1
|
Ganesan S, A Moffat B, Van Dam NT, Lorenzetti V, Zalesky A. Meditation attenuates default-mode activity: A pilot study using ultra-high field 7 Tesla MRI. Brain Res Bull 2023; 203:110766. [PMID: 37734622 DOI: 10.1016/j.brainresbull.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES Mapping the neurobiology of meditation has been bolstered by functional MRI (fMRI) research, with advancements in ultra-high field 7 Tesla fMRI further enhancing signal quality and neuroanatomical resolution. Here, we utilize 7 Tesla fMRI to examine the neural substrates of meditation and replicate existing widespread findings, after accounting for relevant physiological confounds. METHODS In this feasibility study, we scanned 10 beginner meditators (N = 10) while they either attended to breathing (focused attention meditation) or engaged in restful thinking (non-focused rest). We also measured and adjusted the fMRI signal for key physiological differences between meditation and rest. Finally, we explored changes in state mindfulness, state anxiety and focused attention attributes for up to 2 weeks following the single fMRI meditation session. RESULTS Group-level task fMRI analyses revealed significant reductions in activity during meditation relative to rest in default-mode network hubs, i.e., antero-medial prefrontal and posterior cingulate cortices, precuneus, as well as visual and thalamic regions. These findings survived stringent statistical corrections for fluctuations in physiological responses which demonstrated significant differences (p < 0.05/n, Bonferroni controlled) between meditation and rest. Compared to baseline, State Mindfulness Scale (SMS) scores were significantly elevated (F(3,9) = 8.16, p < 0.05/n, Bonferroni controlled) following the fMRI meditation session, and were closely maintained at 2-week follow up. CONCLUSIONS This pilot study establishes the feasibility and utility of investigating focused attention meditation using ultra-high field (7 Tesla) fMRI, by supporting widespread evidence that focused attention meditation attenuates default-mode activity responsible for self-referential processing. Future functional neuroimaging studies of meditation should control for physiological confounds and include behavioural assessments.
Collapse
Affiliation(s)
- Saampras Ganesan
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia; Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nicholas T Van Dam
- Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia
| |
Collapse
|
2
|
Colas JT, Dundon NM, Gerraty RT, Saragosa‐Harris NM, Szymula KP, Tanwisuth K, Tyszka JM, van Geen C, Ju H, Toga AW, Gold JI, Bassett DS, Hartley CA, Shohamy D, Grafton ST, O'Doherty JP. Reinforcement learning with associative or discriminative generalization across states and actions: fMRI at 3 T and 7 T. Hum Brain Mapp 2022; 43:4750-4790. [PMID: 35860954 PMCID: PMC9491297 DOI: 10.1002/hbm.25988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
The model-free algorithms of "reinforcement learning" (RL) have gained clout across disciplines, but so too have model-based alternatives. The present study emphasizes other dimensions of this model space in consideration of associative or discriminative generalization across states and actions. This "generalized reinforcement learning" (GRL) model, a frugal extension of RL, parsimoniously retains the single reward-prediction error (RPE), but the scope of learning goes beyond the experienced state and action. Instead, the generalized RPE is efficiently relayed for bidirectional counterfactual updating of value estimates for other representations. Aided by structural information but as an implicit rather than explicit cognitive map, GRL provided the most precise account of human behavior and individual differences in a reversal-learning task with hierarchical structure that encouraged inverse generalization across both states and actions. Reflecting inference that could be true, false (i.e., overgeneralization), or absent (i.e., undergeneralization), state generalization distinguished those who learned well more so than action generalization. With high-resolution high-field fMRI targeting the dopaminergic midbrain, the GRL model's RPE signals (alongside value and decision signals) were localized within not only the striatum but also the substantia nigra and the ventral tegmental area, including specific effects of generalization that also extend to the hippocampus. Factoring in generalization as a multidimensional process in value-based learning, these findings shed light on complexities that, while challenging classic RL, can still be resolved within the bounds of its core computations.
Collapse
Affiliation(s)
- Jaron T. Colas
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Computation and Neural Systems Program, California Institute of TechnologyPasadenaCaliforniaUSA
| | - Neil M. Dundon
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Department of Child and Adolescent Psychiatry, Psychotherapy, and PsychosomaticsUniversity of FreiburgFreiburg im BreisgauGermany
| | - Raphael T. Gerraty
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkNew YorkUSA
- Center for Science and SocietyColumbia UniversityNew YorkNew YorkUSA
| | - Natalie M. Saragosa‐Harris
- Department of PsychologyNew York UniversityNew YorkNew YorkUSA
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Karol P. Szymula
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Koranis Tanwisuth
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - J. Michael Tyszka
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Camilla van Geen
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkNew YorkUSA
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Harang Ju
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro ImagingUSC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joshua I. Gold
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dani S. Bassett
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Santa Fe InstituteSanta FeNew MexicoUSA
| | - Catherine A. Hartley
- Department of PsychologyNew York UniversityNew YorkNew YorkUSA
- Center for Neural ScienceNew York UniversityNew YorkNew YorkUSA
| | - Daphna Shohamy
- Department of PsychologyColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkNew YorkUSA
- Kavli Institute for Brain ScienceColumbia UniversityNew YorkNew YorkUSA
| | - Scott T. Grafton
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - John P. O'Doherty
- Division of the Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Computation and Neural Systems Program, California Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
3
|
Sladky R, Hahn A, Karl IL, Geissberger N, Kranz GS, Tik M, Kraus C, Pfabigan DM, Gartus A, Lanzenberger R, Lamm C, Windischberger C. Dynamic Causal Modeling of the Prefrontal/Amygdala Network During Processing of Emotional Faces. Brain Connect 2022; 12:670-682. [PMID: 34605671 DOI: 10.1089/brain.2021.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The importance of the amygdala/medial orbitofrontal cortex (OFC) network during processing of emotional stimuli, emotional faces in particular, is well established. This premise is supported by converging evidence from animal models, human neuroanatomical results, and neuroimaging studies. However, there is missing evidence from human brain connectivity studies that the OFC and no other prefrontal brain areas such as the dorsolateral prefrontal cortex (DLPFC) or ventrolateral prefrontal cortex (VLPFC) are responsible for amygdala regulation in the functional context of emotional face stimuli. Methods: Dynamic causal modeling of ultrahigh-field functional magnetic resonance imaging data acquired at 7 Tesla in 38 healthy subjects and a well-established paradigm for emotional face processing were used to assess the central role of the OFC to provide empirical validation for the assumed network architecture. Results: Using Bayesian model selection, it is demonstrated that indeed the OFC, and not the VLPFC and the DLPFC, downregulates amygdala activation during the emotion discrimination task. In addition, Bayesian model averaging group results were rigorously tested using bootstrapping, further corroborating these findings and providing an estimator for robustness and optimal sample sizes. Discussion: While it is true that VLPFC and DLPFC are relevant for the processing of emotional faces and are connected to the OFC, the OFC appears to be a central hub for the prefrontal/amygdala interaction. Impact statement Using dynamic causal modeling (DCM), abnormal effective connectivity in the orbitofrontal cortex (OFC)/amygdala network has been repeatedly observed in the pathophysiology of psychiatric disorders. However, it has to be considered that these findings are all based on the a priori assumption of the OFC being the central area for prefrontal control regulating amygdala activation. This is particularly important, as DCM results conditionally depend on the underlying model space used for model selection. Using Bayesian model comparison methods, it is shown that the OFC (and not the dorsolateral prefrontal cortex or ventrolateral prefrontal cortex) engages in amygdala downregulation in the context emotional face processing.
Collapse
Affiliation(s)
- Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Inga-Lisa Karl
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Nicole Geissberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Hong Kong, China
| | - Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela M Pfabigan
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Andreas Gartus
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Claus Lamm
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Colizoli O, de Gee JW, van der Zwaag W, Donner TH. Functional magnetic resonance imaging responses during perceptual decision-making at 3 and 7 T in human cortex, striatum, and brainstem. Hum Brain Mapp 2021; 43:1265-1279. [PMID: 34816533 PMCID: PMC8837598 DOI: 10.1002/hbm.25719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022] Open
Abstract
While functional magnetic resonance imaging (fMRI) at ultra‐high field (7 T) promises a general increase in sensitivity compared to lower field strengths, the benefits may be most pronounced for specific applications. The current study aimed to evaluate the relative benefit of 7 over 3 T fMRI for the assessment of responses evoked in different brain regions by a well‐controlled cognitive task. At 3 and 7 T, the same participants made challenging perceptual decisions about visual motion combined with monetary rewards for correct choices. Previous work on this task has extensively characterized the underlying cognitive computations and single‐cell responses in cortical and subcortical structures. We quantified the evoked fMRI responses in extrastriate visual cortical areas, the striatum, and the brainstem during the decision interval and the post‐feedback interval of the task. The dependence of response amplitudes on field strength during the decision interval differed between cortical, striatal, and brainstem regions, with a generally bigger 7 versus 3 T benefit in subcortical structures. We also found stronger responses during relatively easier than harder decisions at 7 T for dopaminergic midbrain nuclei, in line with reward expectation. Our results demonstrate the potential of 7 T fMRI for illuminating the contribution of small brainstem nuclei to the orchestration of cognitive computations in the human brain.
Collapse
Affiliation(s)
- Olympia Colizoli
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jan Willem de Gee
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, Devinsky O, Buzsáki G, Liu A. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 2021; 144:1590-1602. [PMID: 33889945 DOI: 10.1093/brain/awab044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000 ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
Collapse
Affiliation(s)
- Simon Henin
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Anita Shankar
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Helen Borges
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Adeen Flinker
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Werner Doyle
- NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,NYU Langone Health, Department of Neurosurgery, New York, NY 10016, USA
| | - Daniel Friedman
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Orrin Devinsky
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| | - Anli Liu
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| |
Collapse
|
7
|
Hippocampal gamma predicts associative memory performance as measured by acute and chronic intracranial EEG. Sci Rep 2019; 9:593. [PMID: 30679734 PMCID: PMC6345863 DOI: 10.1038/s41598-018-37561-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Direct recordings from the human brain have historically involved epilepsy patients undergoing invasive electroencephalography (iEEG) for surgery. However, these measurements are temporally limited and affected by clinical variables. The RNS System (NeuroPace, Inc.) is a chronic, closed-loop electrographic seizure detection and stimulation system. When adapted by investigators for research, it facilitates cognitive testing in a controlled ambulatory setting, with measurements collected over months to years. We utilized an associative learning paradigm in 5 patients with traditional iEEG and 3 patients with chronic iEEG, and found increased hippocampal gamma (60–100 Hz) sustained at 1.3–1.5 seconds during encoding in successful versus failed trials in surgical patients, with similar results in our RNS System patients (1.4–1.6 seconds). Our findings replicate other studies demonstrating that sustained hippocampal gamma supports encoding. Importantly, we have validated the RNS System to make sensitive measurements of hippocampal dynamics during cognitive tasks in a chronic ambulatory research setting.
Collapse
|
8
|
Unsmoothed functional MRI of the human amygdala and bed nucleus of the stria terminalis during processing of emotional faces. Neuroimage 2018; 168:383-391. [DOI: 10.1016/j.neuroimage.2016.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
|
9
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
10
|
Quevenco FC, Preti MG, van Bergen JMG, Hua J, Wyss M, Li X, Schreiner SJ, Steininger SC, Meyer R, Meier IB, Brickman AM, Leh SE, Gietl AF, Buck A, Nitsch RM, Pruessmann KP, van Zijl PCM, Hock C, Van De Ville D, Unschuld PG. Memory performance-related dynamic brain connectivity indicates pathological burden and genetic risk for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:24. [PMID: 28359293 PMCID: PMC5374623 DOI: 10.1186/s13195-017-0249-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/27/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND The incidence of Alzheimer's disease (AD) strongly relates to advanced age and progressive deposition of cerebral amyloid-beta (Aβ), hyperphosphorylated tau, and iron. The purpose of this study was to investigate the relationship between cerebral dynamic functional connectivity and variability of long-term cognitive performance in healthy, elderly subjects, allowing for local pathology and genetic risk. METHODS Thirty seven participants (mean (SD) age 74 (6.0) years, Mini-Mental State Examination 29.0 (1.2)) were dichotomized based on repeated neuropsychological test performance within 2 years. Cerebral Aβ was measured by 11C Pittsburgh Compound-B positron emission tomography, and iron by quantitative susceptibility mapping magnetic resonance imaging (MRI) at an ultra-high field strength of 7 Tesla (7T). Dynamic functional connectivity patterns were investigated by resting-state functional MRI at 7T and tested for interactive effects with genetic AD risk (apolipoprotein E (ApoE)-ε4 carrier status). RESULTS A relationship between low episodic memory and a lower expression of anterior-posterior connectivity was seen (F(9,27) = 3.23, p < 0.008), moderated by ApoE-ε4 (F(9,27) = 2.22, p < 0.005). Inherent node-strength was related to local iron (F(5,30) = 13.2; p < 0.022). CONCLUSION Our data indicate that altered dynamic anterior-posterior brain connectivity is a characteristic of low memory performance in the subclinical range and genetic risk for AD in the elderly. As the observed altered brain network properties are associated with increased local iron, our findings may reflect secondary neuronal changes due to pathologic processes including oxidative stress.
Collapse
Affiliation(s)
- Frances C Quevenco
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Maria G Preti
- Department of Radiology and Medical Informatics, Université de Genève, Geneva, Switzerland.,Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jiri M G van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Jun Hua
- Department of Radiology, Johns Hopkins School of Medicine and F.M. Kirby Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael Wyss
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Xu Li
- Department of Radiology, Johns Hopkins School of Medicine and F.M. Kirby Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, MD, USA
| | - Simon J Schreiner
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Stefanie C Steininger
- Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Irene B Meier
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Sandra E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Alfred Buck
- Division of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins School of Medicine and F.M. Kirby Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, Université de Genève, Geneva, Switzerland.,Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland. .,Hospital for Psychogeriatric Medicine, University of Zurich, Minervastr.145, CH-8032, Zurich, Switzerland.
| |
Collapse
|
11
|
Thielen JW, Kärgel C, Müller BW, Rasche I, Genius J, Bus B, Maderwald S, Norris DG, Wiltfang J, Tendolkar I. Aerobic Activity in the Healthy Elderly Is Associated with Larger Plasticity in Memory Related Brain Structures and Lower Systemic Inflammation. Front Aging Neurosci 2016; 8:319. [PMID: 28082894 PMCID: PMC5183624 DOI: 10.3389/fnagi.2016.00319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022] Open
Abstract
Cognitive abilities decline over the time course of our life, a process, which may be mediated by brain atrophy and enhanced inflammatory processes. Lifestyle factors, such as regular physical activities have been shown to counteract those noxious processes and are assumed to delay or possibly even prevent pathological states, such as dementing disorders. Whereas the impact of lifestyle and immunological factors and their interactions on cognitive aging have been frequently studied, their effects on neural parameters as brain activation and functional connectivity are less well studied. Therefore, we investigated 32 healthy elderly individuals (60.4 ± 5.0 SD; range 52–71 years) with low or high level of self-reported aerobic physical activity at the time of testing. A higher compared to a lower level in aerobic physical activity was associated with an increased encoding related functional connectivity in an episodic memory network comprising mPFC, thalamus, hippocampus precuneus, and insula. Moreover, encoding related functional connectivity of this network was associated with decreased systemic inflammation, as measured by systemic levels of interleukin 6.
Collapse
Affiliation(s)
- Jan-Willem Thielen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany
| | - Christian Kärgel
- Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital Bochum Bochum, Germany
| | - Bernhard W Müller
- Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-EssenEssen, Germany; Department of Psychology, University of WuppertalWuppertal, Germany
| | - Ina Rasche
- Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-Essen Essen, Germany
| | - Just Genius
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; AbbVie Neuroscience DevelopmentLudwigshafen, Germany
| | - Boudewijn Bus
- Department of Psychiatry, Radboud University Nijmegen Medical Center Nijmegen, Netherlands
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-Duisburg Essen, Germany
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany; Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-EssenEssen, Germany; Department of Psychiatry, Radboud University Nijmegen Medical CenterNijmegen, Netherlands
| |
Collapse
|
12
|
Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, Zbýň Š, Haneder S. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR IN BIOMEDICINE 2016; 29:1316-34. [PMID: 25762432 DOI: 10.1002/nbm.3272] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus far at 7 T, compared with 3 T, as well as those studies performed at 7 T that cannot be routinely performed at 3 T. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- CD Laboratory for Clinical Molecular MR Imaging
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pavol Szomolanyi
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Juras
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simon Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefan Haneder
- Vascular and Abdominal Imaging, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
13
|
van der Zwaag W, Schäfer A, Marques JP, Turner R, Trampel R. Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR IN BIOMEDICINE 2016; 29:1274-1288. [PMID: 25762497 DOI: 10.1002/nbm.3275] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
The increased availability of ultra-high-field (UHF) MRI has led to its application in a wide range of neuroimaging studies, which are showing promise in transforming fundamental approaches to human neuroscience. This review presents recent work on structural and functional brain imaging, at 7 T and higher field strengths. After a short outline of the effects of high field strength on MR images, the rapidly expanding literature on UHF applications of blood-oxygenation-level-dependent-based functional MRI is reviewed. Structural imaging is then discussed, divided into sections on imaging weighted by relaxation time, including quantitative relaxation time mapping, phase imaging and quantitative susceptibility mapping, angiography, diffusion-weighted imaging, and finally magnetization-transfer imaging. The final section discusses studies using the high spatial resolution available at UHF to identify explicit links between structure and function. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wietske van der Zwaag
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - José P Marques
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Spinoza Centre, University of Amsterdam, The Netherlands
- SPMMRC, School of Physics and Astronomy, University of Nottingham, UK
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
[Functional brain imaging]. Radiologe 2016; 56:148-58. [PMID: 26767522 DOI: 10.1007/s00117-015-0072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
METHOD Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. PERFORMANCE Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. PRACTICAL RECOMMENDATIONS As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning.
Collapse
|
15
|
Suthana NA, Donix M, Wozny DR, Bazih A, Jones M, Heidemann RM, Trampel R, Ekstrom AD, Scharf M, Knowlton B, Turner R, Bookheimer SY. High-resolution 7T fMRI of Human Hippocampal Subfields during Associative Learning. J Cogn Neurosci 2014; 27:1194-206. [PMID: 25514656 DOI: 10.1162/jocn_a_00772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Examining the function of individual human hippocampal subfields remains challenging because of their small sizes and convoluted structures. Previous human fMRI studies at 3 T have successfully detected differences in activation between hippocampal cornu ammonis (CA) field CA1, combined CA2, CA3, and dentate gyrus (DG) region (CA23DG), and the subiculum during associative memory tasks. In this study, we investigated hippocampal subfield activity in healthy participants using an associative memory paradigm during high-resolution fMRI scanning at 7 T. We were able to localize fMRI activity to anterior CA2 and CA3 during learning and to the posterior CA2 field, the CA1, and the posterior subiculum during retrieval of novel associations. These results provide insight into more specific human hippocampal subfield functions underlying learning and memory and a unique opportunity for future investigations of hippocampal subfield function in healthy individuals as well as those suffering from neurodegenerative diseases.
Collapse
|
16
|
Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun 2014; 5:5547. [PMID: 25424131 PMCID: PMC4263140 DOI: 10.1038/ncomms6547] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC-EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2-3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC-EC input pathways, the memory fate of a novel stimulus depends more on HC-EC output.
Collapse
|
17
|
Geißler A, Matt E, Fischmeister F, Wurnig M, Dymerska B, Knosp E, Feucht M, Trattnig S, Auff E, Fitch WT, Robinson S, Beisteiner R. Differential functional benefits of ultra highfield MR systems within the language network. Neuroimage 2014; 103:163-170. [PMID: 25255049 PMCID: PMC4263528 DOI: 10.1016/j.neuroimage.2014.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
Several investigations have shown limitations of fMRI reliability with the current standard field strengths. Improvement is expected from ultra highfield systems but studies on possible benefits for cognitive networks are lacking. Here we provide an initial investigation on a prominent and clinically highly-relevant cognitive function: language processing in individual brains. 26 patients evaluated for presurgical language localization were investigated with a standardized overt language fMRI paradigm on both 3T and 7T MR scanners. During data acquisition and analysis we made particular efforts to minimize effects not related to static magnetic field strength differences. Six measures relevant for functional activation showed a large dissociation between essential language network nodes: although in Wernicke's area 5/6 measures indicated a benefit of ultra highfield, in Broca's area no comparison was significant. The most important reason for this discrepancy was identified as being an increase in susceptibility-related artifacts in inferior frontal brain areas at ultra high field. We conclude that functional UHF benefits are evident, however these depend crucially on the brain region investigated and the ability to control local artifacts.
Collapse
Affiliation(s)
- A Geißler
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Austria; High Field MR Center, Medical University of Vienna, Austria; Department of Neurology, Medical University of Vienna, Austria
| | - E Matt
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Austria; High Field MR Center, Medical University of Vienna, Austria; Department of Neurology, Medical University of Vienna, Austria
| | - F Fischmeister
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Austria; High Field MR Center, Medical University of Vienna, Austria; Department of Neurology, Medical University of Vienna, Austria
| | - M Wurnig
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Austria; High Field MR Center, Medical University of Vienna, Austria; Department of Neurology, Medical University of Vienna, Austria
| | - B Dymerska
- High Field MR Center, Medical University of Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - E Knosp
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - M Feucht
- Department of Pediatrics, Medical University of Vienna, Austria
| | - S Trattnig
- High Field MR Center, Medical University of Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - E Auff
- Department of Neurology, Medical University of Vienna, Austria
| | - W T Fitch
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - S Robinson
- High Field MR Center, Medical University of Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - R Beisteiner
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Austria; High Field MR Center, Medical University of Vienna, Austria; Department of Neurology, Medical University of Vienna, Austria.
| |
Collapse
|
18
|
Steininger SC, Liu X, Gietl A, Wyss M, Schreiner S, Gruber E, Treyer V, Kälin A, Leh S, Buck A, Nitsch RM, Prüssmann KP, Hock C, Unschuld PG. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System. Front Aging Neurosci 2014; 6:52. [PMID: 24672483 PMCID: PMC3957491 DOI: 10.3389/fnagi.2014.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/03/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. METHODS We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. RESULTS Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. CONCLUSION Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.
Collapse
Affiliation(s)
- Stefanie C Steininger
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Xinyang Liu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Anton Gietl
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Michael Wyss
- Institute for Biomedical Engineering, University of Zürich, ETH Zürich , Zürich , Switzerland
| | - Simon Schreiner
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Esmeralda Gruber
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Valerie Treyer
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland ; Division of Nuclear Medicine, University of Zürich , Zürich , Switzerland
| | - Andrea Kälin
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Sandra Leh
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Alfred Buck
- Division of Nuclear Medicine, University of Zürich , Zürich , Switzerland
| | - Roger M Nitsch
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Klaas P Prüssmann
- Institute for Biomedical Engineering, University of Zürich, ETH Zürich , Zürich , Switzerland
| | - Christoph Hock
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| | - Paul G Unschuld
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich , Zürich , Switzerland
| |
Collapse
|