Predicts Incident Clinical Fracture of FRAX and Clinical Risk Factors Among Older Men. J Bone Miner Res 2018; 33:1302-1311. [PMID: 29624722 PMCID: PMC6048962 DOI: 10.1002/jbmr.3433] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022]
Abstract
Our objective was to determine the associations of peripheral bone strength and microarchitecture with incident clinical and major osteoporotic fracture among older men after adjusting for major clinical risk factors. We used a prospective cohort study design with data from 1794 men (mean age 84.4 years) in the Osteoporotic Fractures in Men (MrOS) study. Eligible men attended the year 14 visit, had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and distal or diaphyseal tibia, DXA measured BMD, and were followed for mean 1.7 years for incident fracture. Failure load was estimated using finite element analysis. We used Cox proportional hazards models with standardized HR-pQCT parameters as exposure variables. Primary outcome was clinical fracture (n = 108). Covariates included either Fracture Risk Assessment Tool (FRAX) major osteoporotic fracture probability calculated with BMD (FRAX-BMD), or individual clinical risk factors (CRF) including age, total hip BMD, race, falls, and prevalent fracture after age 50 years. Lower failure load was associated with higher risk of incident clinical fracture and incident major osteoporotic fracture. For clinical fracture with FRAX-BMD adjustment, the associations ranged from hazard ratio (HR) 1.58 (95% CI, 1.25 to 2.01) to 2.06 (95% CI, 1.60 to 2.66) per SD lower failure load at the diaphyseal tibia and distal radius. These associations were attenuated after adjustment for individual CRFs, but remained significant at the distal sites. Associations of volumetric BMD with these outcomes were similar to those for failure load. At the distal radius, lower trabecular BMD, number, and thickness, and lower cortical BMD, thickness, and area were all associated with higher risk of clinical fracture, but cortical porosity was not. Among community-dwelling older men, HR-pQCT measures including failure load, volumetric BMD, and microstructure parameters at peripheral sites (particularly distal radius) are robust independent predictors of clinical and major osteoporotic fracture. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | | | - Andrew J. Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Kristine E. Ensrud
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Center for Chronic Disease Outcomes Research, Minneapolis VA Health Care System, Minneapolis, MN
| | - Howard A. Fink
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Center for Chronic Disease Outcomes Research, Minneapolis VA Health Care System, Minneapolis, MN
- Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN
| | - Peggy M. Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Jane A. Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - John T. Schousboe
- Park Nicollet Clinic and HealthPartners Institute, Bloomington, MN
- Division of Health Policy and Management, University of Minnesota, Minneapolis, MN
| | - Elizabeth Barrett-Connor
- Department of Family Medicine and Public Health, University of California – San Diego, La Jolla, CA
| | - Eric S. Orwoll
- Bone and Mineral Unit, Oregon Health Sciences University, Portland, OR
| |
Collapse
|
36
|
Merlotti D, Materozzi M, Picchioni T, Bianciardi S, Alessandri M, Nuti R, Gennari L. Recent advances in models for screening potential osteoporosis drugs. Expert Opin Drug Discov 2018; 13:741-752. [PMID: 29869573 DOI: 10.1080/17460441.2018.1480609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Osteoporosis is a growing health and health-economic problem due to the increased proportion of elderly people in the population. Basic and clinical advances in research over the past two decades have led to the development of different compounds with antiresorptive or anabolic activity on bone that improved substantially the management of patients with osteoporosis over calcitonin or estrogen replacement. New compounds are in preclinical and clinical development. Areas covered: In this review, the authors review the approaches for the preclinical and clinical development of antiresorptive and anabolic agents for osteoporosis, particularly focusing on the recent advances in technology and in the understanding of skeletal biology, together with their implications on novel osteoporosis drug discovery. Expert opinion: Based on the available evidence from the approved drugs for the treatment osteoporosis as well as from the different compounds under clinical development, it has become clear that long term nonclinical pharmacological studies with either bone quality and off-target effects as the main outcomes should be required for new drugs intended to treat osteoporosis. At the same time, basic and clinical advances in research have underlined the necessity to develop new technologies and new models for a thorough screening of the effects of new drugs on the different components of skeletal aging and bone fragility that cannot be assessed by bone mass measurement.
Collapse
Affiliation(s)
- D Merlotti
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy.,b Division of Genetics and Cell Biology , San Raffaele Hospital , Milan , Italy
| | - M Materozzi
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - T Picchioni
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - S Bianciardi
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - M Alessandri
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - R Nuti
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| | - L Gennari
- a Department of Medicine, Surgery and Neurosciences , University of Siena, Policlinico Santa Maria alle Scotte , Siena , Italy
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW While thinning of the cortices or trabeculae weakens bone, age-related changes in matrix composition also lower fracture resistance. This review summarizes how the organic matrix, mineral phase, and water compartments influence the mechanical behavior of bone, thereby identifying characteristics important to fracture risk. RECENT FINDINGS In the synthesis of the organic matrix, tropocollagen experiences various post-translational modifications that facilitate a highly organized fibril of collagen I with a preferred orientation giving bone extensibility and several toughening mechanisms. Being a ceramic, mineral is brittle but increases the strength of bone as its content within the organic matrix increases. With time, hydroxyapatite-like crystals experience carbonate substitutions, the consequence of which remains to be understood. Water participates in hydrogen bonding with organic matrix and in electrostatic attractions with mineral phase, thereby providing stability to collagen-mineral interface and ductility to bone. Clinical tools sensitive to age- and disease-related changes in matrix composition that the affect mechanical behavior of bone could potentially improve fracture risk assessment.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Orthopedic Institute, Medical Center East, South Tower, Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
38
|
Johansson L, Sundh D, Nilsson M, Mellström D, Lorentzon M. Vertebral fractures and their association with health-related quality of life, back pain and physical function in older women. Osteoporos Int 2018; 29:89-99. [PMID: 29143131 PMCID: PMC5758688 DOI: 10.1007/s00198-017-4296-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
Studies investigating prevalent vertebral fracture (VF) diagnosed using densitometry-based VF assessment (VFA) and associations with physical function, assessed by performance-based measures, are lacking. In this population-based study of 1027 older women, we found that prevalent VF, identified by VFA, was associated with inferior physical health, back pain and inferior physical function. PURPOSE Several studies have investigated the associations between health-related quality of life (HRQL) and back pain with prevalent VF, detected by spine radiographs, but just a few have been population-based and have used vertebral fracture assessment (VFA) for diagnosing VF. The aims of this study were to investigate associations between prevalent VF, detected by VFA, with HRQL, back pain and physical function, and investigate if also mild VFs were associated with these clinical parameters. METHODS One thousand twenty-seven women aged 75-80 years participated in this population-based cross-sectional study. VF was identified by VFA using dual-energy X-ray absorptiometry. HRQL was assessed by SF-12, back pain during the past 12 months using a questionnaire, and physical function was tested with one leg standing (OLS), Timed Up and Go (TUG), walking speed, 30-s chair stand test and maximum grip strength. RESULTS Physical health (Physical Component Summary, PCS), derived from SF-12, was worse (43.5 ± 11.3 vs. 46.2 ± 10.5, p < 0.001) and back pain more frequent in women with any VF than in women without (69.0 vs. 59.9%, p = 0.008). PCS and physical function (OLS, 30-s chair stand test), were significantly worse for mild VF compared to no VF (43.8 ± 10.9 vs. 46.2 ± 10.5, p < 0.001, 12.7 ± 9.9 vs. 15.3 ± 10.4 s, p = 0.038, 10.7 ± 3.2 vs. 11.4 ± 3.4 times, p = 0.021, respectively). In multivariable adjusted linear regression models, VF prevalence was associated with PCS (β = - 0.079, p = 0.007), TUG (β = 0.067, p = 0.021), walking speed (β = - 0.071, p = 0.009) and 30-s chair stand test (β = - 0.075, p = 0.012). CONCLUSIONS In conclusion, prevalent VF, diagnosed by VFA, was associated with inferior physical health, back pain and inferior physical function, indicating VFA is useful for diagnosing clinically relevant vertebral fractures. Also, mild VF was associated with inferior physical health and inferior physical function.
Collapse
Affiliation(s)
- Lisa Johansson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Health and Medical Care, City District Administration of Örgryte-Härlanda, City of Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, The Sahlgrenska Academy, Building K, 6th Floor, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
- Geriatric Medicine, Institute of Medicine, The Sahlgrenska Academy, Building K, 6th Floor, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden.
| |
Collapse
|
39
|
Increased cortical porosity and reduced cortical thickness of the proximal femur are associated with nonvertebral fracture independent of Fracture Risk Assessment Tool and Garvan estimates in postmenopausal women. PLoS One 2017; 12:e0185363. [PMID: 28945789 PMCID: PMC5612722 DOI: 10.1371/journal.pone.0185363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022] Open
Abstract
The Fracture Risk Assessment Tool (FRAX) and Garvan Calculator have improved the individual prediction of fracture risk. However, additional bone measurements that might enhance the predictive ability of these tools are the subject of research. There is increasing interest in cortical parameters, especially cortical porosity. Neither FRAX nor Garvan include measurements of cortical architecture, important for bone strength, and providing independent information beyond the conventional approaches. We tested the hypothesis that cortical parameters are associated with fracture risk, independent of FRAX and Garvan estimates. This nested case-control study included 211 postmenopausal women aged 54–94 years with nonvertebral fractures, and 232 controls from the Tromsø Study in Norway. We assessed FRAX and Garvan 10-year risk estimates for fragility fracture, and quantified femoral subtrochanteric cortical porosity, thickness, and area from computed tomography images using StrAx1.0 software. Per standard deviation higher cortical porosity, thinner cortices, and smaller cortical area, the odds ratio (95% confidence interval) for fracture was 1.71 (1.38–2.11), 1.79 (1.44–2.23), and 1.52 (1.19–1.95), respectively. Cortical porosity and thickness, but not area, remained associated with fracture when adjusted for FRAX and Garvan estimates. Adding cortical porosity and thickness to FRAX or Garvan resulted in greater area under the receiver operating characteristic curves. When using cortical porosity (>80th percentile) or cortical thickness (<20th percentile) combined with FRAX (threshold >20%), 45.5% and 42.7% of fracture cases were identified, respectively. Using the same cutoffs for cortical porosity or thickness combined with Garvan (threshold >25%), 51.2% and 48.3% were identified, respectively. Specificity for all combinations ranged from 81.0–83.6%. Measurement of cortical porosity or thickness identified 20.4% and 17.5% additional fracture cases that, were unidentified using FRAX alone, and 16.6% and 13.7% fracture cases unidentified using Garvan alone. In conclusion, cortical parameters may help to improve identification of women at risk for fracture.
Collapse
|