1
|
Wang L, Qin Y, Song J, Xu J, Quan W, Su H, Zeng H, Zhang J, Li J, Chen J. Integrated analysis of single-cell RNA sequencing and bulk transcriptome data identifies a pyroptosis-associated diagnostic model for Parkinson's disease. Sci Rep 2024; 14:28548. [PMID: 39558055 PMCID: PMC11574289 DOI: 10.1038/s41598-024-80185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by an insidious onset. Despite the emphasis on motor symptom-based diagnosis, there remains an unmet clinical need for effective diagnostic approaches during the prodromal phase of PD. Recent advances in single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic analyses of PD patients open avenues for identifying potential diagnostic biomarkers. A comprehensive cell trajectory analysis was conducted using scRNA-seq datasets to identify gene expressions associated with the cellular transition from healthy to PD-associated states. Integration of scRNA-seq datasets with weighted gene co-expression network analysis (WGCNA) allowed extraction of pyroptosis-associated differentially expressed genes (PDEGs). Using LASSO logistic regression, support vector machine recursive feature elimination (SVM-RFE) and random forest methods, we developed a diagnostic model centred on PDEGs. In addition, immunoinfiltration, inflammatory signalling pathways and intercellular communication were detected by scRNA-seq analyses. In PD patients, the number of cells including metencephalic-like cells, excitatory neurons, inhibitory neurons and MHB-like cells was significantly reduced, whereas the proportion of astrocytes and microglia, immunoinfiltration and inflammatory signalling pathways were upregulated compared to healthy individuals. Using scRNA-seq and WGCNA analyses, two pyroptosis-related diagnostic genes, POLR2K and TIMM8B, were identified and a diagnostic model based on them was constructed, which showed promising performance upon validation. This study established a pyroptosis-related diagnostic model for PD through the analyses of scRNA-seq combined with bulk transcriptome data, which improved the understanding of the role of PDEGs in PD and provided new insights into the diagnostic strategies for this neurodegenerative disease.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hang Su
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Huibin Zeng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jian Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
2
|
Forsthuber A, Aschenbrenner B, Korosec A, Jacob T, Annusver K, Krajic N, Kholodniuk D, Frech S, Zhu S, Purkhauser K, Lipp K, Werner F, Nguyen V, Griss J, Bauer W, Soler Cardona A, Weber B, Weninger W, Gesslbauer B, Staud C, Nedomansky J, Radtke C, Wagner SN, Petzelbauer P, Kasper M, Lichtenberger BM. Cancer-associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy. Nat Commun 2024; 15:9678. [PMID: 39516494 PMCID: PMC11549091 DOI: 10.1038/s41467-024-53908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in cancer progression and treatment outcome. This study dissects the intra-tumoral diversity of CAFs in basal cell carcinoma, squamous cell carcinoma, and melanoma using molecular and spatial single-cell analysis. We identify three distinct CAF subtypes: myofibroblast-like RGS5+ CAFs, matrix CAFs (mCAFs), and immunomodulatory CAFs (iCAFs). Large-cohort tissue analysis reveals significant shifts in CAF subtype patterns with increasing malignancy. Two CAF subtypes exhibit immunomodulatory properties via different mechanisms. mCAFs sythesize extracellular matrix and may restrict T cell invasion in low-grade tumors via ensheathing tumor nests, while iCAFs are enriched in late-stage tumors, and express high levels of cytokines and chemokines to aid immune cell recruitment and activation. This is supported by the induction of an iCAF-like phenotype with immunomodulatory functions in primary healthy fibroblasts exposed to skin cancer cell secretomes. Thus, targeting CAF variants holds promise to enhance immunotherapy efficacy in skin cancers.
Collapse
Affiliation(s)
- Agnes Forsthuber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bertram Aschenbrenner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Korosec
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Krajic
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Daria Kholodniuk
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Frech
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shaohua Zhu
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Kim Purkhauser
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lipp
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Franziska Werner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vy Nguyen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ana Soler Cardona
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Weber
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Gesslbauer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jakob Nedomansky
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan N Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Yan G, Wang X, Zhang G. Unraveling the landscape of non-melanoma skin cancer through single-cell RNA sequencing technology. Front Oncol 2024; 14:1500300. [PMID: 39558960 PMCID: PMC11570581 DOI: 10.3389/fonc.2024.1500300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) mainly includes basal cell carcinoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma, showing a low mortality rate but the highest incidence worldwide. In recent decades, research has focused on understanding the pathogenesis and clinical treatments of NMSC, leading to significant advances in our knowledge of these diseases and the development of novel therapies, including immunotherapy. Nevertheless, the low to moderate objective response rate, high recurrence, and therapeutic resistance remain persistent challenges, which are partly attributable to the intratumoral heterogeneity. This heterogeneity indicates that tumor cells, immune cells, and stromal cells in the tumor microenvironment can be reshaped to a series of phenotypic and transcriptional cell states that vary in invasiveness and treatment responsiveness. The advent of single-cell RNA sequencing (scRNA-seq) has enabled the comprehensive profiling of gene expression heterogeneity at the single-cell level, which has been applied to NMSC to quantify cell compositions, define states, understand tumor evolution, and discern drug resistance. In this review, we highlight the key findings, with a focus on intratumoral heterogeneity and the mechanism of drug resistance in NMSC, as revealed by scRNA-seq. Furthermore, we propose potential avenues for future research in NMSC using scRNA-seq.
Collapse
Affiliation(s)
- Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
5
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Epithelial tissues line the outer surfaces of the mammalian body and protect from external harm. In skin, the epithelium is maintained by distinct stem cell populations residing in the interfollicular epidermis and various niches of the hair follicle. These stem cells give rise to the stratified epidermal layers and the protective hair coat, while being confined to their respective niches. Upon injury, however, all stem cell progenies can leave their niche and collectively contribute to a central wound healing process, called reepithelialization, for restoring the skin's barrier function. This review explores how epithelial cells from distinct niches respond and adapt during acute wound repair. We discuss when and where cells sense and react to damage, how cellular identity is regulated at the molecular and behavioral level, and how cells memorize past experiences and their origin. This collective knowledge highlights cellular plasticity as a brilliant feature of epithelial tissues to heal.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Srivastava A, Bencomo T, Das I, Lee CS. Unravelling the landscape of skin cancer through single-cell transcriptomics. Transl Oncol 2022; 27:101557. [PMID: 36257209 PMCID: PMC9576539 DOI: 10.1016/j.tranon.2022.101557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
The human skin is a complex organ that forms the first line of defense against pathogens and external injury. It is composed of a wide variety of cells that work together to maintain homeostasis and prevent disease, such as skin cancer. The exponentially rising incidence of skin malignancies poses a growing public health challenge, particularly when the disease course is complicated by metastasis and therapeutic resistance. Recent advances in single-cell transcriptomics have provided a high-resolution view of gene expression heterogeneity that can be applied to skin cancers to define cell types and states, understand disease evolution, and develop new therapeutic concepts. This approach has been particularly valuable in characterizing the contribution of immune cells in skin cancer, an area of great clinical importance given the increasing use of immunotherapy in this setting. In this review, we highlight recent skin cancer studies utilizing bulk RNA sequencing, introduce various single-cell transcriptomics approaches, and summarize key findings obtained by applying single-cell transcriptomics to skin cancer.
Collapse
Affiliation(s)
- Ankit Srivastava
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 United States of America,Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm 17177, Sweden
| | - Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 United States of America
| | - Ishani Das
- Division of Oncology, School of Medicine, Stanford University, Stanford, CA 94305 United States of America
| | - Carolyn S. Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA 94305 United States of America,Stanford Cancer Institute, Stanford University, Stanford, CA 94305 United States of America,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304 United States of America,Corresponding author at: 269 Campus Drive, Room 2160, Stanford, CA 94305.
| |
Collapse
|
8
|
Wang J, He J, Zhu M, Han Y, Yang R, Liu H, Xu X, Chen X. Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Rev Rep 2022; 18:1912-1925. [PMID: 35143021 PMCID: PMC9391238 DOI: 10.1007/s12015-021-10295-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Cellular differentiation, the fundamental hallmark of cells, plays a critical role in homeostasis. And stem cells not only regulate the process where embryonic stem cells develop into a complete organism, but also replace ageing or damaged cells by proliferation, differentiation and migration. In characterizing distinct subpopulations of skin epithelial cells, stem cells show large heterogeneity and plasticity for homeostasis, wound healing and tumorigenesis. Epithelial stem cells and committed progenitors replenish each other or by themselves owing to the remarkable plasticity and heterogeneity of epidermal cells under certain circumstance. The development of new assay methods, including single-cell RNA sequence, lineage tracing assay, intravital microscopy systems and photon-ablation assay, highlight the plasticity of epidermal stem cells in response to injure and tumorigenesis. However, the critical mechanisms and key factors that regulate cellular plasticity still need for further exploration. In this review, we discuss the recent insights about the heterogeneity and plasticity of epithelial stem cells in homeostasis, wound healing and skin tumorigenesis. Understanding how stem cells collaborate together to repair injury and initiate tumor will offer new solutions for relevant diseases. Schematic abstract of cellular heterogeneity and plasticity of skin epithelial cells in wound healing and tumorigenesis.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meishu Zhu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Han
- The Yonghe Medical Group Limited Company, George Town, Cayman Islands
| | - Ronghua Yang
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xuejuan Xu
- Endocrinology Department, First People's Hospital of Foshan, Foshan, China.
| | - Xiaodong Chen
- Department of Burn Surgery, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
9
|
Ascensión AM, Araúzo-Bravo MJ, Izeta A. Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology. Life (Basel) 2022; 12:67. [PMID: 35054460 PMCID: PMC8781146 DOI: 10.3390/life12010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Skin is a complex and heterogeneous organ at the cellular level. This complexity is beginning to be understood through the application of single-cell genomics and computational tools. A large number of datasets that shed light on how the different human skin cell types interact in homeostasis-and what ceases to work in diverse dermatological diseases-have been generated and are publicly available. However, translation of these novel aspects to the clinic is lacking. This review aims to summarize the state-of-the-art of skin biology using single-cell technologies, with a special focus on skin pathologies and the translation of mechanistic findings to the clinic. The main implications of this review are to summarize the benefits and limitations of single-cell analysis and thus help translate the emerging insights from these novel techniques to the bedside.
Collapse
Affiliation(s)
- Alex M. Ascensión
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Max Planck Institute for Molecular Biomedicine, 48167 Muenster, Germany
- IKERBASQUE, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- School of Engineering, Tecnun-University of Navarra, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Toftgård R. The origin of cancer. J Intern Med 2021; 289:601-603. [PMID: 33769632 DOI: 10.1111/joim.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Affiliation(s)
- R Toftgård
- From the, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|