1
|
Mahmoud I, Ahmed AE, Shaker O. Role of furin in the severity of COVID-19 infection via effects on miR-20b and miR-106a. Mol Biol Rep 2025; 52:320. [PMID: 40095093 DOI: 10.1007/s11033-025-10340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Since 2019, COVID-19 and its mutants have been among the fiercest epidemic viruses. Coronavirus is still affecting the world and will continue through its various mutants, the closest example of which is the XEC mutant. Vaccines are currently available to prevent coronavirus infections. However, the currently approved treatments after infection, especially for severely infected patients, are still limited, and they are not suitable for everyone. Many studies have investigated the ability of furin to repair coronavirus viral proteins, and other studies have shown how important miRNAs are for controlling gene expression. AIM OF WORK This work aims to clarify the role of furin and the possibility of alleviating the burden of viral infection with COVID-19 and its mutations via effects on miR-20b and miR-106a. PATIENTS AND METHODS We collected blood samples from 40 controls and 50 patients. Each patient provided approximately 3 ml of blood, which was separated for measuring furin by ELISA and extracting RNA for real-time PCR for the relative quantification of miRNAs. RESULTS The serum levels of Furin and miR-106 were considerably greater in the COVID-19 group than in the control group; however, the level of miR-20b was considerably greater in the control group than in the patients group. CONCLUSION These data suggest that furin and miR-20b concentrations could be beneficial in therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Ismail Mahmoud
- Department of Biotechnology and Life Sciences, Faculty of Post-Graduate Studies for Advanced Sciences, Beni Suef University, Beni Suef, Egypt.
| | - Amr E Ahmed
- Department of Biotechnology and Life Sciences, Faculty of Post-Graduate Studies for Advanced Sciences, Beni Suef University, Beni Suef, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Uddin MN, Mia MA, Akter Y, Chowdhury MAB, Rahman MH, Siddiqua H, Shathi US, Al-Mamun A, Siddika F, Marzan LW. Variations in Furin SNPs, a Major Concern of SARS-CoV-2 Susceptibility Among Different Populations: An In- Silico Approach. Bioinform Biol Insights 2024; 18:11779322241306388. [PMID: 39703750 PMCID: PMC11656424 DOI: 10.1177/11779322241306388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) had an adverse effect globally because it caused a global pandemic with several million deaths. This virus possesses spike protein that is cleaved or activated by Furin-like protease enzymes occurring by mammalian lung or respiratory cells to enter the mammalian body. The addition of the Furin cleavage site in SARS-CoV-2 makes it a more infectious and emerging virus than its ancestor's viruses. Phylogenetic relationships of coronavirus spike proteins have analyzed and mapped Furin recognition motif on the tree using bioinformatics tools such as GTEx, KEGG, GO, NCBI, PolyPhen-2, SNAP2, PANTHER, Hidden Markov Models (Fathmm), Phd-single-nucleotide polymorphism (SNP), I-TASSER, Modpred, Phobius, SIFT, iPTREE-STAB, and PROVEAN. During this study, it has been found that in certain regions, Furin SNPs have some relation with the susceptibility to SARS-CoV-2. Whereas in other regions, the effects are very negligible. Finally, our study demonstrates that Furin SNPs have a strong relationship with susceptibility to SARS-CoV-2. As it helps to cleave the spike protein of the virus, thus it can be targeted to inhibit at a particular site to prevent the SARS-CoV-2 from the entrance into the body.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Arzo Mia
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Yasmin Akter
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Al-baruni Chowdhury
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Hadisur Rahman
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Bangladesh
| | - Hafsa Siddiqua
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Umme Salma Shathi
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Abdullah Al-Mamun
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Farida Siddika
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Lolo Wal Marzan
- Laboratory of Microbial Genomics and Metabolic Engineering, Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
3
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
4
|
Fry H, Mazidi M, Kartsonaki C, Clarke R, Walters RG, Chen Z, Millwood IY. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9237. [PMID: 39273186 PMCID: PMC11394739 DOI: 10.3390/ijms25179237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Furin is an important proteolytic enzyme, converting several proteins from inactive precursors to their active forms. Recently, proteo-genomic analyses in European and East Asian populations suggested a causal association of furin with ischaemic heart disease, and there is growing interest in its role in cardiovascular disease (CVD) aetiology. In this narrative review, we present a critical appraisal of evidence from population studies to assess furin's role in CVD risk and potential as a drug target for CVD. Whilst most observational studies report positive associations between furin expression and CVD risk, some studies report opposing effects, which may reflect the complex biological roles of furin and its substrates. Genetic variation in FURIN is also associated with CVD and its risk factors. We found no evidence of current clinical development of furin as a drug target for CVD, although several phase 1 and 2 clinical trials of furin inhibitors as a type of cancer immunotherapy have been completed. The growing field of proteo-genomics in large-scale population studies may inform the future development of furin and other potential drug targets to improve the treatment and prevention of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (H.F.); (M.M.); (C.K.); (R.C.); (R.G.W.); (Z.C.)
| |
Collapse
|
5
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
6
|
Shen X, Zhang XH, Yang L, Wang PF, Zhang JF, Song SZ, Jiang L. Development and validation of a nomogram of all-cause mortality in adult Americans with diabetes. Sci Rep 2024; 14:19148. [PMID: 39160223 PMCID: PMC11333764 DOI: 10.1038/s41598-024-69581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
This study aimed to develop and validate a predictive model of all-cause mortality risk in American adults aged ≥ 18 years with diabetes. 7918 participants with diabetes were enrolled from the National Health and Nutrition Examination Survey (NHANES) 1999-2016 and followed for a median of 96 months. The primary study endpoint was the all-cause mortality. Predictors of all-cause mortality included age, Monocytes, Erythrocyte, creatinine, Nutrition Risk Index (NRI), neutrophils/lymphocytes (NLR), smoking habits, alcohol consumption, cardiovascular disease (CVD), urinary albumin excretion rate (UAE), and insulin use. The c-index was 0.790 (95% CI 0.779-0.801, P < 0.001) and 0.792 (95% CI: 0.776-0.808, P < 0.001) for the training and validation sets, respectively. The area under the ROC curve was 0.815, 0.814, 0.827 and 0.812, 0.818 and 0.829 for the training and validation sets at 3, 5, and 10 years of follow-up, respectively. Both calibration plots and DCA curves performed well. The model provides accurate predictions of the risk of death for American persons with diabetes and its scores can effectively determine the risk of death in outpatients, providing guidance for clinical decision-making and predicting prognosis for patients.
Collapse
Affiliation(s)
- Xia Shen
- Department of Nursing, School of Health and Nursing, Wuxi Taihu University, 68 Qian Rong Rode, Bin Hu District, Wuxi, China
| | - Xiao Hua Zhang
- Cardiac Catheter Room, Wuxi People's Hospital, Jiangsu, No.299 Qing Yang Road, Wuxi, 214000, China
| | - Long Yang
- Department of Pediatric Cardiothoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Li Yu Shan Road, Urumqi, 830054, China
| | - Peng Fei Wang
- Department of Traditional Chinese Medicine, Fuzhou University Affiliated Provincial Hospital, 134 East Street, Gu Lou District, Fuzhou, 350001, China
| | - Jian Feng Zhang
- Research and Teaching Department, Taizhou Hospital of Integrative Medicine, Jiangsu Province, No. 111, Jiang Zhou South Road, Taizhou City, Jiangsu, China
| | - Shao Zheng Song
- Department of Basci, School of Health and Nursing, Wuxi Taihu University, 68 Qian Rong Rode, Bin Hu District, Wuxi, China.
| | - Lei Jiang
- Department of Radiology, The Convalescent Hospital of East China, No.67 Da Ji Shan, Wuxi, 214065, China.
| |
Collapse
|
7
|
He Q, Zhao MM, Li MJ, Li XY, Jin JM, Feng YM, Zhang L, Huang WJ, Yang F, Yang JK. Hyperglycemia induced cathepsin L maturation linked to diabetic comorbidities and COVID-19 mortality. eLife 2024; 13:RP92826. [PMID: 39150053 PMCID: PMC11329274 DOI: 10.7554/elife.92826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Miao-Miao Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ming-Jia Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Min Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Wei Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Fangyuan Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
9
|
Georgiou N, Mavromoustakos T, Tzeli D. Docking, MD Simulations, and DFT Calculations: Assessing W254's Function and Sartan Binding in Furin. Curr Issues Mol Biol 2024; 46:8226-8238. [PMID: 39194703 DOI: 10.3390/cimb46080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Furins are serine endoproteases that are involved in many biological processes, where they play important roles in normal metabolism, in the activation of various pathogens, while they are a target for therapeutic intervention. Dichlorophenyl-pyridine "BOS" compounds are well known drugs that are used as inhibitors of human furin by an induced-fit mechanism, in which tryptophan W254 in the furin catalytic cleft acts as a molecular transition energy gate. The binding of "BOS" drug into the active center of furin has been computationally studied using the density functional theory (DFT) and ONIOM multiscaling methodologies. The binding enthalpies of the W254 with the furin-BOS is -32.8 kcal/mol ("open") and -18.8 kcal/mol ("closed"), while the calculated torsion barrier was found at 30 kcal/mol. It is significantly smaller than the value of previous MD calculations due to the relaxation of the environment, i.e., nearby groups of the W254, leading to the reduction of the energy demands. The significant lower barrier explains the experimental finding that the dihedral barrier of W254 is overcome. Furthermore, sartans were studied to evaluate their potential as furin inhibitors. Sartans are AT1 antagonists, and they effectively inhibit the hypertensive effects induced by the peptide hormone Angiotensin II. Here, they have been docked into the cavity to evaluate their effect on the BOS ligand via docking and molecular dynamics simulations. A consistent binding of sartans within the cavity during the simulation was found, suggesting that they could act as furin inhibitors. Finally, sartans interact with the same amino acids as W254, leading to a competitive binding that may influence the pharmacological efficacy and potential drug interactions of sartans.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
10
|
Kalam N, Balasubramaniam VRMT. Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgrad Med J 2024; 100:539-554. [PMID: 38493312 DOI: 10.1093/postmj/qgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Al-Taie A, Arueyingho O, Khoshnaw J, Hafeez A. Clinical outcomes of multidimensional association of type 2 diabetes mellitus, COVID-19 and sarcopenia: an algorithm and scoping systematic evaluation. Arch Physiol Biochem 2024; 130:342-360. [PMID: 35704400 DOI: 10.1080/13813455.2022.2086265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of this study was to provide a scoping and comprehensive review for the clinical outcomes from the cross-link of Type 2 diabetes mellitus (T2DM), COVID-19, and sarcopenia. METHODS By using PRISMA guidelines and searching through different databases that could provide findings of evidence on the association of T2DM, COVID-19, and sarcopenia. RESULTS Thirty-three studies reported a relationship between sarcopenia with T2DM, twenty-one studies reported the prognosis COVID-19 in patients with T2DM, ten studies reported the prognosis of COVID-19 in patients with sarcopenia, five studies discussed the outcomes of sarcopenia in patients with COVID-19, and one study reported sarcopenia outcomes in the presence of T2DM and COVID-19. CONCLUSION There is an obvious multidimensional relationship between T2DM, COVID-19 and sarcopenia which can cause prejudicial effects, poor prognosis, prolonged hospitalisation, lowered quality of life and a higher mortality rate during the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Oritsetimeyin Arueyingho
- EPSRC Centre for Doctoral Training in Digital Health and Care, University of Bristol, Bristol, UK
| | - Jalal Khoshnaw
- Pharmacy Department, Faculty of Pharmacy, Girne American University, Mersin, Turkey
| | - Abdul Hafeez
- Department of Pharmaceutics, Glocal School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India
| |
Collapse
|
12
|
Wichaiyo S, Koonyosying P, Morales NP. Functional Roles of Furin in Cardio-Cerebrovascular Diseases. ACS Pharmacol Transl Sci 2024; 7:570-585. [PMID: 38481703 PMCID: PMC10928904 DOI: 10.1021/acsptsci.3c00325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2025]
Abstract
Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin-angiotensin-aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | | |
Collapse
|
13
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
14
|
Leszczak J, Pyzińska J, Baran J, Baran R, Bylicki K, Pop T. Assessment of functional fitness impacted by hospital rehabilitation in post-stroke patients who additionally contracted COVID-19. PeerJ 2024; 12:e16710. [PMID: 38192599 PMCID: PMC10773450 DOI: 10.7717/peerj.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Background The aim of the study was to assess the effects of rehabilitation in post-stroke patients, or post-stroke patients with simultaneous COVID-19 infection, in relation to: improved locomotion efficiency, improved balance, reduced risk of falling as well as the patients' more effective performance in everyday activities. Methods The study involved 60 patients in the early period (2-3 months) after a stroke. Group I consisted of 18 patients (30.0%) who, in addition to a stroke, also contracted COVID-19. Group II consisted of 42 patients (70%) post-stroke, with no SARS-CoV2 infection. The effects were assessed on the basis of: Tinetti test, Timed Up & Go test and Barthel scale. Results Both groups achieved a statistically significant improvement in their Barthel score after therapy (p < 0.001). The Tinetti test, assessing gait and balance, showed that participants in Group I improved their score by an average of 4.22 points. ±4.35, and in Group II, on average, by 3.48 points ± 3.45 points. In the Timed Up & Go test over a distance of 3 m, significant improvement was achieved in both groups, as well but the effect was higher in Group I (p < 0.001). Conclusions Hospital rehabilitation in the early period after stroke improved locomotion efficiency and balance, and reduced the risk of falls in post-stroke patients, both with and without COVID-19 infection.
Collapse
Affiliation(s)
- Justyna Leszczak
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Joanna Pyzińska
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Joanna Baran
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Rafał Baran
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Krzysztof Bylicki
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Teresa Pop
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
15
|
Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken) 2024; 7:e1920. [PMID: 38018319 PMCID: PMC10809206 DOI: 10.1002/cnr2.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-β. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and ObstetricsCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh University, Chandigarh‐Ludhiana HighwayMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary Medicine, Matrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
16
|
Marafie SK, Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells 2023; 12:2407. [PMID: 37830621 PMCID: PMC10571965 DOI: 10.3390/cells12192407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and β-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
17
|
Mnguni AT, Schietekat D, Ebrahim N, Sonday N, Boliter N, Schrueder N, Gabriels S, Cois A, Tamuzi JL, Tembo Y, Davies MA, English R, Nyasulu PS. The interface between SARS-CoV-2 and non-communicable diseases (NCDs) in a high HIV/TB burden district level hospital setting, Cape Town, South Africa. PLoS One 2023; 18:e0277995. [PMID: 37796879 PMCID: PMC10553288 DOI: 10.1371/journal.pone.0277995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/22/2022] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND COVID-19 experiences on noncommunicable diseases (NCDs) from district-level hospital settings during waves I and II are scarcely documented. The aim of this study is to investigate the NCDs associated with COVID-19 severity and mortality in a district-level hospital with a high HIV/TB burden. METHODS This was a retrospective observational study that compared COVID-19 waves I and II at Khayelitsha District Hospital in Cape Town, South Africa. COVID-19 adult patients with a confirmed SARS-CoV-2 polymerase chain reaction (PCR) or positive antigen test were included. In order to compare the inter wave period, clinical and laboratory parameters on hospital admission of noncommunicable diseases, the Student t-test or Mann-Whitney U for continuous data and the X2 test or Fishers' Exact test for categorical data were used. The role of the NCD subpopulation on COVID-19 mortality was determined using latent class analysis (LCA). FINDINGS Among 560 patients admitted with COVID-19, patients admitted during wave II were significantly older than those admitted during wave I. The most prevalent comorbidity patterns were hypertension (87%), diabetes mellitus (65%), HIV/AIDS (30%), obesity (19%), Chronic Kidney Disease (CKD) (13%), Congestive Cardiac Failure (CCF) (8.8%), Chronic Obstructive Pulmonary Disease (COPD) (3%), cerebrovascular accidents (CVA)/stroke (3%), with similar prevalence in both waves except HIV status [(23% vs 34% waves II and I, respectively), p = 0.022], obesity [(52% vs 2.5%, waves II and I, respectively), p <0.001], previous stroke [(1% vs 4.1%, waves II and I, respectively), p = 0.046]. In terms of clinical and laboratory findings, our study found that wave I patients had higher haemoglobin and HIV viral loads. Wave II, on the other hand, had statistically significant higher chest radiography abnormalities, fraction of inspired oxygen (FiO2), and uraemia. The adjusted odds ratio for death vs discharge between waves I and II was similar (0.94, 95%CI: 0.84-1.05). Wave I had a longer average survival time (8.0 vs 6.1 days) and a shorter average length of stay among patients discharged alive (9.2 vs 10.7 days). LCA revealed that the cardiovascular phenotype had the highest mortality, followed by diabetes and CKD phenotypes. Only Diabetes and hypertension phenotypes had the lowest mortality. CONCLUSION Even though clinical and laboratory characteristics differed significantly between the two waves, mortality remained constant. According to LCA, the cardiovascular, diabetes, and CKD phenotypes had the highest death probability.
Collapse
Affiliation(s)
- Ayanda Trevor Mnguni
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Khayelitsha District Hospital, Cape Town, South Africa
| | | | | | | | | | - Neshaad Schrueder
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shiraaz Gabriels
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annibale Cois
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacques L. Tamuzi
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yamanya Tembo
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Mary-Ann Davies
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
- Health Impact Assessment Directorate, Western Cape Government, Cape Town, South Africa
| | - Rene English
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter S. Nyasulu
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine and Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Smitha T, Thomas A. Is diabetes a real susceptibility for SARS-CoV-2 oral manifestation? J Oral Maxillofac Pathol 2023; 27:715-719. [PMID: 38304492 PMCID: PMC10829469 DOI: 10.4103/jomfp.jomfp_208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background Furin, a polybasic cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndromes like diabetes. Its cleavage action is an essential activation step for the SARS-CoV-2 attachment site at the junction of S1 and S2, the two subunits of the spike. This allows effective cleavage by furin and has a role in determining viral infectivity and host range. The increased expression of the furin enzyme in the saliva is remarkable enough to be noted as a susceptibility factor for diabetic patients. Aim of the Study The present study focuses on the qualitative assessment of the furin enzyme through an immunological ELISA test. Materials and Methods Used The study consisted of three groups, each of whom was a COVID-19 recovered patient (n = 20), a diabetic patient (n = 20), and a healthy patient (n = 20). Result The study assessed significantly increased levels of the furin enzyme generally in diabetic patients and COVID-19 recovered patients as compared to the healthy control group. Conclusion The estimation of furin in saliva still holds the possibility of being a prognostic marker in many COVID-19 infected patients. Further evidence-based studies are required to establish the same.
Collapse
Affiliation(s)
- T. Smitha
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| | - Anela Thomas
- Department of Oral and Maxillofacial Pathology, V.S Dental College and hospital, Bangalore
| |
Collapse
|
19
|
Jain R, Mathew D. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. MEDICAL RESEARCH ARCHIVES 2023; 11:4540. [PMID: 38933091 PMCID: PMC11198970 DOI: 10.18103/mra.v11i10.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.
Collapse
Affiliation(s)
- Roshni Jain
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| |
Collapse
|
20
|
Ridgway H, Orbell JD, Matsoukas MT, Kelaidonis K, Moore GJ, Tsiodras S, Gorgoulis VG, Chasapis CT, Apostolopoulos V, Matsoukas JM. W254 in furin functions as a molecular gate promoting anti-viral drug binding: Elucidation of putative drug tunneling and docking by non-equilibrium molecular dynamics. Comput Struct Biotechnol J 2023; 21:4589-4612. [PMID: 37817778 PMCID: PMC10561063 DOI: 10.1016/j.csbj.2023.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Furins are serine endoproteases that process precursor proteins into their biologically active forms, and they play essential roles in normal metabolism and disease presentation, including promoting expression of bacterial virulence factors and viral pathogenesis. Thus, furins represent vital targets for development of antimicrobial and antiviral therapeutics. Recent experimental evidence indicated that dichlorophenyl (DCP)-pyridine "BOS" drugs (e.g., BOS-318) competitively inhibit human furin by an induced-fit mechanism in which tryptophan W254 in the furin catalytic cleft (FCC) functions as a molecular gate, rotating nearly 180o through a steep energy barrier about its chi-1 dihedral to an "open" orientation, exposing a buried (i.e., cryptic) hydrophobic pocket 1. Once exposed, the non-polar DCP group of BOS-318, and similar halo-phenyl groups of analogs, enter the cryptic pocket, stabilizing drug binding. Here, we demonstrate flexible-receptor docking of BOS-318 (and various analogs) was unable to emulate the induced-fit motif, even when tryptophan was replaced with less bulky phenylalanine or glycine. While either substitution allowed access to the hydrophobic pocket for most ligands tested, optimal binding was observed only for W254, inferring a stabilizing effect of the indole sidechain. Furthermore, non-equilibrium steered molecular dynamics (sMD) in which the bound drugs (or their fragments) were extracted from the FCC did not cause closure of the open W254 gate, consistent with the thermodynamic stability of the open or closed W254 orientations. Finally, interactive molecular dynamics (iMD) revealed two putative conduits of drug entry and binding into the FCC, each coupled with W254 dihedral rotation and opening of the cryptic pocket. The iMD simulations further revealed ligand entry and binding in the FCC is likely driven in part by energy fluxes stemming from disruption and re-formation of ligand and protein solvation shells during drug migration from the solution phase into the FCC.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - John D. Orbell
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- College of Sport, Health & Engineering, Victoria University, Melbourne, VIC 8001, Australia
| | | | | | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sotiris Tsiodras
- Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasilis G. Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, GR-11527 Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, M20 4GJ Manchester, UK
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Surrey, UK
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne 3030, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia
| | - John M. Matsoukas
- NewDrug/NeoFar PC, Patras Science Park, Patras 26504, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne 3030, VIC, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
21
|
Wang Y, Guo H, Wang G, Zhai J, Du B. COVID-19 as a Trigger for Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:2176-2183. [PMID: 36950864 DOI: 10.1210/clinem/dgad165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Type 1 diabetes (T1D) is usually caused by immune-mediated destruction of islet β cells, and genetic and environmental factors are thought to trigger autoimmunity. Convincing evidence indicates that viruses are associated with T1D development and progression. During the COVID-19 pandemic, cases of hyperglycemia, diabetic ketoacidosis, and new diabetes increased, suggesting that SARS-CoV-2 may be a trigger for or unmask T1D. Possible mechanisms of β-cell damage include virus-triggered cell death, immune-mediated loss of pancreatic β cells, and damage to β cells because of infection of surrounding cells. This article examines the potential pathways by which SARS-CoV-2 affects islet β cells in these 3 aspects. Specifically, we emphasize that T1D can be triggered by SARS-CoV-2 through several autoimmune mechanisms, including epitope spread, molecular mimicry, and bystander activation. Given that the development of T1D is often a chronic, long-term process, it is difficult to currently draw firm conclusions as to whether SARS-CoV-2 causes T1D. This area needs to be focused on in terms of the long-term outcomes. More in-depth and comprehensive studies with larger cohorts of patients and long-term clinical follow-ups are required.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gongquan Wang
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiawei Zhai
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Du
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Kusumawati M, Koesoemadinata RC, Fatma ZH, Susandi E, Permana H, Soetedjo NNM, Soeroto AY, Bestari B, Andriyoko B, Alisjahbana B, Hartantri Y. The effect of diabetes mellitus on COVID-19 mortality among patients in a tertiary-level hospital in Bandung, Indonesia. PLoS One 2023; 18:e0286797. [PMID: 37319126 PMCID: PMC10270330 DOI: 10.1371/journal.pone.0286797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Immune system dysregulation in people with diabetes mellitus (DM) increases the risk of acquiring severe infection. We compared the clinical characteristics and laboratory parameters of coronavirus disease 2019 (COVID-19) patients with and without DM and estimated the effect of DM on mortality among COVID-19 patients. A retrospective cohort study collecting patients' demographic, clinical characteristics, laboratory parameters and treatment outcomes from medical records was conducted in a hospital in Bandung City from March to December 2020. Univariable and multivariable logistic regression was performed to determine the association between DM and death. A total of 664 COVID-19 patients with positive real-time reverse transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 were included in this study, of whom 147 were with DM. Half of DM patients presented HbA1c ≥10%. DM patients were more likely to present with comorbidities and severe to critical conditions at admission (P <0.001). Laboratory parameters such as neutrophil-lymphocyte count ratio, C-reactive protein, D-dimer, ferritin, and lactate dehydrogenase were higher in the DM group. In the univariate analysis, variables associated with death were COVID-19 severity at baseline, neurologic disease, DM, age ≥60 years, hypertension, cardiovascular disease, and chronic kidney disease. DM remained associated with death (aOR 1.82; 95% CI 1.13-2.93) after adjustment with sex, age, hypertension, cardiovascular disease, and chronic kidney disease. In conclusion, COVID-19 patients with DM are more likely to present with a very high HbA1c, comorbidities, and severe-critical illness. Chronic inflammation in DM patients may be aggravated by the disruption of immune response caused by COVID-19, leading to worse laboratory results and poor outcomes.
Collapse
Affiliation(s)
- Maya Kusumawati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Raspati Cundarani Koesoemadinata
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
- Indonesian Society for Clinical Microbiology, Jakarta, Indonesia
| | - Zuhaira Husna Fatma
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
| | - Evan Susandi
- Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Hikmat Permana
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Nanny Natalia Mulyani Soetedjo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
| | - Arto Yuwono Soeroto
- Respirology and Critical Illness Division, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Begawan Bestari
- Division of Gastroentero Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Basti Andriyoko
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
- Molecular Biology Division, Department of Clinical Pathology, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| | - Yovita Hartantri
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung, Indonesia
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Dr Hasan Sadikin General Hospital, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
23
|
D'Souza F, Buzzetti R, Pozzilli P. Diabetes, COVID-19, and questions unsolved. Diabetes Metab Res Rev 2023:e3666. [PMID: 37209039 DOI: 10.1002/dmrr.3666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Recent evidence suggests a role for Diabetes Mellitus in adverse outcomes from COVID-19 infection; yet the underlying mechanisms are not clear. Moreover, attention has turned to prophylactic vaccination to protect the population from COVID-19-related illness and mortality. We performed a comprehensive peer-reviewed literature search on an array of key terms concerning diabetes and COVID-19 seeking to address the following questions: 1. What role does diabetes play as an accelerator for adverse outcomes in COVID-19?; 2. What mechanisms underlie the differences in outcomes seen in people with diabetes?; 3. Are vaccines against COVID-19 efficacious in people with diabetes? The current literature demonstrates that diabetes is associated with an increased risk of adverse outcomes from COVID-19 infection, and post-COVID sequelae. Potential mechanisms include dysregulation of Angiotensin Converting Enzyme 2, Furin, CD147, and impaired immune cell responses. Hyperglycaemia is a key exacerbator of these mechanisms. Limited studies are available on COVID-19 vaccination in people with diabetes; however, the current literature suggests that vaccination is protective against adverse outcomes for this population. In summary, people with diabetes are a high-risk group that should be prioritised in vaccination efforts. Glycaemic optimisation is paramount to protecting this group from COVID-19-associated risk. Unsolved questions remain as to the molecular mechanisms underlying the adverse outcomes seen in people with diabetes; the functional impact of post-COVID symptoms on people with diabetes, their persistence, and management; how long-term vaccine efficacy is affected by diabetes, and the antibody levels that confer protection from adverse outcomes in COVID-19.
Collapse
Affiliation(s)
- Felecia D'Souza
- University College London Hospitals NHS Trust, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology & Diabetes, University Campus Bio-Medico, Rome, Italy
- Centre for Immunobiology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
25
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine 2023; 80:477-490. [PMID: 37103684 PMCID: PMC10133915 DOI: 10.1007/s12020-023-03337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
Evidence has shown that cardiometabolic disorders (CMDs) are amongst the top contributors to COVID-19 infection morbidity and mortality. The reciprocal impact of COVID-19 infection and the most common CMDs, the risk factors for poor composite outcome among patients with one or several underlying diseases, the effect of common medical management on CMDs and their safety in the context of acute COVID-19 infection are reviewed. Later on, the changes brought by the COVID-19 pandemic quarantine on the general population's lifestyle (diet, exercise patterns) and metabolic health, acute cardiac complications of different COVID-19 vaccines and the effect of CMDs on the vaccine efficacy are discussed. Our review identified that the incidence of COVID-19 infection is higher among patients with underlying CMDs such as hypertension, diabetes, obesity and cardiovascular disease. Also, CMDs increase the risk of COVID-19 infection progression to severe disease phenotypes (e.g. hospital and/or ICU admission, use of mechanical ventilation). Lifestyle modification during COVID-19 era had a great impact on inducing and worsening of CMDs. Finally, the lower efficacy of COVID-19 vaccines was found in patients with metabolic disease.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Medicine, Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arezoo Behbood
- MPH department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Maryam Ranjbar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Rahimian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Anand Prasad
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
27
|
Long A, Liu Y, Fang X, Jia L, Li Z, Hu J, Wu S, Chen C, Huang P, Wang Y. Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796. Cell Res 2023; 33:273-287. [PMID: 36806353 PMCID: PMC10066382 DOI: 10.1038/s41422-023-00782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
The intestine is responsible for nutrient absorption and orchestrates metabolism in different organs during feeding, a process which is partly controlled by intestine-derived hormones. However, it is unclear whether the intestine plays an important role in metabolism during fasting. Here we have identified a novel hormone, famsin, which is secreted from the intestine and promotes metabolic adaptations to fasting. Mechanistically, famsin is shed from a single-pass transmembrane protein, Gm11437, during fasting and then binds OLFR796, an olfactory receptor, to activate intracellular calcium mobilization. This famsin-OLFR796 signaling axis promotes gluconeogenesis and ketogenesis for energy mobilization, and torpor for energy conservation during fasting. In addition, neutralization of famsin by an antibody improves blood glucose profiles in diabetic models, which identifies famsin as a potential therapeutic target for treating diabetes. Therefore, our results demonstrate that communication between the intestine and other organs by a famsin-OLFR796 signaling axis is critical for metabolic adaptations to fasting.
Collapse
Affiliation(s)
- Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiyuan Li
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiang Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Chen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Thirumugam G, Radhakrishnan Y, Ramamurthi S, Bhaskar JP, Krishnaswamy B. A systematic review on impact of SARS-CoV-2 infection. Microbiol Res 2023; 271:127364. [PMID: 36989761 PMCID: PMC10015779 DOI: 10.1016/j.micres.2023.127364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Innumerable pathogens including RNA viruses have catastrophic pandemic propensity, in turn, SARS-CoV-2 infection is highly contagious. Emergence of SARS-CoV-2 variants with high mutation rate additionally codifies infectious ability of virus and arisen clinical imputations to human health. Although, our knowledge of mechanism of virus infection and its impact on host system has been substantially demystified, uncertainties about the emergence of virus are still not fully understood. To date, there are no potentially curative drugs are identified against the viral infection. Even though, drugs are repurposed in the initial period of infection, many are significantly negative in clinical trials. Moreover, the infection is dependent on organ status, co-morbid conditions, variant of virus and geographic region. This review article aims to comprehensively describe the SARS-CoV-2 infection and the impacts in the host cellular system. This review also briefly provides an overview of genome, proteome and metabolome associated risk to infection and the advancement of therapeutics in SARS-CoV-2 infection management.
Collapse
Key Words
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- who, world health organization
- mers-cov-middle, east respiratory syndrome coronavirus
- ig, immunoglobulin
- rgd, arginine-glycine-aspartic
- nk-natural, killer cells
- s1 and s2, subunits of s protein
- nsp, non-structural proteins
- voi, varian of interest
- voc, variant of concern
- vum-variant, under monitoring
- ace2, angiotensin converting enzyme 2
- nsp-non-structural, proteins
- orf-open, reading frame
- sars-cov-2
- variants
- omics
- alternative medicines
Collapse
Affiliation(s)
- Gowripriya Thirumugam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Yashwanth Radhakrishnan
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Suresh Ramamurthi
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India
| | - Balamurugan Krishnaswamy
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India,Corresponding author
| |
Collapse
|
29
|
Dallavalasa S, Tulimilli SV, Prakash J, Ramachandra R, Madhunapantula SV, Veeranna RP. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023; 12:pathogens12020184. [PMID: 36839456 PMCID: PMC9967788 DOI: 10.3390/pathogens12020184] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Recent evidence relating to the impact of COVID-19 on people with diabetes is limited but continues to emerge. COVID-19 pneumonia is a newly identified illness spreading rapidly throughout the world and causes many disabilities and fatal deaths. Over the ensuing 2 years, the indirect effects of the pandemic on healthcare delivery have become prominent, along with the lingering effects of the virus on those directly infected. Diabetes is a commonly identified risk factor that contributes not only to the severity and mortality of COVID-19 patients, but also to the associated complications, including acute respiratory distress syndrome (ARDS) and multi-organ failure. Diabetic patients are highly affected due to increased viral entry into the cells and decreased immunity. Several hypotheses to explain the increased incidence and severity of COVID-19 infection in people with diabetes have been proposed and explained in detail recently. On the other hand, 20-50% of COVID-19 patients reported new-onset hyperglycemia without diabetes and new-onset diabetes, suggesting the two-way interactions between COVID-19 and diabetes. A systematic review is required to confirm diabetes as a complication in those patients diagnosed with COVID-19. Diabetes and diabetes-related complications in COVID-19 patients are primarily due to the acute illness caused during the SARS-CoV-2 infection followed by the release of glucocorticoids, catecholamines, and pro-inflammatory cytokines, which have been shown to drive hyperglycemia positively. This review provides brief insights into the potential mechanisms linking COVID-19 and diabetes, and presents clinical management recommendations for better handling of the disease.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Janhavi Prakash
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - Ramya Ramachandra
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
- Correspondence:
| |
Collapse
|
30
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
31
|
Azhar A, Khan WH, Al-Hosaini K, Zia Q, Kamal MA. Crosstalk between SARS-CoV-2 Infection and Type II Diabetes. Comb Chem High Throughput Screen 2022; 25:2429-2442. [PMID: 35293290 DOI: 10.2174/1386207325666220315114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Since the outbreak of coronavirus disease (COVID-19) in Wuhan, China, triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) in late November 2019, spreading to more than 200 countries of the world, the ensuing pandemic to an enormous loss of lives, mainly the older population with comorbidities, like diabetes, cardiovascular disease, chronic obstructive pulmonary disease, obesity, and hypertension. Amongst these immune-debilitating diseases, SARS-CoV-2 infection is the most common in patients with diabetes due to the absence of a normal active immune system to fight the COVID-19. Recovery of patients having a history of diabetes from COVID-19 encounters several complications, and their management becomes cumbersome. For control of coronavirus, antiviral medications, glucose-lowering agents, and steroids have been carefully evaluated. In the present review, we discuss the crosstalk between SARS-CoV-2 infection and patients with a history of diabetes. We mainly emphasize the molecular factors that are involved in diabetic individuals recently infected by SARS-CoV-2 and developed COVID-19 disease. Lastly, we examine the medications available for the long-term management of diabetic patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, Uttar Pradesh, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia.,West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease- related Molecular Network, West China Hospital, Sichuan University, Chengdu 6141001, Sichuan, China
| |
Collapse
|
32
|
Abiri B, Ahmadi AR, Hejazi M, Amini S. Obesity, Diabetes Mellitus, and Metabolic Syndrome: Review in the Era of COVID-19. Clin Nutr Res 2022; 11:331-346. [PMID: 36381471 PMCID: PMC9633974 DOI: 10.7762/cnr.2022.11.4.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now at pandemic levels leading to considerable morbidity and mortality throughout the globe. Patients with obesity, diabetes, and metabolic syndrome (MetS) are mainly susceptible and more probably to get severe side effects when affected by this virus. The pathophysiologic mechanisms for these notions have not been completely known. The pro-inflammatory milieu observed in patients with metabolic disruption could lead to COVID-19-mediated host immune dysregulation, such as immune dysfunction, severe inflammation, microvascular dysfunction, and thrombosis. The present review expresses the current knowledge regarding the influence of obesity, diabetes mellitus, and MetS on COVID-19 infection and severity, and their pathophysiological mechanisms.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Amirhossein Ramezani Ahmadi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Shirin Amini
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar 64517-73865, Iran
| |
Collapse
|
33
|
Ke X, Duan L, Gong F, Zhang Y, Deng K, Yao Y, Wang L, Feng F, Xing B, Pan H, Zhu H. A study on serum pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG) levels in patients with acromegaly. J Endocrinol Invest 2022; 45:1945-1954. [PMID: 35670958 DOI: 10.1007/s40618-022-01827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Acromegaly caused by growth hormone cell adenoma is commonly associated with abnormal glucolipid metabolism, which may result from changes in adipocytokine secretion. This study aims to investigate serum adipokine levels, including pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG), in acromegalic patients and the correlation between the levels of these three adipokines and GH levels and glucolipid metabolism indices. METHODS Sixty-eight acromegalic patients and 121 controls were included, and their clinical data were recorded from electronic medical record system. Serum PNT, furin and ZAG levels were measured by ELISA. RESULTS Serum PNT levels in acromegalic patients were significantly higher than controls (66.60 ± 12.36 vs. 46.68 ± 20.54 pg/ml, P < 0.001), and acromegaly was an independent influencing factor of PNT levels (P < 0.001). Moreover, subjects with the highest tertile of PNT levels had a close correlation with acromegaly (OR = 22.200, 95% CI 7.156 ~ 68.875, P < 0.001), even in Model 1 adjusted for gender and age and Model 2 adjusted for gender, age and BMI. Additionally, serum PNT levels were positively correlated with BMI (r = 0.220, P = 0.002) and triglycerides (TGs, r = 0.295, P < 0.001), and TGs were an independent influencing factor of serum PNT levels in acromegalic subjects (P < 0.001). Furthermore, serum PNT levels in obese acromegalic patients were significantly higher than those with normal BMI (P < 0.05). However, serum furin levels were lower in acromegalic patients than controls (0.184 ± 0.036 vs. 0.204 ± 0.061 ng/ml, P < 0.001). CONCLUSION This study is the first to demonstrate that acromegalic patients have increased serum PNT levels. Moreover, serum PNT plays a potential role in abnormal lipid metabolism of acromegalic patients.
Collapse
Affiliation(s)
- X Ke
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - L Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - F Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Y Zhang
- Central Research Laboratory, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - K Deng
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Y Yao
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - L Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - F Feng
- Department of Radiology, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - B Xing
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - H Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - H Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
34
|
Kelesidis T, Mantzoros CS. Cross-talk between SARS-CoV-2 infection and the insulin/IGF signaling pathway: Implications for metabolic diseases in COVID-19 and for post-acute sequelae of SARS-CoV-2 infection. Metabolism 2022; 134:155267. [PMID: 35901934 PMCID: PMC9313531 DOI: 10.1016/j.metabol.2022.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
36
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
37
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei MM, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G. Proprotein convertase furin is a driver and potential therapeutic target in proliferative diabetic retinopathy. Clin Exp Ophthalmol 2022; 50:632-652. [PMID: 35322530 DOI: 10.1111/ceo.14077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Furin converts inactive proproteins into bioactive forms. By activating proinflammatory and proangiogenic factors, furin might play a role in pathophysiology of proliferative diabetic retinopathy (PDR). METHODS We studied vitreous samples from PDR and nondiabetic patients, epiretinal membranes from PDR patients, retinal microvascular endothelial cells (HRMECs), retinal Müller cells and rat retinas by ELISA, Western blot analysis, immunohistochemistry and immunofluorescence microscopy. We performed in vitro angiogenesis assays and assessed adherence of monocytes to HRMECs. RESULTS Furin levels were significantly increased in PDR vitreous samples. In epiretinal membranes, immunohistochemistry analysis revealed furin expression in monocytes/macrophages, vascular endothelial cells and myofibroblasts. Furin was significantly upregulated in diabetic rat retinas. Hypoxia and TNF-α induced significant upregulation of furin in Müller cells and HRMECs. Furin induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB, ADAM17 and MCP-1 in cultured Müller cells and phospho-ERK1/2 in cultured HRMECs and induced HRMECs migration. Treatment of monocytes with furin significantly increased their adhesion to HRMECs. Intravitreal administration of furin in normal rats induced significant upregulation of p65 subunit of NF-κB, phospho-ERK1/2 and ICAM-1 in the retina. Inhibition of furin with dec-CMK significantly decreased levels of MCP-1 in culture medium of Müller cells and HRMECs and significantly attenuated TNF-α-induced upregulation of p65 subunit of NF-κB, ICAM-1 and VCAM-1 in HRMECs. Dec-CMK significantly decreased adherence of monocytes to HRMECs and TNF-α-induced upregulation of adherence of monocytes to HRMECs. Treatment of HRMECs with dec-CMK significantly attenuated migration of HRMECs. CONCLUSIONS Furin is a potential driver molecule of PDR-associated inflammation and angiogenesis.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd I Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Ghislain Opdenakker
- University Hospitals UZ Gasthuisberg, Leuven, Belgium.,Rega Institute for Medical Research, Department of Microbiology and Immunology and Transplantation, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Study of protease-mediated processes initiating viral infection and cell-cell viral spreading of SARS-CoV-2. J Mol Model 2022; 28:224. [PMID: 35854129 PMCID: PMC9296015 DOI: 10.1007/s00894-022-05206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
Abstract
Viral-cell entry and cell-cell viral spreading processes of SARS-CoV-2 are subjected to fast evolutionary optimization because of its worldwide spreading, requiring the need for new drug developments. However, this task is still challenging, because a detailed understanding of the underlying molecular processes, mediated by the key cellular proteases TMPRSS2 and furin, is still lacking. Here, we show by large-scale atomistic calculations that binding of the ACE2 cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to a release of its furin cleavage site (S1/S2), enabling an enhanced furin binding, and that this latter process promotes the binding of TMPRSS2 through the release of the TMPRSS2 cleavage site (S2') out of the ACE2-binding heteromer. Moreover, we find that, after proteolytic cleavage, improved furin binding causes that parts of the S2 subunit dissociate from the complex, suggesting that furin promotes the fusion of the S2 subunit with the cell membrane before transfer of the viral RNA. Here we show by computational means that binding of the ACE2-cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to an enhanced binding of the protease furin, promoting the binding of the protease TMPRSS2. Moreover, we show that, after proteolytic cleavage, improved furin binding causes that parts of the heteromer dissociate from the spike.
Collapse
|
39
|
Giordo R, Gulsha R, Kalla S, Calin GA, Lipovich L. LncRNA-Associated Genetic Etiologies Are Shared between Type 2 Diabetes and Cancers in the UAE Population. Cancers (Basel) 2022; 14:3313. [PMID: 35884374 PMCID: PMC9313416 DOI: 10.3390/cancers14143313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous epidemiological studies place patients with T2D at a higher risk for cancer. Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D and cancer; however, the biological mechanisms linking the two diseases remain largely unknown. The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants associated with both T2D and cancer. Most significant disease-associated variants reside in non-coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs) at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer. Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA genetic variants with significant diabetes and cancer associations overlap in the UAE population. We first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in the UAE population.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Rida Gulsha
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Sarah Kalla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| |
Collapse
|
40
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
41
|
Aktiz Bıçak E, Bıçak M, Salık F, Kaçar CK, Uzundere O, Kaya S, Akelma H. Acute Kidney Injury in Intensive Care Unit Patients with Coronavirus Disease 2019. Turk J Anaesthesiol Reanim 2022; 50:S1-S7. [PMID: 35775791 PMCID: PMC9629182 DOI: 10.5152/tjar.2022.21306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The incidence of acute kidney injury during the hospital stay in patients with coronavirus disease 2019 varies between 8% and 17% in studies. This rate is at the highest levels among the critical patient group monitored in the intensive care unit (23% [14-35%]). In this study, we aimed to assess the incidence of acute kidney injury development, effective factors, and clinical outcomes of patients monitored in the intensive care unit due to coronavirus disease 2019. METHODS A total of 801 patients were analyzed. Patients were divided into 2 groups as those developing acute kidney injury (n = 408) and those not developing acute kidney injury (n=393). Patients developing acute kidney injury were staged according to the Kidney Disease Improving Global Outcomes criteria. RESULTS In all patients, the mortality rate was 65.2%. The mortality rate for those developing acute kidney injury was identified to be high by a statistically significant degree compared to those not developing acute kidney injury. The mortality rate in Kidney Disease Improving Global Outcomes criteria stage 1 was 81.3%, in stage 2 was 88.3%, and in stage 3 was 91.5%. The frequency of diabetes mellitus type 2, coronary artery disease, and chronic obstructive pulmonary disease in the group developing acute kidney injury was found to be statistically significantly higher. We have found positive correlations between acute kidney injury development and age, sex, history of diabetes mellitus, and ferritin levels in the multivariate analysis. CONCLUSIONS The development of acute kidney injury in intensive care unit patients with coronavirus disease 2019 is associated with increased mortality. Therefore, predisposing factors should be determined and effective treatment strategies should be established in the early period.
Collapse
Affiliation(s)
- Esra Aktiz Bıçak
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Mustafa Bıçak
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Fikret Salık
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Cem Kıvılcım Kaçar
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Osman Uzundere
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Sedat Kaya
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Hakan Akelma
- Department of Anaesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| |
Collapse
|
42
|
Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116555. [PMID: 35682137 PMCID: PMC9180541 DOI: 10.3390/ijerph19116555] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-COVID-19 (coronavirus disease 2019) has become the cause of the global pandemic in the last three years. Its etiological factor is SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus type 2). Patients with diabetes (DM-diabetes mellitus), in contrast to healthy people not suffering from chronic diseases, are characterised by higher morbidity and mortality due to COVID-19. Patients who test positive for SARCoV-2 are at higher risk of developing hyperglycaemia. In this paper, we present, analyse and summarize the data on possible mechanisms underlying the increased susceptibility and mortality of patients with diabetes mellitus in the case of SARS-CoV-2 infection. However, further research is required to determine the optimal therapeutic management of patients with diabetes and COVID-19.
Collapse
|
43
|
Khazaal S, Harb J, Rima M, Annweiler C, Wu Y, Cao Z, Abi Khattar Z, Legros C, Kovacic H, Fajloun Z, Sabatier JM. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022; 27:2903. [PMID: 35566253 PMCID: PMC9101946 DOI: 10.3390/molecules27092903] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people's lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.
Collapse
Affiliation(s)
- Shaymaa Khazaal
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouene Campus, Sin El Fil P.O. Box 55251, Lebanon;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital & Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, University of Angers, 44312 Angers, France;
| | - Yingliang Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Zhijian Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Ziad Abi Khattar
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Campus Fanar, Jdeidet El-Matn, Beirut P.O. Box 90656, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, University of Angers, 49000, France;
| | - Hervé Kovacic
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli P.O. Box 45061, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli P.O. Box 45061, Lebanon;
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université CNRS, 13385 Marseille, France;
| |
Collapse
|
44
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
45
|
Coto E, Albaiceta GM, Amado-Rodríguez L, García-Clemente M, Cuesta-Llavona E, Vázquez-Coto D, Alonso B, Iglesias S, Melón S, Alvarez-Argüelles ME, Boga JA, Rojo-Alba S, Pérez-Oliveira S, Alvarez V, Gómez J. FURIN gene variants (rs6224/rs4702) as potential markers of deat hand cardiovascular traits in severe COVID-19. J Med Virol 2022; 94:3589-3595. [PMID: 35355278 PMCID: PMC9088626 DOI: 10.1002/jmv.27748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Furin is a protease that plays a key role in the infection cycle of SARS‐CoV‐2 by cleaving the viral proteins during the virus particle assembly. In addition, Furin regulates several physiological processes related to cardio‐metabolic traits. DNA variants in the FURIN gene are candidates to regulate the risk of developing these traits as well as the susceptibility to severe COVID‐19. We genotyped two functional FURIN variants (rs6224/rs4702) in 428 COVID‐19 patients in the intensive care unit. The association with death (N = 106) and hypertension, diabetes, and hyperlipidaemia was statistically evaluated. The risk of death was associated with age, hypertension, and hypercholesterolemia. The two FURIN alleles linked to higher expression (rs6224 T and rs4702 A) were significantly increased in the death cases (odds ratio= 1.40 and 1.43). Homozygosis for the two high expression genotypes (rs6224 TT and rs4702 AA) and for the T‐A haplotype was associated with an increased risk of hypercholesterolemia. In the multiple logistic regression both, hypercholesterolemia and the TT + AA genotype were significantly associated with death. In conclusion, besides its association with hypercholesterolemia, FURIN variants might be independent risk factors for the risk of death among COVID‐19 patients. Furin plays an important role in the life‐cycle of SARS‐CoV‐2 Furin activity might regulate the risk for cardiovascular traits, such as hypertension and hypercholesterolemia. Two functional FURIN variants were associated with the risk of death among critical COVID‐19 patients. The observed association with mortality was independent of higher cholesterol levels. FURIN gene variants might be predictors of COVID‐19 severity and mortaility.
Collapse
Affiliation(s)
- Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta García-Clemente
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Belén Alonso
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Sara Iglesias
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Santiago Melón
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Marta E Alvarez-Argüelles
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - José A Boga
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Susana Rojo-Alba
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Sergio Pérez-Oliveira
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Victoria Alvarez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| |
Collapse
|
46
|
He Y, Li Y, Zhang J, Chen L, Li J, Zhang M, Zhang Q, Lu Y, Jiang J, Zhang X, Hu J, Ding Y, Zhang M, Peng H. FURIN Promoter Methylation Predicts the Risk of Incident Diabetes: A Prospective Analysis in the Gusu Cohort. Front Endocrinol (Lausanne) 2022; 13:873012. [PMID: 35399937 PMCID: PMC8990793 DOI: 10.3389/fendo.2022.873012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Furin has been associated with diabetes but the underlying mechanisms are unclear. As a mediator linking fixed genome and dynamic environment, DNA methylation of its coding gene FURIN may be involved. Here, we aimed to examine the prospective association between DNA methylation in FURIN promoter and incident diabetes during 4 years of follow-up in Chinese adults. Methods DNA methylation levels in FURIN promoter were quantified by target bisulfite sequencing using peripheral blood from 1836 participants in the Gusu cohort who were free of diabetes at baseline. To examine the association between DNA methylation levels in FURIN promoter and incident diabetes, we constructed a logistic regression model adjusting for the conventional factors. Multiple testing was controlled by adjusting for the total number of CpG sites assayed using the false-discovery rate approach. Results Among the 1836 participants free of diabetes at baseline, 109 (5.94%) participants developed diabetes during the average of 4 years of follow-up. Hypermethylation at two of the eight CpG sites assayed in the FURIN promoter was associated with an increased risk of diabetes, after multivariable adjustment and multiple testing correction. Every 5% increment in methylation levels at CpG1 and CpG2 were associated with a 22% (OR=1.22, 95%CI: 1.05-1.43, P=0.009, q=0.038) and 39% (OR=1.39, 95%CI: 1.08-1.77, P=0.009, q=0.038) higher risk of incident diabetes, respectively. The gene-based association analysis revealed that DNA methylation at multiple CpG loci was jointly associated with incident diabetes (P<0.001). Using the average methylation level of the 8 CpG loci in FURIN promoter revealed a similar association (OR=1.28, 95% CI: 1.02-1.62, P=0.037). Conclusions These results suggested that the hypermethylation levels in FURIN promoter were associated with an increased risk for incident diabetes in Chinese adults.
Collapse
Affiliation(s)
- Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yinan Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jianan Zhang
- Department of Chronic Disease, Taicang Center for Disease Control and Prevention, Suzhou, China
| | - Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Min Zhang
- Department of Central Office, Suzhou National New and Hi-Tech Industrial Development Zone Center for Disease Control and Prevention, Suzhou, China
| | - Qiu Zhang
- Department of Chronic Disease, Gusu Center for Disease Control and Prevention, Suzhou, China
| | - Ying Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jun Jiang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Xiaolong Zhang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jianwei Hu
- Department of Central Office, Maternal and Child Health Bureau of Kunshan, Suzhou, China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Dwivedi S, Choudhary P, Gupta A, Singh S. The cross-talk between mucormycosis, steroids and diabetes mellitus amidst the global contagion of COVID-19. Crit Rev Microbiol 2022; 49:318-333. [PMID: 35324372 DOI: 10.1080/1040841x.2022.2052795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mucormycosis is an opportunistic fungal disease that targets individuals having an impaired immune system due to a wide array of risk factors including HIV-AIDS, immunosuppressive therapy, diabetes mellitus, etc. The current explosive outbreak of coronavirus disease 2019 (COVID-19) has become the latest threat to such patients who are already susceptible to secondary infections. Physiological outcomes of COVID-19 end up in a cascade of grave alterations to the immunological profile and irreparable harm to their respiratory passage, heart and kidneys. Corticosteroidal treatment facilitates faster recovery and alleviates the adverse pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But clinical reports lend this approach a darker perspective especially if these patients have pre-existing diabetes mellitus. The mucormycotic fungal genera belonging to the order Mucorales not only survive but thrive under the comorbidity of COVID-19 and diabetes, often staying undetected until they have inflicted irreversible damage. Steroidal usage has been noted to be a common thread in the sudden spurt in secondary fungal infections among COVID-19 cases. Once considered a rare occurrence, mucormycosis has now acquired a notoriously lethal status in mainstream medical hierarchy. We set out to investigate whether corticosteroidal therapy against COVID-19 emboldens the development of mucormycosis. We also assess the conditions brought forth by steroidal usage and uncontrolled progression of diabetes in COVID-19 cases and their effect on the susceptibility towards mucormycosis.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
48
|
Singh M, Barrera Adame O, Nickas M, Robison J, Khatchadourian C, Venketaraman V. Type 2 Diabetes Contributes to Altered Adaptive Immune Responses and Vascular Inflammation in Patients With SARS-CoV-2 Infection. Front Immunol 2022; 13:833355. [PMID: 35401518 PMCID: PMC8986985 DOI: 10.3389/fimmu.2022.833355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, which initially emerged in November of 2019, wreaked havoc across the globe by leading to clinical acute respiratory distress syndrome and continues to evade current therapies today due to mutating strains. Diabetes mellitus is considered an important risk factor for progression to severe COVID disease and death, therefore additional research is warranted in this group. Individuals with diabetes at baseline have an underlying inflammatory state with elevated levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines, both of which cause these individuals to have higher susceptibility to SARS- CoV2 infection. The detrimental effects of SARS-CoV-2 has been attributed to its ability to induce a vast cell mediated immune response leading to a surge in the levels of pro-inflammatory cytokines. This paper will be exploring the underlying mechanisms and pathophysiology in individuals with diabetes and insulin resistance making them more prone to have worse outcomes after SARS- CoV2 infection, and to propose an adjunctive therapy to help combat the cytokine surge seen in COVID-19. It will also look at the immunomodulatory effects of glutathione, an antioxidant shown to reduce immune dysregulation in other diseases; Vitamin D, which has been shown to prevent COVID-19 patients from requiring more intensive care time possibly due to its ability to decrease the expression of certain pro-inflammatory cytokines; and steroids, which have been used as immune modulators despite their ability to exacerbate hyperglycemia.
Collapse
Affiliation(s)
- Manpreet Singh
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Obed Barrera Adame
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Michael Nickas
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Jeremiah Robison
- St. Barnabas Hospital Health System, Department of Emergency Medicine, Bronx, NY, United States
| | - Christopher Khatchadourian
- Western University of Health Sciences College of Osteopathic Medicine of the Pacific-Pomona, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Western University of Health Sciences College of Osteopathic Medicine of the Pacific-Pomona, Pomona, CA, United States
| |
Collapse
|
49
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Kwaghe VG, Habib ZG, Akor AA, Thairu Y, Bawa A, Adebayo FO, Kwaghe AV, Usman G, Idoko G, Oluseugun A, Ekele BA. Clinical characteristics and outcome of the first 200 patients hospitalized with coronavirus disease-2019 at a treatment center in Abuja, Nigeria: a retrospective study. Pan Afr Med J 2022; 41:118. [PMID: 35465381 PMCID: PMC8994461 DOI: 10.11604/pamj.2022.41.118.26594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/29/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION globally, the ravaging effect of the coronavirus disease-2019 (COVID-19), pandemic is evident on public health and the global economy. We aimed at describing the clinical characteristic and management outcome of COVID-19 patients in Abuja, Nigeria. METHODS we conducted a retrospective study by reviewing the hospital charts of the first 200 COVID-19 patients admitted at the isolation center, University of Abuja Teaching Hospital (UATH), Gwagwalada. Extracted data includes; demographic data, clinical symptoms, underlying comorbidities, and clinical outcomes. The outcome of interest was either discharged or died. Data was analyzed using the Statistical Package for Social Sciences (SPSS) version 20.0. RESULTS the median age was 45 years (range 2-84 years). Majority of the patients were males (66.5%). The most affected age group was 50-59 years (21%). Children and adolescents were least affected; less than 10 years constituted 2.5% and 10-19 years constituted 4.5%. The commonest symptoms at presentation were fever (94%) and cough (92%). Ninety-four patients (47%) had underlying comorbidities; the commonest was hypertension (36%). Based on disease severity; 126 (63%) had mild disease, 22 (11%) had moderate disease and 52 (26%) had severe disease. The commonest complication was Acute Respiratory Distress Syndrome (ARDS) seen in 29 (14.5%) patients. Out of the 200 cases managed, 189 (94.5%) were discharged in a stable condition while 11 (5.5%) died. Patients with under lying comorbidities had 9.6% death rate while those without comorbidities had 1.9% death rate. CONCLUSION among Nigerian patients', COVID-19 affects males more than females while children and adolescents were least affected. The study highlighted the clinical features of COVID-19 patients. The overall mortality rate is low among Nigerian patients compared to patients in the USA and Europe. This study shows that advanced age, presence of underlying comorbidities and disease severity is associated with the risk of dying from COVID-19.
Collapse
Affiliation(s)
- Vivian Gga Kwaghe
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria,,Corresponding author: Vivian Gga Kwaghe, Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria.
| | - Zaiyad Garba Habib
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Alexander Agada Akor
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Yunusa Thairu
- Department of Microbiology, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Anthony Bawa
- Department of Pediatrics, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Francis Olayemi Adebayo
- Department of Obstetrics and Gynaecology, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Ayi Vandi Kwaghe
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja,,Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria
| | - Galadima Usman
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Godwin Idoko
- Department of Anaesthesia, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Akintola Oluseugun
- Department of Anaesthesia, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Bissallah Ahmed Ekele
- Department of Obstetrics and Gynaecology, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| |
Collapse
|