1
|
Eryilmaz IE, Colakoglu Bergel C, Arioz B, Huriyet N, Cecener G, Egeli U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol Biol Rep 2024; 52:65. [PMID: 39699825 DOI: 10.1007/s11033-024-10178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The treatment of metastatic castration-resistant prostate cancer (mCRPC) is still challenging clinically. Due to the refractor and highly metastatic phenotype of mCRPC, novel therapy strategies need to be investigated. Luteolin, a promising anticancer agent with various biological targets in many cancer types, also has a pro-oxidant effect that selectively triggers ROS and apoptosis. In recent years, among its ROS-mediated mechanisms, the inhibitory effect of luteolin on the nuclear factor-E2-related factor 2 (Nrf2), the main ROS scavenger protein in cancer cells, has been reported. However, no evidence exists that luteolin potentially regulates the Nrf2 or its regulator signaling pathway, Nrf2-Keap1-Cul3 axis, concerning its pro-oxidant effects associated with ROS-triggered apoptosis in any PCa cells or tumor model. METHODS AND RESULTS In the present study, we investigated for the first time whether the anticancer effect of luteolin is associated with pro-oxidant activity via the regulation of the Nrf2-Keap1-Cul3 redox signaling in PC3 and DU145 mCRPC cells. The results showed that luteolin significantly caused more cytotoxic, apoptotic, and pro-oxidant effects in a dose-dependent manner in mCRPC cells than in WPMY-1 normal prostate fibroblast cells for 72 h. Moreover, significant inhibition of Nrf2-Keap1-Cul3 redox signaling has occurred in response to increasing doses of luteolin in mCRPC cells. CONCLUSIONS The current study put forth the potential pro-oxidant inhibitory effect of luteolin on the Nrf2-Keap1-Cul3 axis in mCRPC cells for the first time. Thus, luteolin might be an attractive therapy strategy with an inhibitory effect on the cytoprotective Nrf2-Keap1-Cul3 redox signaling for treating mCRPC.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Bilge Arioz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nuseybe Huriyet
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
2
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Chen M, Qian C, Jin B, Hu C, Zhang L, Wang M, Zhou B, Zuo W, Huang L, Wang Y. Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma. Cancer Biol Ther 2023; 24:2162807. [PMID: 36647192 PMCID: PMC9851268 DOI: 10.1080/15384047.2022.2162807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary epithelial tumor with limited therapeutic options and poor prognosis. Curcumin is a promising active natural compound with several anti-cancer properties, though its clinical uses remain hindered due to its poor bioavailability. We recently synthesized curcumin analogs with multifunctional pharmacological and bioactivities with enhanced bioavailability. Among these novel curcumin analogs, WZ26 is a representative molecule. However, the anti-tumor effect of WZ26 against CCA is unclear. In this study, we evaluated the anti-tumor effect of WZ26 in both CCA cells and CCA xenograft mouse model. The underlying molecular anti-cancer mechanism of WZ26 was also studied. Our results show that WZ26 significantly inhibited cell growth and induced mitochondrial apoptosis in CCA cell lines, leading to significant inhibition of tumor growth in xenograft tumor mouse model. Treatment of WZ26 increased reactive oxygen species (ROS) generation, subsequently decreased mitochondrial membrane potential and inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing G2/M cell cycle arrest and cell apoptosis. Pretreatment of N-acetyl cysteine (NAC), an antioxidant agent, could fully reverse the WZ26-induced ROS-mediated changes in CCA cells. Our findings provide experimental evidence that curcumin analog WZ26 could be a potential candidate against CCA via enhancing ROS induction and inhibition of STAT3 activation.
Collapse
Affiliation(s)
- Minxiao Chen
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenchen Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingxi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Minshan Wang
- Department of Pharmacy, the First Hospital of Xiangshan, Ningbo, China
| | - Bin Zhou
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Lijiang Huang
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China,Lijiang HuangThe Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yi Wang
- Department of Gastroenterology, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,CONTACT Yi Wang
| |
Collapse
|
4
|
Lin L, Wu Q, Lu F, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Ning Z, She T, Hu M. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol 2023; 13:1184079. [PMID: 37810967 PMCID: PMC10559910 DOI: 10.3389/fonc.2023.1184079] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer is a borderless global health challenge that continues to threaten human health. Studies have found that oxidative stress (OS) is often associated with the etiology of many diseases, especially the aging process and cancer. Involved in the OS reaction as a key transcription factor, Nrf2 is a pivotal regulator of cellular redox state and detoxification. Nrf2 can prevent oxidative damage by regulating gene expression with antioxidant response elements (ARE) to promote the antioxidant response process. OS is generated with an imbalance in the redox state and promotes the accumulation of mutations and genome instability, thus associated with the establishment and development of different cancers. Nrf2 activation regulates a plethora of processes inducing cellular proliferation, differentiation and death, and is strongly associated with OS-mediated cancer. What's more, Nrf2 activation is also involved in anti-inflammatory effects and metabolic disorders, neurodegenerative diseases, and multidrug resistance. Nrf2 is highly expressed in multiple human body parts of digestive system, respiratory system, reproductive system and nervous system. In oncology research, Nrf2 has emerged as a promising therapeutic target. Therefore, certain natural compounds and drugs can exert anti-cancer effects through the Nrf2 signaling pathway, and blocking the Nrf2 signaling pathway can reduce some types of tumor recurrence rates and increase sensitivity to chemotherapy. However, Nrf2's dual role and controversial impact in cancer are inevitable consideration factors when treating Nrf2 as a therapeutic target. In this review, we summarized the current state of biological characteristics of Nrf2 and its dual role and development mechanism in different tumor cells, discussed Keap1/Nrf2/ARE signaling pathway and its downstream genes, elaborated the expression of related signaling pathways such as AMPK/mTOR and NF-κB. Besides, the main mechanism of Nrf2 as a cancer therapeutic target and the therapeutic strategies using Nrf2 inhibitors or activators, as well as the possible positive and negative effects of Nrf2 activation were also reviewed. It can be concluded that Nrf2 is related to OS and serves as an important factor in cancer formation and development, thus provides a basis for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Huang W, Zhong Y, Gao B, Zheng B, Liu Y. Nrf2-mediated therapeutic effects of dietary flavones in different diseases. Front Pharmacol 2023; 14:1240433. [PMID: 37767395 PMCID: PMC10520786 DOI: 10.3389/fphar.2023.1240433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a pathological status that occurs when the body's balance between oxidants and antioxidant defense systems is broken, which can promote the development of many diseases. Nrf2, a redox-sensitive transcription encoded by NFE2L2, is the master regulator of phase II antioxidant enzymes and cytoprotective genes. In this context, Nrf2/ARE signaling can be a compelling target against OS-induced diseases. Recently, natural Nrf2/ARE regulators like dietary flavones have shown therapeutic potential in various acute and chronic diseases such as diabetes, neurodegenerative diseases, ischemia-reperfusion injury, and cancer. In this review, we aim to summarize nrf2-mediated protective effects of flavones in different conditions. Firstly, we retrospected the mechanisms of how flavones regulate the Nrf2/ARE pathway and introduced the mediator role Nrf2 plays in inflammation and apoptosis. Then we review the evidence that flavones modulated Nrf2/ARE pathway to prevent diseases in experimental models. Based on these literature, we found that flavones could regulate Nrf2 expression by mechanisms below: 1) dissociating the binding between Nrf2 and Keap1 via PKC-mediated Nrf2 phosphorylation and P62-mediated Keap1 autophagic degradation; 2) regulating Nrf2 nuclear translocation by various kinases like AMPK, MAPKs, Fyn; 3) decreasing Nrf2 ubiquitination and degradation via activating sirt1 and PI3K/AKT-mediated GSK3 inhibition; and 4) epigenetic alternation of Nrf2 such as demethylation at the promoter region and histone acetylation. In conclusion, flavones targeting Nrf2 can be promising therapeutic agents for various OS-related disorders. However, there is a lack of investigations on human subjects, and new drug delivery systems to improve flavones' treatment efficiency still need to be developed.
Collapse
Affiliation(s)
- Wenkai Huang
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuan Zhong
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Botao Gao
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bowen Zheng
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yi Liu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Rocchetti MT, Bellanti F, Zadorozhna M, Fiocco D, Mangieri D. Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. Int J Mol Sci 2023; 24:8824. [PMID: 37240168 PMCID: PMC10218870 DOI: 10.3390/ijms24108824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a member of the flavonoid family derived from plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory, antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic properties. Thus, the purpose of this review consists in highlighting the relevant mechanisms by which luteolin inhibits tumor progression in metastasis, i.e., affecting epithelial-mesenchymal transition (EMT), repressing angiogenesis and lysis of extracellular matrix (ECM), as well as inducing apoptosis.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Mariia Zadorozhna
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy;
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| |
Collapse
|
7
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
8
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
9
|
Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Prawan A. All- trans-retinoic acid induces RARB-dependent apoptosis via ROS induction and enhances cisplatin sensitivity by NRF2 downregulation in cholangiocarcinoma cells. Oncol Lett 2022; 23:179. [PMID: 35464301 PMCID: PMC9025595 DOI: 10.3892/ol.2022.13299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
All-trans-retinoic acid (ATRA) has been clinically used to treat acute promyelocytic leukemia and is being studied to treat other types of cancer; however, the therapeutic role and mechanism of ATRA against cholangiocarcinoma (CCA) remain unclear. The present study investigated the cytotoxic effect and underlying mechanisms of ATRA on CCA cell lines. Cell viability was evaluated by sulforhodamine B assay. Intracellular reactive oxygen species (ROS) levels were assessed by dihydroethidium assay. Apoptosis analysis was performed by flow cytometry. The pathways of apoptotic cell death induction were examined using enzymatic caspase activity assay. Proteins associated with apoptosis were evaluated by western blotting. The effects on gene expression were analyzed by reverse transcription-quantitative PCR analysis. ATRA induced a concentration- and time-dependent toxicity in CCA cells. Furthermore, when the cytotoxicity of ATRA against retinoic acid receptor (RAR)-deficient cells was assessed, it was revealed that ATRA cytotoxicity was RARB-dependent. Following ATRA treatment, there was a significant accumulation of cellular ROS and ATRA-induced ROS generation led to an increase in the expression levels of apoptosis-inducing proteins and intrinsic apoptosis. Pre-treatment with ROS scavengers could diminish the apoptotic effect of ATRA, suggesting that ROS and mitochondria may have an essential role in the induction of apoptosis. Furthermore, following ATRA treatment, an increase in cellular ROS content was associated with suppressing nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) and NRF2-downstream active genes. ATRA also suppressed cisplatin-induced NRF2 expression, suggesting that the enhancement of cisplatin cytotoxicity by ATRA may be associated with the downregulation of NRF2 signaling. In conclusion, the results of the present study demonstrated that ATRA could be repurposed as an alternative drug for CCA therapy.
Collapse
Affiliation(s)
- Siriwoot Butsri
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Luteolin attenuates the chemoresistance of osteosarcoma through inhibiting the PTN/β-catenin/MDR1 signaling axis by upregulating miR-384. J Bone Oncol 2022; 34:100429. [PMID: 35493691 PMCID: PMC9048097 DOI: 10.1016/j.jbo.2022.100429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Our research confirmed that luteolin could attenuate the chemoresistance of osteosarcoma through inhibiting the PTN/β-catenin/MDR1 signaling axis by upregulating miR-384. Our study demonstrated that doxorubicin resistance could be inhibited by the transfer of exosomal miR-384 into recipient chemoresistant osteosarcoma cells. The in vivo experiment showed combination therapy with both doxorubicin and luteolin resulted in higher survival rates compared with other single–agent therapies.
Multidrug resistance (MDR) remains a critical bottleneck in successful treatment of osteosarcoma (OS). Luteolin is a flavonoid compound that has been verified to increase the sensitivity to antineoplastic drugs in many tumors. However, its roles in reversing MDR of OS and the potential underlying mechanisms remain largely unknown. In this study, we demonstrated that luteolin enhances cellular chemosensitivity to doxorubicin and cisplatin both in OS cells and xenograft models, and it could increase the miR-384 level and downregulate the PTN expression. Additionally, target analysis confirmed that miR-384 directly modulates PTN expression, and subsequent mechanistic analysis verified that miR-384 could inhibit the MDR of OS cells through suppressing the PTN/β-catenin/MDR1 signaling axis. Further analysis revealed treatment of sensitive MG63 cells with luteolin effectively packaged miR-384 into secreted exosomes and the exosomes could improve doxorubicin response in doxorubicin-resistant MG63/DOX cells. Our study confirmed that luteolin exerts MDR reversal effect against OS cells by regulating PTN expression via miR-384 and it may be a promising therapeutic agent for chemoresistant OS via its targeting of the PTN/β-catenin/MDR1 axis.
Collapse
|
11
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Sarkar C, Chaudhary P, Jamaddar S, Janmeda P, Mondal M, Mubarak MS, Islam MT. Redox Activity of Flavonoids: Impact on Human Health, Therapeutics, and Chemical Safety. Chem Res Toxicol 2022; 35:140-162. [PMID: 35045245 DOI: 10.1021/acs.chemrestox.1c00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cost-effectiveness of presently used therapies is a problem in overall redox-based management, which is posing a significant financial burden on communities across the world. As a result, sophisticated treatment models that provide notions of predictive diagnoses followed by targeted preventive therapies adapted to individual patient profiles are gaining global acclaim as being beneficial to patients, the healthcare sector, and society as a whole. In this context, natural flavonoids were considered due to their multifaceted antioxidant, anti-inflammatory, and anticancer effects as well as their low toxicity and ease of availability. The aim of this review is to focus on the capacity of flavonoids to modulate the responsiveness of various diseases and ailments associated with redox toxicity. The review will also focus on the flavonoids' pathway-based redox activity and the advancement of redox-based therapies as well as flavonoids' antioxidant characteristics and their influence on human health, therapeutics, and chemical safety. Research findings indicated that flavonoids significantly exhibit various redox-based therapeutic responses against several diseases such as inflammatory, neurodegenerative, cardiovascular, and hepatic diseases and various types of cancer by activating the Nrf2/Keap1 transcription system, suppressing the nuclear factor κB (NF-κB)/IκB kinase inflammatory pathway, abrogating the function of the Hsp90/Hsf1 complex, inhibiting the PTEN/PI3K/Akt pathway, and preventing mitochondrial dysfunction. Some flavonoids, especially genistein, apigenin, amentoflavone, baicalein, quercetin, licochalcone A, and biochanin A, play a potential role in redox regulation. Conclusions of this review on the antioxidant aspects of flavonoids highlight the medicinal and folk values of these compounds against oxidative stress and various diseases and ailments. In short, treatment with flavonoids could be a novel therapeutic invention in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
13
|
Alizadeh M, Daneghian S. Functional foods, hormesis, and oxidative stress. CURRENT ADVANCES FOR DEVELOPMENT OF FUNCTIONAL FOODS MODULATING INFLAMMATION AND OXIDATIVE STRESS 2022:581-603. [DOI: 10.1016/b978-0-12-823482-2.00022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules 2021; 26:molecules26216452. [PMID: 34770867 PMCID: PMC8587415 DOI: 10.3390/molecules26216452] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of tumor masses with unique abilities in self-renewal, stemness maintenance, drug resistance, and the promotion of cancer recurrence. Recent studies have suggested that breast CSCs play essential roles in chemoresistance. Therefore, new agents that selectively target such cells are urgently required. Reactive oxygen species (ROS)-producing enzymes are the reason for an elevated tumor oxidant status. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor, which upon detecting cellular oxidative stress, binds to the promoter region of antioxidant genes. By triggering a cytoprotective response, Nrf2 maintains cellular redox status. Cripto-1 participates in the self-renewal of CSCs. Herein, luteolin, a flavonoid found in Taraxacum officinale extract, was determined to inhibit the expressions of stemness-related transcriptional factors, the ATP-binding cassette transporter G2 (ABCG2), CD44, aldehyde dehydrogenase 1 activity as well as the sphere formation properties of breast CSCs. Furthermore, luteolin suppressed the protein expressions of Nrf2, heme oxygenase 1 (HO-1), and Cripto-1 which have been determined to contribute critically to CSC features. The combination of luteolin and the chemotherapeutic drug, Taxol, resulted in enhanced cytotoxicity to breast cancer cells. These findings suggest that luteolin treatment significantly attenuated the hallmarks of breast cancer stemness by downregulating Nrf2-mediated expressions. Luteolin constitutes a potential agent for use in cancer stemness-targeted breast cancer treatments.
Collapse
|
15
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
16
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
17
|
Kollur SP, Prasad SK, Pradeep S, Veerapur R, Patil SS, Amachawadi RG, S RP, Lamraoui G, Al-Kheraif AA, Elgorban AM, Syed A, Shivamallu C. Luteolin-Fabricated ZnO Nanostructures Showed PLK-1 Mediated Anti-Breast Cancer Activity. Biomolecules 2021; 11:385. [PMID: 33807771 PMCID: PMC7998981 DOI: 10.3390/biom11030385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The present work describes a facile and convenient procedure for synthesizing zinc oxide nanoparticles using luteolin isolated from Eclipta alba plant (L-ZnONPs) at room temperature. The formation of as-grown L-ZnONPs was confirmed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The Wurtzite structure of ZnO was observed by its hexagonal phases in diffraction patterns. The SEM images revealed the different sizes and morphologies of L-ZnONPs, with diameters between 12 and 25 nm. The HR-TEM result showed that the inter-planar distance between two lattice fringes was 0.262 nm, which coincides with the d-spacing of (002) and (101) lattice planes of the as-obtained material. The anticancer activity of L-ZnONPs against the breast cancer cell line MCF-7 was greater as compared to that of luteolin or ZnO alone. The mechanistic evaluation of such an activity carried out using in silico methods suggested that the anti-breast cancer activity of L-ZnONPs was mediated by polo-like kinase 1 (PLK1) proteins.
Collapse
Affiliation(s)
- Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India; (S.K.P.); (S.P.)
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India; (S.K.P.); (S.P.)
| | - Ravindra Veerapur
- Department of Metallurgy and Materials Engineering, Malawi Institute of Technology, Malawi University of Science and Technology, P.O. Box 5916, Limbe 312229, Malawi;
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka 560 064, India;
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA;
| | - Rajendra Prasad S
- Department of Chemistry, Davangere University, Shivagangotri, Davangere, Karnataka 577 007, India;
| | - Ghada Lamraoui
- Nature and Life Sciences, Earth and Universe Sciences, University of Tlemcen, Tlemcen 13000, Algeria;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India; (S.K.P.); (S.P.)
| |
Collapse
|
18
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
19
|
Kalinina EV, Gavriliuk LA. Glutathione Synthesis in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:895-907. [PMID: 33045950 DOI: 10.1134/s0006297920080052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripeptide GSH is associated not only with the control and maintenance of redox cell homeostasis, but also with the processes of detoxification, proliferation, cell differentiation, and regulation of cell death. Disruptions in GSH synthesis and changes in the GSH/GSSG ratio are common for many pathological conditions, including malignant neoplasms. Numerous data indicate the importance of GSH and the GSH/GSSG ratio in the regulation of tumor cell viability, in the initiation of tumor development, progression, and drug resistance. However, control of the mechanism of GSH synthesis in malignant tumors remains poorly understood. This review discusses the features of GSH synthesis and its regulation in tumor cells. The role of GSH in the mechanisms of apoptosis, necroptosis, ferroptosis, and autophagy is considered.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - L A Gavriliuk
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
20
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
21
|
Chen L, Yang ZS, Zhou YZ, Deng Y, Jiang P, Tan SL. Dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis via regulating miR-21 in Human Cholangiocarcinoma Cells. J Cancer 2020; 11:5689-5699. [PMID: 32913463 PMCID: PMC7477438 DOI: 10.7150/jca.45970] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dihydromyricetin, the most abundant natural flavonoid isolated from Ampelopsis grossedentata, exhibits broad anti-tumor effects. However, the effects of dihydromyricetin on cholangiocarcinoma remain unclear. This study examined the anti-tumor effects of dihydromyricetin in two human cholangiocarcinoma cell lines HCCC9810 and TFK-1, and the underlying mechanism was also investigated. Our study was the first to show that dihydromyricetin significantly inhibited cell proliferation, migration, invasion and promoted apoptosis in cholangiocarcinoma cells. By analyzing the TCGA dataset, we found that expression of miR-21, an oncogene and a potential target of anticancer drugs for cholangiocarcinoma, was upregulated in cholangiocarcinoma tissues compared to paired control tissues. Moreover, dihydromyricetin significantly reduced the expression of miR-21 in a dose-dependent manner. Overexpression of miR-21 remarkably abolished the inhibitory effects of dihydromyricetin on cell proliferation, migration, invasion and abrogated its effect of promoting cell apoptosis in both HCCC9810 and TFK-1 cells. Dihydromyricetin remarkably increased the expression of PTEN and decreased the expression of phosphorylated Akt, while overexpression of miR-21 abrogated the modulation of PTEN/ Akt pathway by dihydromyricetin. Taken together, our study demonstrates that dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis in cholangiocarcinoma cells via regulating miR-21.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| | - Zhou-Sheng Yang
- Department of Pharmacy, The People's Hopital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021
| | - Yang-Zhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China, 410011
| | - Yang Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China, 410015
| | - Pei Jiang
- Department of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China, 272000
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| |
Collapse
|
22
|
Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, Yang Y, Deng Y, Zhang L, Liu B. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol 2019; 176:2079-2094. [PMID: 30825187 PMCID: PMC6534779 DOI: 10.1111/bph.14652] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/31/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-small-cell lung cancer (NSCLC) accounts for up to 80-85% of all lung cancers and has a disappointing prognosis. Flavonoids exert anticancer properties, mostly involving stimulation of ROS production without significant toxicity to normal cells. This study was aimed to delineate the effect of diosmetin, a natural flavonoid, on NSCLC cells and its ability to enhance the antitumour activity of paclitaxel. EXPERIMENTAL APPROACH NSCLC cells, normal cell lines HLF-1 and BEAS-2B, and immunodeficient mice were chosen as models to study the effects of diosmetin. Changes in cell viability, apoptosis, and ROS were analysed by MTT assay, flow cytometry assay, and fluorescent probe DCFH-DA. Expression of proteins and mRNA was determined by Western blotting and real-time RT-PCR. Growth of xenografted tumours was measured. Spleens and other vital organs were analysed with histological and immunohistochemical techniques. KEY RESULTS Diosmetin induced selective apoptotic death in NSCLC cells but spared normal cells, via ROS accumulation. Diosmetin induced ROS production in NSCLC cells probably via reducing Nrf2 stability through disruption of the PI3K/Akt/GSK-3β pathway. The in vitro and in vivo xenograft studies showed that combined treatment of diosmetin and paclitaxel synergistically suppressed NSCLC cells. Histological analysis of vital organs showed no obvious toxicity of diosmetin, which matched our in vitro findings. CONCLUSIONS AND IMPLICATIONS Diosmetin selectively induced apoptosis and enhanced the efficacy of paclitaxel in NSCLC cells via ROS accumulation through disruption of the PI3K/Akt/GSK-3β/Nrf2 pathway. Therefore, diosmetin may be a promising candidate for adjuvant treatment of NSCLC.
Collapse
Affiliation(s)
- Xiangcui Chen
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Qipeng Wu
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yueming Chen
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiahao Zhang
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Huachao Li
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Zhicheng Yang
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yang Yang
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yanchao Deng
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Luyong Zhang
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
- The Center for Drug Research and DevelopmentGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Bing Liu
- Department of Clinical Pharmacy, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model SystemsGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong ProvinceGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
23
|
Ma B, Zhang J, Zhu Z, Zhao A, Zhou Y, Ying H, Zhang Q. Luteolin Ameliorates Testis Injury and Blood–Testis Barrier Disruption through the Nrf2 Signaling Pathway and by Upregulating Cx43. Mol Nutr Food Res 2019; 63:e1800843. [DOI: 10.1002/mnfr.201800843] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Jie Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Zhiming Zhu
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Ang Zhao
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Yanfen Zhou
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Hanjie Ying
- School of Life Science & Pharmaceutical EngineeringNanjing University of Technology Nanjing 210009 P. R. China
| | - Qi Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
24
|
Wu S, Lu H, Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med 2019; 8:2252-2267. [PMID: 30929309 PMCID: PMC6536957 DOI: 10.1002/cam4.2101] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2/Keap1 pathway is an important signaling cascade responsible for the resistance of oxidative damage induced by exogenous chemicals. It maintains the redox homeostasis, exerts anti-inflammation and anticancer activity by regulating its multiple downstream cytoprotective genes, thereby plays a vital role in cell survival. Interestingly, in recent years, accumulating evidence suggests that Nrf2 has a contradictory role in cancers. Aberrant activation of Nrf2 is associated with poor prognosis. The constitutive activation of Nrf2 in various cancers induces pro-survival genes and promotes cancer cell proliferation by metabolic reprogramming, repression of cancer cell apoptosis, and enhancement of self-renewal capacity of cancer stem cells. More importantly, Nrf2 is proved to contribute to the chemoresistance and radioresistance of cancer cells as well as inflammation-induced carcinogenesis. A number of Nrf2 inhibitors discovered for cancer treatment were reviewed in this report. These provide a new strategy that targeting Nrf2 could be a promising therapeutic approach against cancer. This review aims to summarize the dual effects of Nrf2 in cancer, revealing its function both in cancer prevention and inhibition, to further discover novel anticancer treatment.
Collapse
Affiliation(s)
- Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Klungsaeng S, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Cucurbitacin B induces mitochondrial-mediated apoptosis pathway in cholangiocarcinoma cells via suppressing focal adhesion kinase signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:271-278. [PMID: 30470919 DOI: 10.1007/s00210-018-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
Low efficacy and high resistance rate associated with existing chemotherapeutic drugs enforce a requirement for novel therapeutic strategies for extremely aggressive cholangiocarcinoma (CCA). In the present study, the apoptosis-inducing activity of cucurbitacin B, a compound derived from plants of Cucurbitaceae family, against KKU-100 CCA cells and the underlying mechanism mediating its effect were investigated. The results showed that cucurbitacin B significantly decreased CCA cells viability by induction of apoptosis. Increased apoptotic cell death following cucurbitacin B treatment was correlated with caspase-9 and caspase-3 activations, Bax upregulation, increased cytochrome c, apoptosis-inducing factor release, and decreased Bcl-2 and Bcl-XL levels, suggesting activation of the mitochondrial-mediated apoptosis pathway. Further molecular analyses revealed that cucurbitacin B inhibited focal adhesion kinase (FAK), which is an important regulator of the apoptosis process, and its downstream pathway, PI3K/Akt. Knockdown of FAK expression by small interfering RNA appeared to induce CCA cell apoptosis which was accompanied with elevated level of cytochrome c and cleaved caspase-9, and decreased level of Bcl-2, phospho-PI3K, and phospho-Akt. Taken together, cucurbitacin B induces an intrinsic mitochondrial apoptosis pathway in CCA cells partly through suppression of FAK-mediated oncogenic signaling. This compound should be considered as a candidate agent for CCA treatment.
Collapse
Affiliation(s)
- Sirinapha Klungsaeng
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
26
|
Jang HH, Park SB, Hong JS, Lee HL, Song YH, Kim J, Jung YH, Kim C, Kim DM, Lee SE, Jeong YI, Kang DH. Piperlongumine-Eluting Gastrointestinal Stent Using Reactive Oxygen Species-Sensitive Nanofiber Mats for Inhibition of Cholangiocarcinoma Cells. NANOSCALE RESEARCH LETTERS 2019; 14:58. [PMID: 30778693 PMCID: PMC6379506 DOI: 10.1186/s11671-019-2887-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The aim of this study is to fabricate drug-eluting gastrointestinal (GI) stent using reactive oxygen species (ROS)-sensitive nanofiber mats for treatment of cholangiocarcinoma (CCA) cell. A ROS-producing agent, piperlongumine (PL)-incorporated nanofiber mats were investigated for drug-eluting stent (DES) application. METHODS Selenocystamine-conjugated methoxy poly(ethylene glycol) (MePEG) was conjugated with poly(L-lactide) (PLA) to produce block copolymer (LEse block copolymer). Various ratios of poly(ε-caprolactone) (PCL) and LEse block copolymer were dissolved in organic solvent with PL, and then nanofiber mats were fabricated by electro-spinning techniques. RESULTS The higher amount of LEse in the blend of PCL/LEse resulted in the formation of granules while PCL alone showed fine nanofiber structure. Nanofiber mats composed of PCL/LEse polymer blend showed ROS-sensitive drug release, i.e., PL release rate from nanofiber mats was accelerated in the presence of hydrogen peroxide (H2O2) while nanofiber mats of PCL alone have small changes in drug release rate, indicating that PL-incorporated nanofiber membranes have ROS responsiveness. PL itself and PL released from nanofiber mats showed almost similar anticancer activity against various CCA cells. Furthermore, PL released from nanofiber mats properly produced ROS generation and induced apoptosis of CCA cells as well as PL itself. In HuCC-T1 cell-bearing mice, PL-incorporated nanofiber mats showed improvement in anticancer activity. CONCLUSION PL-incorporated ROS-sensitive nanofiber mats were coated onto GI stent and showed improved anticancer activity with ROS responsiveness. We suggested PL-incorporated ROS-sensitive nanofiber mats as a promising candidate for local treatment of CCA cells.
Collapse
Affiliation(s)
- Hyung Ha Jang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
| | - Su Bum Park
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jeong Sup Hong
- Division of Animal Care, Yonam College, Cheonan, Chungnam 31005 South Korea
| | - Hye Lim Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yeon Hui Song
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Yun Hye Jung
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Chan Kim
- Amotech Co. Ltd, Incheon, Gyeonggi-do South Korea
| | - Doo-Man Kim
- Department of Photonics Engineering, Chonnam National University, Gwangju, 61186 South Korea
| | - Sang Eun Lee
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| | - Dae Hwan Kang
- School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612 South Korea
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612 South Korea
| |
Collapse
|
27
|
Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2019; 217:155-163. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
AIMS Metformin (Met), an essential antidiabetic agent, shows antitumor activity in some cancers. A previous study showed that Met enhanced cytotoxic activity of cisplatin (Cis) in cholangiocarcinoma (CCA) in association with the activation of AMP-activated protein kinase and suppression of Akt-mTOR. However, these effects do not entirely explain the observed chemosensitizing effect. The present study investigated the interaction of Met and Cis over the enhanced antitumor effect. MAIN METHODS KKU-100 and KKU-M156 cells were used in the study. Cytotoxicity was assessed by acridine orange-ethidium bromide staining. Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm) were measured by dihydroethidium and JC-1 fluorescent methods. Cellular glutathione (GSH) and redox ratio were analyzed by enzymatic coupling assay. Proteins associated with antioxidant system and cell death were evaluated by western immunoblot. KEY FINDINGS Cytotoxicity of Cis was enhanced by Met in association with ROS formation and GSH redox stress. The antioxidants, N-acetylcysteine and TEMPOL, and MPTP inhibitor, cyclosporine, attenuated cytotoxicity in association with suppression of ROS formation and the losses of Δψm. Met in combination with Cis suppressed expression of Nrf2 and altered the expression of Bcl2 family proteins. SIGNIFICANCE The chemosensitizing effect of Met in combination with Cis is causally associated with increased oxidative stress-mediated mitochondrial cell death pathway. Met may improve the efficacy of Cis in the treatment of cancer.
Collapse
Affiliation(s)
- Jaroon Wandee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
28
|
Ryu S, Park S, Lim W, Song G. Effects of luteolin on canine osteosarcoma: Suppression of cell proliferation and synergy with cisplatin. J Cell Physiol 2018; 234:9504-9514. [DOI: 10.1002/jcp.27638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Soomin Ryu
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences Catholic Kwandong University Gangneung Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| |
Collapse
|
29
|
Dong W, Lin Y, Cao Y, Liu Y, Xie X, Gu W. Luteolin induces myelodysplastic syndrome‑derived cell apoptosis via the p53‑dependent mitochondrial signaling pathway mediated by reactive oxygen species. Int J Mol Med 2018; 42:1106-1115. [PMID: 29786746 DOI: 10.3892/ijmm.2018.3696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/08/2018] [Indexed: 11/06/2022] Open
Abstract
Luteolin, a common dietary flavonoid, induces the apoptosis of cells in several types of cancer. However, its role in myelodysplastic syndrome (MDS) and the potential underlying mechanisms remain to be elucidated. To evaluate the potential benefit and underlying mechanisms of luteolin in MDS cells, the viability of SKM‑1 cells and primary bone marrow (PBM) mononuclear cells from patients with intermediate‑ or high‑risk MDS were assessed using a Cell Counting Kit‑8 assay. The apoptotic features of cell morphology were assessed using Wright‑Giemsa staining, DNA fragmentation was analyzed by agarose gel electrophoresis, and the extent of apoptosis was quantified by flow cytometry (FCM). Reactive oxygen species (ROS) were measured by FCM with 2,7‑dichlorodihydrofluorescein diacetate staining and mitochondrial membrane potential (ΔΨm) was determined using 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethylbenzimidazolylcarbocyanine iodide staining. Caspase activity was detected using a fluorometric protease assay. Furthermore, the effects of luteolin on the expression of apoptosis‑related proteins were analyzed using western blot analysis. The resulting data revealed that luteolin significantly inhibited the proliferation of SKM‑1 cells in vitro, and its half maximal inhibitory concentration was 139.41 µM at 24 h and 23.95 µM at 72 h. Luteolin also markedly inhibited the proliferation of mononuclear cells from patients with intermediate‑ or high‑risk MDS. Luteolin suppressed cell proliferation, mainly as a result of the induction of apoptosis, as demonstrated by typical apoptotic morphological features, the ladder pattern of genomic DNA fragmentation, and the results of FCM using Annexin V‑FITC/PI double staining. It was also found that short‑term exposure of SKM‑1 cells to luteolin led to a marked increase in the accumulation of ROS. The increased intracellular level of ROS appeared to induce the activation of p53 and elevate the B‑cell lymphoma 2 (Bcl‑2)‑associated X protein/Bcl‑2 ratio, which modulates ΔΨm and triggers the release of cytochrome c, and may increase the activities of apoptotic protease activating factor 1, caspase‑3, ‑8 and ‑9 to further trigger the destruction of structural and specific proteins and thereby cell apoptosis. Notably, the inhibition of ROS generation by the antioxidant N‑acetyl‑L‑cysteine significantly attenuated the luteolin‑induced loss of ΔΨm and activities of caspase‑3, ‑8 and ‑9. These data suggested that luteolin exerts its pro‑apoptotic action partly through the p53‑dependent mitochondrial signaling pathway mediated by intracellular ROS, which provides a promising therapeutic candidate for patients with MDS.
Collapse
Affiliation(s)
- Weimin Dong
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Yan Lin
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Yue Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaobao Xie
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
30
|
Sompakdee V, Prawan A, Senggunprai L, Kukongviriyapan U, Samathiwat P, Wandee J, Kukongviriyapan V. Suppression of Nrf2 confers chemosensitizing effect through enhanced oxidant-mediated mitochondrial dysfunction. Biomed Pharmacother 2018; 101:627-634. [PMID: 29518609 DOI: 10.1016/j.biopha.2018.02.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/16/2023] Open
Abstract
AIMS Transcription factor Nrf2, which regulates the expression of cytoprotective and antioxidant enzymes, contributes to proliferation and resistance to chemotherapy in cancer. The inhibition of Nrf2 can sensitize cholangiocarcinoma (CCA) cells to the cytotoxicity of several chemotherapeutic agents. In this study, we investigated the mechanism of this chemosensitizing effect. MAIN METHODS KKU-100 cells were used in the study. Nrf2 expression was knocked down by siRNA and expression was validated by reverse transcription and polymerase chain reaction. Cytotoxicity was assessed by sulforhodamine B method. Intracellular reactive oxygen species (ROS) was examined by fluorescent dye, dichlorofluorescin diacetate method and mitochondrial transmembrane potential was assessed by JC1 dye assay. KEY FINDINGS Cytotoxicity of cisplatin (Cis) in KKU-100 cells was enhanced by knockdown of Nrf2 expression. The enhanced cytotoxic effect was abolished by treatment with N-acetylcysteine, TEMPOL and MnTBAP. Cells with Nrf2 knockdown or Cis treatment increased production of ROS, and ROS was markedly enhanced by a combination of Nrf2 knockdown and Cis. The increased ROS formation was associated with a decrease in mitochondrial transmembrane potential (Δψm), where this decrease was prevented by antioxidant compounds. The loss of Δψm and cell death were prevented by cyclosporine, an inhibitor of mitochondrial permeability transition pore (MPTP). Luteolin inhibited Nrf2 and markedly enhanced cytotoxicity in combination with Cis. SIGNIFICANCE Inhibition of Nrf2 is a feasible strategy in enhancing antitumor activity of chemotherapeutic agents and improving efficacy of chemotherapy in CCA.
Collapse
Affiliation(s)
- Vachirapong Sompakdee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Papavee Samathiwat
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Jaroon Wandee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Faculty of Veterinary Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
31
|
Luteolin Treatment Protects against Renal Ischemia-Reperfusion Injury in Rats. Mediators Inflamm 2017; 2017:9783893. [PMID: 29358852 PMCID: PMC5735687 DOI: 10.1155/2017/9783893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a common but severe scientific problem. Luteolin has great anti-inflammatory and antioxidant effects. In this study, we studied the effect of luteolin on renal I/R injury in rats. Intragastric administration of luteolin or saline was performed in Sprague-Dawley rats before (40 mg/kg for three days) and after (one day) renal I/R modeling. Kidney and blood samples were harvested to detect the severity of renal injury 24 hours after operation. The results showed that luteolin-treated rats exhibited milder histomorphological changes with lower scores of renal histological lesions; lower blood urea nitrogen and creatinine levels; lower renal malondialdehyde (MDA), 8-oxo-deoxyguanosine (8-OHdG), and myeloperoxidase (MPO) levels; and higher superoxide dismutase (SOD) and catalase (CAT) activities in the kidney. Luteolin attenuated the increased levels of serum and renal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, renal high mobility group box-1 (HMGB1), and nuclear factor kappa β (NF-κB) expression levels in I/R rats. Furthermore, luteolin treatment significantly reduced renal cell apoptosis and endoplasmic reticulum (ER) stress caused by renal I/R injury. In conclusion, luteolin improved renal function in I/R rats by reducing oxidative stress, neutrophil infiltration, inflammation, renal cell apoptosis, and expression of HMGB1 and NF-κB, and ER stress.
Collapse
|
32
|
Research and Development of Atractylodes lancea (Thunb) DC. as a Promising Candidate for Cholangiocarcinoma Chemotherapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5929234. [PMID: 29348769 PMCID: PMC5733893 DOI: 10.1155/2017/5929234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Abstract
Treatment and control of cholangiocarcinoma (CCA): the bile duct cancer is limited by the lack of effective chemotherapeutic drugs and alternative drugs are needed, particularly those from natural sources. This article reviews steps of research and development of Atractylodes lancea (Thunb) DC. (AL) as potential candidate for CCA chemotherapy, with adoption of the reverse pharmacology approach. Major steps include (1) reviewing of existing information on its phytochemistry and pharmacological properties, (2) screening of its activities against CCA, (3) standardization of AL, (4) nonclinical studies to evaluate anti-CCA activities, (5) phytochemistry and standardization of AL extract, (6) development of oral pharmaceutical formulation of standardized AL extract, and (7) toxicity testing of oral pharmaceutical formulation of standardized AL extract. Results from a series of our study confirm anti-CCA potential and safety profiles of both the crude extract and the finished product (oral pharmaceutical formulation of the standardized AL extract). Phases I and II clinical trials of the product to confirm tolerability and efficacy in healthy subjects and patients with advanced stage CCA will be carried out soon.
Collapse
|