1
|
Algieri C, Bernardini C, Cugliari A, Granata S, Trombetti F, Glogowski PA, Fabbri M, Morciano G, Pedriali G, Pinton P, Nesci S. Melatonin rescues cell respiration impaired by hypoxia/reoxygenation in aortic endothelial cells and affects the mitochondrial bioenergetics targeting the F 1F O-ATPase. Redox Biol 2025; 82:103605. [PMID: 40132239 PMCID: PMC11985001 DOI: 10.1016/j.redox.2025.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Melatonin is evaluated as a potential molecular therapy to counteract mitochondrial dysfunction caused by hypoxia/reoxygenation (H/R) in aortic endothelial cells (pAECs). The mitochondrial permeability transition pore (mPTP) opening undergoes a desensitizing action coupled with a reduction of superoxide anion production in mitochondria treated with melatonin. The effect on mPTP has been attributed to the direct interaction of melatonin with the hydrophilic F1 domain of Ca2+-activated F1FO-ATPase. Mutual exclusion analysis highlights an overlapping binding site between melatonin and the specific F1 inhibitor NBD-Cl. The results are corroborated by melatonin inhibition of ATPase activity of the purified F1 domain in the presence of Ca2+, but not in the presence of natural cofactor Mg2+. Moreover, the impairment of bioenergetics parameters in pAECs metabolism and the increase of oxidative stress arising by H/R injury have been rescued in cells protected by melatonin treatment.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Antonia Cugliari
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | | | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Patrycja Anna Glogowski
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, 48033, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy; Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, 70125, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, 48033, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, Cotignola, 48033, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, 44121, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy.
| |
Collapse
|
2
|
Chen Y, Shan S, Xue Q, Ren Y, Wu Q, Chen J, Yang K, Cao J. Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α. Mol Med 2025; 31:100. [PMID: 40087582 PMCID: PMC11909899 DOI: 10.1186/s10020-025-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of mortality, characterized by myocardial ischemia that induces cardiomyocyte apoptosis and subsequent cardiac dysfunction. Sirtuin 1 (Sirt1) has emerged as a key regulator of cell survival and apoptosis, particularly under hypoxic conditions. METHODS An AMI animal model was established via ligation of the left anterior descending (LAD) coronary artery. Gene expression in the infarcted region was evaluated at various time points. Sirt1 overexpression and control lentivirus were administered to the peri-infarct region of mice heart. After LAD ligation, assessment on myocardial infarct size, cardiac function, and cardiomyocyte apoptosis were performed. In vitro, primary mouse cardiomyocytes subjected to hypoxia were analyzed for gene expression, while interactions among Sirt1, Phd3, and Hif-1α were explored using diverse treatment approaches. RESULTS A significant reduction in Sirt1 and Phd3 expression, along with an increase in Hif-1α and cleaved caspase-3, was observed in a time-dependent manner post-myocardial infarction (MI). In vitro findings revealed that hypoxia decreased nuclear Sirt1 and cytoplasmic Phd3 levels while promoting a time-dependent increase in Hif-1α and cleaved caspase-3. Furthermore, Sirt1 overexpression enhanced Phd3 expression in cardiomyocytes, suppressed Hif-1α and cleaved caspase-3 levels, and alleviated hypoxia-induced cardiomyocyte apoptosis. Notably, knockdown of Phd3 negated Sirt1's inhibitory effect on Hif-1α, whereas Hif-1α knockdown promoted Sirt1 expression. Sirt1 overexpression reduced infarct size, decreased cardiomyocyte apoptosis, and improved cardiac function. CONCLUSIONS Sirt1 effectively reduces cardiomyocyte apoptosis and myocardial infarction size while enhancing cardiac function post-MI, primarily through the Phd3/Hif-1α signaling pathway.
Collapse
Affiliation(s)
- Yafen Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyao Shan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Qiqi Xue
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Yan Ren
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Qihong Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Jiawei Chen
- Department of Cardiology, Shanghai Ninth People'S Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| | - Jiumei Cao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
4
|
Tong C, Zhou B. Cardioprotective strategies in myocardial ischemia-reperfusion injury: Implications for improving clinical translation. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100278. [PMID: 40182153 PMCID: PMC11967023 DOI: 10.1016/j.jmccpl.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025]
Abstract
Ischemic heart disease is the most common cause of death and disability globally which is caused by reduced or complete cessation of blood flow to a portion of the myocardium. One of its clinical manifestations is myocardial infarction, which is commonly treated by restoring of blood flow through reperfusion therapies. However, serious ischemia-reperfusion injury (IRI) can occur, significantly undermining clinical outcomes, for which there is currently no effective therapy. This review revisits several potential pharmacological IRI intervention strategies that have entered preclinical or clinical research phases. Here, we discuss what we have learned through translational failures over the years, and propose possible ways to enhance translation efficiency.
Collapse
Affiliation(s)
- Chao Tong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518063, China
| |
Collapse
|
5
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
7
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
8
|
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, Liu B, Sun G, Tang M, Li Z, Zhang Y, Sun Y, Zhang Y. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res 2024; 206:107281. [PMID: 38942341 DOI: 10.1016/j.phrs.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Haoyue Jiang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China
| | - Bo Liu
- The first hospital of China Medical University, Department of cardiac surgery, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| |
Collapse
|
9
|
Lu Y, Li Y, Xie Y, Bu J, Yuan R, Zhang X. Exploring Sirtuins: New Frontiers in Managing Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:7740. [PMID: 39062982 PMCID: PMC11277469 DOI: 10.3390/ijms25147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
With increasing research, the sirtuin (SIRT) protein family has become increasingly understood. Studies have demonstrated that SIRTs can aid in metabolism and affect various physiological processes, such as atherosclerosis, heart failure (HF), hypertension, type 2 diabetes, and other related disorders. Although the pathogenesis of HF with preserved ejection fraction (HFpEF) has not yet been clarified, SIRTs have a role in its development. Therefore, SIRTs may offer a fresh approach to the diagnosis, treatment, and prevention of HFpEF as a novel therapeutic intervention target.
Collapse
Affiliation(s)
- Ying Lu
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Yixin Xie
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Jiale Bu
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Ruowen Yuan
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China; (Y.L.); (Y.X.); (J.B.); (R.Y.)
| |
Collapse
|
10
|
Wu J, Yang Y, Lin D, Wang Z, Ma J. SIRT3 and RORα are two prospective targets against mitophagy during simulated ischemia/reperfusion injury in H9c2 cells. Heliyon 2024; 10:e30568. [PMID: 38784556 PMCID: PMC11112282 DOI: 10.1016/j.heliyon.2024.e30568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy during myocardial ischemia/reperfusion (MI/R) exacerbates cardiomyocyte injury. Melatonin (Mel) alleviates myocardial damage by regulating mitochondrial function and mitophagy, but the role of mitophagy in melatonin-induced cardioprotection remains unclear. This study aimed to explore the roles of sirtuin3 (SIRT3) and retinoid-related orphan nuclear receptor-α (RORα) in mitophagy during simulated ischemia reperfusion (SIR) in H9c2 cells. Our data showed that mitophagy was excessively activated after SIR injury, which was consistent with reduced cell survival, enhanced oxidative responses and mitochondrial dysfunction in H9c2 myocytes. Melatonin greatly enhanced cell viability, reduced oxidative stress and improved mitochondrial function. The effects of melatonin protection were involved in excessive mitophagy inhibition, as demonstrated by the reduced levels of mitophagy-linked proteins, including Parkin, Beclin1, NIX and BNIP3, and the LC3 II/LC3 I ratio and elevations in p62. Additionally, the decreases in SIRT3 and RORα in H9c2 myocytes after SIR were reversed by melatonin, and the above effects of melatonin were eliminated by small interfering RNA (siRNA)-mediated knockdown of SIRT3 and RORα. In brief, SIRT3 and RORα are two prospective targets in the cardioprotection of melatonin against mitophagy during SIR in H9c2 myocytes.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| |
Collapse
|
11
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
12
|
Wang Y, Li Y, Ding H, Li D, Shen W, Zhang X. The Current State of Research on Sirtuin-Mediated Autophagy in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:382. [PMID: 37754811 PMCID: PMC10531599 DOI: 10.3390/jcdd10090382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.
Collapse
Affiliation(s)
- Yuqin Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| | - Dan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730106, China; (Y.W.)
| | - Wanxi Shen
- Qinghai Provincial People’s Hospital, Qinghai University, Xining 810007, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou 730031, China;
| |
Collapse
|
13
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Elmahallawy EK, Alsharif KF, Alblihd MA, Hamad AA, Nasreldin N, Alsanie W, Aljoudi AM, Oyouni AAA, Al-Amer OM, Albarakati AJA, Lokman MS, Albrakati A, Ali FAZ. Melatonin ameliorates serobiochemical alterations and restores the cardio-nephro diabetic vascular and cellular alterations in streptozotocin-induced diabetic rats. Front Vet Sci 2023; 10:1089733. [PMID: 37065258 PMCID: PMC10102477 DOI: 10.3389/fvets.2023.1089733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
Melatonin possesses a wide range of pharmacological activities, including antidiabetic properties. Diabetes mellitus (DM) induces several physiopathological changes in body organs, which could be observed lately after systemic failure. In the current study, we aimed to investigate the serobiochemical changes and the histopathological picture in the diabetic heart and the kidney early before chronic complications and highlight the association between hyperglycemia, glomerular alterations, and cardiovascular changes. In addition, the role of melatonin in the treatment of cardio-nephro diabetic vascular and cellular adverse changes in streptozotocin-induced diabetic rats was also studied. A total of 40 mature Wistar albino rats were distributed into five groups; (1) control untreated rats, (2) diabetic mellitus untreated (DM) rats, in which DM was induced by the injection of streptozotocin (STZ), (3) control melatonin-treated (MLT), (4) melatonin-treated diabetic (DM + MLT) rats, in which melatonin was injected (10 mg/kg/day, i.p.) for 4 weeks, and (5) insulin-treated diabetic (DM + INS) rats. The serum biochemical analysis of diabetic STZ rats showed a significant (P < 0.05) increase in the concentrations of blood glucose, total oxidative capacity (TOC), CK-MB, endothelin-1, myoglobin, H-FABP, ALT, AST, urea, and creatinine as compared to control rats. In contrast, there was a significant (P < 0.05) decrease in serum concentration of insulin, total antioxidative capacity (TAC), total nitric oxide (TNO), and total protein level in DM rats vs. the control rats. Significant improvement in the serobiochemical parameters was noticed in both (DM + MLT) and (DM + INS) groups as compared with (DM) rats. The histological examination of the DM group revealed a disorder of myofibers, cardiomyocyte nuclei, and an increase in connective tissue deposits in between cardiac tissues. Severe congestion and dilation of blood capillaries between cardiac muscle fibers were also observed. The nephropathic changes in DM rats revealed various deteriorations in glomeruli and renal tubular cells of the same group. In addition, vascular alterations in the arcuate artery at the corticomedullary junction and interstitial congestion take place. Melatonin administration repaired all these histopathological alterations to near-control levels. The study concluded that melatonin could be an effective therapeutic molecule for restoring serobiochemical and tissue histopathological alterations during diabetes mellitus.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- *Correspondence: Ehab Kotb Elmahallawy
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Khalaf F. Alsharif
| | - Mohamed A. Alblihd
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Osama M. Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
16
|
Chen Y, Zhang SP, Gong WW, Zheng YY, Shen JR, Liu X, Gu YH, Shi JH, Meng GL. Novel Therapeutic Potential of Retinoid-Related Orphan Receptor α in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24043462. [PMID: 36834872 PMCID: PMC9959049 DOI: 10.3390/ijms24043462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The retinoid-related orphan receptor α (RORα) is one subfamily of nuclear hormone receptors (NRs). This review summarizes the understanding and potential effects of RORα in the cardiovascular system and then analyzes current advances, limitations and challenges, and further strategy for RORα-related drugs in cardiovascular diseases. Besides regulating circadian rhythm, RORα also influences a wide range of physiological and pathological processes in the cardiovascular system, including atherosclerosis, hypoxia or ischemia, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, hypertension, and myocardial hypertrophy. In terms of mechanism, RORα was involved in the regulation of inflammation, apoptosis, autophagy, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial function. Besides natural ligands for RORα, several synthetic RORα agonists or antagonists have been developed. This review mainly summarizes protective roles and possible mechanisms of RORα against cardiovascular diseases. However, there are also several limitations and challenges of current research on RORα, especially the difficulties on the transformability from the bench to the bedside. By the aid of multidisciplinary research, breakthrough progress on RORα-related drugs to combat cardiovascular disorder may appear.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu-Ping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei-Wei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yang-Yang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie-Ru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Yun-Hui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| |
Collapse
|
17
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Chen S, Sun P, Li Y, Shen W, Wang C, Zhao P, Cui H, Xue JY, Du GQ. Melatonin activates the Mst1-Nrf2 signaling to alleviate cardiac hypertrophy in pulmonary arterial hypertension. Eur J Pharmacol 2022; 933:175262. [PMID: 36100129 DOI: 10.1016/j.ejphar.2022.175262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Among pulmonary arterial hypertension (PAH) patients, right ventricular (RV) functioning has been considered a major determining factor for cardiac capacity and survival. However, despite the recognition of the clinical importance for preserving RV functioning, no effective treatments are currently available for RV failure. This study aims to suggest one such possible treatment, through investigating the cardio-protective capabilities of the anti-oxidant, melatonin (Mel), for treating adverse RV remodeling in PAH, along with its underlying mechanisms. Arginine vasopressin induced neonatal rat cardiomyocyte hypertrophy in vitro; in vivo, PAH was induced in rats through intraperitoneal monocrotaline (MCT) injections, and Mel was administered intraperitoneally 24 h prior to MCT. Mel reduced rat cardiomyocyte hypertrophy and mitochondrial oxidative stress in vitro by activating the Mst1-Nrf2 pathway, which were all reversed upon siRNA knockdown of Mst1. Likewise, in vivo, Mel pre-treatment significantly ameliorated MCT-induced deterioration in cardiac function, RV hypertrophy, fibrosis and dilation. These beneficial effects were also associated with Mst1-Nrf2 pathway up regulation and its associated reduction in oxidative stress, as evidenced by the decrease in RV malondialdehyde content. Notably, results from Mel treatment were similar, or even superior, to those obtained from N-acetyl cysteine (NAC), which has already been-confirmed as an anti-oxidative treatment for PAH. By contrast, co-treatment with the Mst1 inhibitor XMU-MP-1 reversed all of those Mel-associated beneficial effects. Our findings thus identified Mel as a potent cardio-protective agent against the onset of maladaptive RV remodeling, through enhancement of the anti-oxidative response via Mst1-Nrf2 pathway activation.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqian Shen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Cui
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing-Yi Xue
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Guo-Qing Du
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
19
|
Chen S, Li Y, Fu S, Li Y, Wang C, Sun P, Li H, Tian J, Du GQ. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol 2022; 206:115265. [DOI: 10.1016/j.bcp.2022.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
20
|
Melatonin Alleviates PM 2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8688643. [PMID: 35720187 PMCID: PMC9200552 DOI: 10.1155/2022/8688643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Background Exposure to fine particulate matter (PM2.5) is associated with the risk of developing metabolic-associated fatty liver disease (MAFLD). Melatonin is the main secreted product of the pineal gland and has been reported to prevent hepatic lipid metabolism disorders. However, it remains uncertain whether melatonin could protect against PM2.5-induced MAFLD. Methods and Results The purpose of our study was to investigate the mitigating effects of melatonin on hepatic fatty degeneration accelerated by PM2.5 in vivo and in vitro. Histopathological analysis and ultrastructural images showed that PM2.5 induced hepatic steatosis and lipid vacuolation in ApoE−/− mice, which could be effectively alleviated by melatonin administration. Increased ROS production and decreased expression of antioxidant enzymes were detected in the PM2.5-treated group, whereas melatonin showed recovery effects after PM2.5-induced oxidative damage in both the liver and L02 cells. Further investigation revealed that PM2.5 induced oxidative stress to activate PTP1B, which in turn had a positive feedback regulation effect on ROS release. When a PTP1B inhibitor or melatonin was administered, SP1/SREBP-1 signalling was effectively suppressed, while Nrf2/Keap1 signalling was activated in the PM2.5-treated groups. Conclusion Our study is the first to show that melatonin alleviates the disturbance of PM2.5-triggered hepatic steatosis and liver damage by regulating the ROS-mediated PTP1B and Nrf2 signalling pathways in ApoE−/− mice. These results suggest that melatonin administration might be a prospective therapy for the prevention and treatment of MAFLD associated with air pollution.
Collapse
|
21
|
Shang H, VanDusseldorp TA, Ma R, Zhao Y, Cholewa J, Zanchi NE, Xia Z. Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J Physiol Biochem 2022; 78:709-719. [PMID: 35727484 DOI: 10.1007/s13105-022-00904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
As a key mechanism to maintain cellular homeostasis under stress conditions, autophagy/mitophagy is related to the occurrence of metabolic disorders, neurodegenerative diseases, cancer, and other aging-related diseases, but the relevant signal pathways regulating autophagy have not been clarified. Mammalian sterile 20-like kinase 1 (MST1) is a central regulatory protein of many metabolic pathways involved in the pathophysiological processes of aging and aging-related diseases and has become a critical integrator affecting autophagic signaling. Recent studies show that MST1 not only suppresses autophagy through directly phosphorylating Beclin-1 and/or inhibiting the protein expression of silent information regulator 1 (SIRT1) in the cytoplasm, but also inhibits BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3)-, FUN14 domain containing 1 (FUNDC1)-, and Parkin (Parkinson protein 2)-mediated mitophagy by interacting with factors such as Ras association domain family 1A (RASSF1A). Indeed, a common pharmacological strategy for anti-aging is to induce autophagy/mitophagy through MST1 inhibition. This article reviews the role and mechanism of MST1 in regulating autophagy during aging, to provide evidence for the development of drugs targeting MST1.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Ranggui Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), Sao Luis, MA, Brazil
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Sao Luis, MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China.
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.
| |
Collapse
|
22
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Deng HF, Zou J, Wang N, Ma H, Zhu LL, Liu K, Liu MD, Wang KK, Xiao XZ. Nicorandil alleviates cardiac remodeling and dysfunction post -infarction by up-regulating the nucleolin/autophagy axis. Cell Signal 2022; 92:110272. [PMID: 35122988 DOI: 10.1016/j.cellsig.2022.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study aimed to investigate whether the drug nicorandil can improve cardiac remodeling after myocardial infarction (MI) and the underlying mechanisms. METHODS Mouse MI was established by the ligation of the left anterior descending coronary artery and H9C2 cells were cultured to investigate the underlying molecular mechanisms. The degree of myocardial collagen (Col) deposition was evaluated by Masson's staining. The expressions of nucleolin, autophagy and myocardial remodeling-associated genes were measured by Western blotting, qPCR, and immunofluorescence. The apoptosis of myocardial tissue cells and H9C2 cells were detected by TUNEL staining and flow cytometry, respectively. Autophagosomes were observed by transmission electron microscopy. RESULTS Treatment with nicorandil mitigated left ventricular enlargement, improved the capacity of myocardial diastolic-contractility, decreased cardiomyocyte apoptosis, and inhibited myocardial fibrosis development post-MI. Nicorandil up-regulated the expression of nucleolin, promoted autophagic flux, and decreased the expressions of TGF-β1 and phosphorylated Smad2/3, while enhanced the expression of BMP-7 and phosphorylated Smad1 in myocardium. Nicorandil decreased apoptosis and promoted autophagic flux in H2O2-treated H9C2 cells. Autophagy inhibitors 3-methyladenine (3MA) and chloroquine diphosphate salt (CDS) alleviated the effects of nicorandil on apoptosis. Knockdown of nucleolin decreased the effects of nicorandil on apoptosis and nicorandil-promoted autophagic flux of cardiomyocytes treated with H2O2. CONCLUSIONS Treatment with nicorandil alleviated myocardial remodeling post-MI through up-regulating the expression of nucleolin, and subsequently promoting autophagy, followed by regulating TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Hua-Fei Deng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Li-Li Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Mei-Dong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kang-Kai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| | - Xian-Zhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Role of the Antioxidant Activity of Melatonin in Myocardial Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11040627. [PMID: 35453312 PMCID: PMC9032762 DOI: 10.3390/antiox11040627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemia-reperfusion injury is a common problem in the age of interventional cardiology; it is primarily mediated by oxidative stress and reactive agents. Melatonin has antioxidative properties that make its use promising for treating ischemia-reperfusion injury. Multiple experimental studies in murine and porcine models have been performed with good results. Clinical trials have also been conducted but given their heterogeneity, no conclusive results can be made. Melatonin pharmacokinetic properties are not ideal; therefore, many analogs have been proposed with improved characteristics, and some studies have evaluated their efficacy in animal models, but clinical trials are needed to recommend their use. In this review, we expose the results of the most impactful studies regarding melatonin use in ischemia-reperfusion injury.
Collapse
|
25
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
26
|
Sun X, Sun P, Zhen D, Xu X, Yang L, Fu D, Wei C, Niu X, Tian J, Li H. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol 2022; 437:115902. [DOI: 10.1016/j.taap.2022.115902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
|
27
|
孔 令, 徐 臣, 孙 娜, 梁 飞, 魏 明, 苏 兴. [Melatonin alleviates myocardial ischemia-reperfusion injury in mice by inhibiting inflammatory response via activating Nrf2 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1165-1170. [PMID: 34549706 PMCID: PMC8527228 DOI: 10.12122/j.issn.1673-4254.2021.08.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of melatonin against myocardial ischemia-reperfusion (IR) injury in mice and the role of Nrf2 signaling in mediating this effect. METHODS C57/bl6 mice were randomized into sham-operated group(Sham), IR group(IR), IR with melatonin treatment(melatonin+IR)group, and IR with melatonin and Nrf2 inhibitor ML-385 (melatonin+ML-385+IR) group.In the latter 3 groups, mouse models of myocardial IR injury were established by ligation of the left anterior descending coronary artery.The infarct size was measured with Evans blue/TTC staining, and serum LDH level was detected using ELISA.The ejection fraction (EF) and fractional shortening (FS) of the mice were measured using Vevo software.The expressions of Bcl2, Bax, Nrf2, Nrf2 substrates NQO-1 and HO-1, TNF-α, IL-1β, and IL-6 in the myocardial tissues were detected with Western blotting. RESULTS Compared with the sham-operated mice, the mouse models of myocardial IR injury showed significantly increased infarct size and serum LDH levels (P < 0.01) with obviously decreased EF and FS (P < 0.01).The mouse models also showed significantly increased expressions of Bax, TNF-α, IL-1β and IL-6, decreased expression of Bcl2, Nrf2, NQO-1, and HO-1, and increased apoptotic index and TNF-α expression in the myocardial tissue(P < 0.01).Melatonin treatment significantly decreased the infarct size, serum LDH levels, the expressions of Bax, TNF-α, IL-1β and IL-6(P < 0.01), lowered the apoptotic index, and increased the expressions of Bcl2, Nrf2, NQO-1, and HO-1 in the mouse models(P < 0.01).The effects of melatonin were obviously blocked by ML-385 treatment in the mouse models. CONCLUSION Melatonin can alleviate myocardial IR injury in mice by inhibiting inflammatory response via activation of Nrf2 signaling.
Collapse
Affiliation(s)
- 令恒 孔
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 臣年 徐
- 北部战区总医院心血管外科, 辽宁 沈阳 110016Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - 娜 孙
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 飞 梁
- 西安医学院药学院, 陕西 西安 710021School of Pharmacy, Xi′an Medical University, Xi′an 710021, China
| | - 明 魏
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| | - 兴利 苏
- 西安医学院基础部基础医学研究所, 陕西 西安 710021Institute of Basic Medical Science, Xi′an Medical University, Xi′an 710021, China
| |
Collapse
|
28
|
Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon 2021; 7:e06474. [PMID: 33748504 PMCID: PMC7970364 DOI: 10.1016/j.heliyon.2021.e06474] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathy and pancreatic injury are health issues associated with type 2 diabetes mellitus (T2DM) and are characterized by elevated oxidative stress, inflammation and apoptosis. Melatonin (MLT) is a hormone with multifunctional antioxidant activity. The protective effects of MLT on the heart and pancreas during the early development of diabetic cardiomyopathy and pancreatic injury were investigated in male Wistar rats with T2DM. MLT (10 mg/kg) was administered daily by gavage for 15 days after diabetic induction. Treatment of diabetic rats with MLT significantly normalized the levels of serum glucose, HbA1-c, and the lipid profile and improved the insulin levels and insulin resistance compared with diabetic rats, affirming its antidiabetic effect. MLT significantly prevented the development of oxidative stress and sustained the levels of glutathione and glutathione peroxidase activity in the heart and pancreas of diabetic animals, indicating its antioxidant capacity. Additionally, MLT prevented the increase in proinflammatory cytokines and expression of Bax, caspase-3 and P53. Furthermore, MLT enhanced the anti-inflammatory cytokine IL-10 and antiapoptotic protein Bcl-2. MLT controlled the levels of troponin T and creatine kinase-MB and lactate dehydrogenase activity, indicating its anti-inflammatory and antiapoptotic effects. Histological examinations confirmed the protective effects of MLT on T2DM-induced injury in the myocardium, pancreas and islets of Langerhans. In conclusion, the protective effects of melatonin on the heart and pancreas during the early development of T2DM are attributed to its antihyperglycemic, antilipidemic and antioxidant influences as well as its remarkable anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
| | | | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I. Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E. Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
29
|
Hardeland R. Sirtuins, melatonin, and the relevance of circadian oscillators. SIRTUIN BIOLOGY IN MEDICINE 2021:137-151. [DOI: 10.1016/b978-0-12-814118-2.00011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R, Caccamo D. Is Melatonin the Cornucopia of the 21st Century? Antioxidants (Basel) 2020; 9:antiox9111088. [PMID: 33167396 PMCID: PMC7694322 DOI: 10.3390/antiox9111088] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Caccamo
- Correspondence: ; Tel.: +39-090-221-3386 or +39-090-221-3389
| |
Collapse
|
31
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
32
|
Wu X, Liu Z, Yu XY, Xu S, Luo J. Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev 2020; 41:314-341. [PMID: 32969064 DOI: 10.1002/med.21733] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
The global incidence of cardiac diseases is expected to increase in the coming years, imposing a substantial socioeconomic burden on healthcare systems. Autophagy is a tightly regulated lysosomal degradation mechanism important for cell survival, homeostasis, and function. Accumulating pieces of evidence have indicated a major role of autophagy in the regulation of cardiac homeostasis and function. It is well established that dysregulation of autophagy in cardiomyocytes is involved in cardiac hypertrophy, myocardial infarction, diabetic cardiomyopathy, and heart failure. In this sense, autophagy seems to be an attractive therapeutic target for cardiac diseases. Recently, multiple natural products/phytochemicals, such as resveratrol, berberine, and curcumin have been shown to regulate cardiomyocyte autophagy via different pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in various cardiac diseases and the pharmacological basis and therapeutic potential of reported natural products in cardiac diseases by modifying autophagic processes.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zumei Liu
- Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Wang Y, Han D, Zhou T, Zhang J, Liu C, Cao F, Dong N. Melatonin ameliorates aortic valve calcification via the regulation of circular RNA CircRIC3/miR-204-5p/DPP4 signaling in valvular interstitial cells. J Pineal Res 2020; 69:e12666. [PMID: 32369647 DOI: 10.1111/jpi.12666] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent with marked morbidity and mortality rates and a lack of pharmaceutical treatment options because its mechanisms are unknown. Melatonin is reported to exert atheroprotective effects. However, whether melatonin protects against aortic valve calcification, a disease whose pathogenesis shares many similarities to that of atherosclerosis, and the underlying molecular mechanisms remain unknown. In this study, we found that the intragastric administration of melatonin for 24 weeks markedly ameliorated aortic valve calcification in high cholesterol diet (HCD)-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased transvalvular peak jet velocity and increased aortic valve area), and decreased osteogenic differentiation marker (Runx2, osteocalcin, and osterix) expression in the aortic valves. Consistent with these in vivo data, we also confirmed the suppression of in vitro calcification by melatonin in hVICs. Mechanistically, melatonin reduced the level of CircRIC3, a procalcification circular RNA, which functions by acting as a miR-204-5p sponge to positively regulate the expression of the procalcification gene dipeptidyl peptidase-4 (DPP4). Furthermore, CircRIC3 overexpression abolished the inhibitory effects of melatonin on hVIC osteogenic differentiation. Taken together, our results suggest that melatonin ameliorates aortic valve calcification via the regulation of CircRIC3/miR-204-5p/DPP4 signaling in hVICs; therefore, melatonin medication might be considered a novel pharmaceutical strategy for CAVD treatment.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Xu CN, Kong LH, Ding P, Liu Y, Fan ZG, Gao EH, Yang J, Yang LF. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165848. [PMID: 32473999 DOI: 10.1016/j.bbadis.2020.165848] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Cardiac hypertrophy, including hypertension and valvular dysfunction, is a pathological feature of many cardiac diseases that ultimately leads to heart failure. Melatonin confers a protective role against pathological cardiac hypertrophy, but the underlying mechanisms remain elusive. In the present study, we hypothesized that melatonin protects against pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Male C57BL/6 mice that received adenovirus carrying cardiac-specific Atg5 (under the cTNT promoter; Ad-cTNT-Atg5) underwent transverse aortic constriction (TAC) or sham operation and received an intraperitoneal injection of melatonin (10 mg/kg/d), vehicle or LY294002 (10 mg/kg/d) for 8 weeks. Melatonin treatment for 8 weeks markedly attenuated cardiac hypertrophy and restored impaired cardiac function, as indicated by a decreased HW/BW ratio, reduced cell cross-sectional area and fibrosis, downregulated the mRNA levels of ANP, BNP, and β-MHC and ameliorated adverse effects on the LVEF and LVFS. Melatonin treatment also inhibited apoptosis and alleviated autophagy dysfunction. Furthermore, melatonin inhibited Akt/mTOR pathway activation, while these effects were blocked by LY294002. In addition, the effect of melatonin regulation on TAC-induced autophagy dysfunction was inhibited by LY294002 or cardiac-specific Atg5 overexpression. As expected, Akt/mTOR pathway inhibition or cardiac-specific Atg5 overexpression restrained melatonin alleviation of pressure overload-induced cardiac hypertrophy. These results demonstrated that melatonin ameliorated pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Chen-Nian Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Ling-Heng Kong
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China; School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Peng Ding
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Zhen-Ge Fan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Er-He Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Li-Fang Yang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an 710003, China.
| |
Collapse
|
35
|
Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother 2020; 128:110260. [PMID: 32447213 DOI: 10.1016/j.biopha.2020.110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.
Collapse
Affiliation(s)
- Yan-Jun Song
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| | - Chong-Bin Zhong
- Department of Cardiology, Heart Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, PR China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| |
Collapse
|
36
|
Qi Y, Sun D, Yang W, Xu B, Lv D, Han Y, Sun M, Jiang S, Hu W, Yang Y. Mammalian Sterile 20-Like Kinase (MST) 1/2: Crucial Players in Nervous and Immune System and Neurological Disorders. J Mol Biol 2020; 432:3177-3190. [PMID: 32198112 DOI: 10.1016/j.jmb.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
As central components of the Hippo signaling pathway in mammals, the mammalian sterile 20-like kinase 1 (MST1) and MST2 protein kinases regulate cell proliferation, survival, and death and are involved in the homeostasis of many tissues. Recent studies have elucidated the roles of MST1 and MST2 in the nervous system and immune system, particularly in neurological disorders, which are influenced by aging. In this review, we provide a comprehensive overview of these research areas. First, the activation mechanisms and roles of MST1 and MST2 in neurons, non-neuronal cells, and immune cells are introduced. The roles of MST1 and MST2 in neurological disorders, including brain tumors, cerebrovascular diseases, neurodegenerative disorders, and neuromuscular disorders, are then presented. Finally, the existing obstacles for further research are discussed. Collectively, the information compiled herein provides a common framework for the function of MST1 and MST2 in the nervous system, should contribute to the design of further experiments, and sheds light on potential treatments for aging associated neurological disorders.
Collapse
Affiliation(s)
- Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dewen Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
37
|
Beneficial Effects of Melatonin on Apolipoprotein-E Knockout Mice by Morphological and 18F-FDG PET/CT Assessments. Int J Mol Sci 2020; 21:ijms21082920. [PMID: 32331251 PMCID: PMC7216051 DOI: 10.3390/ijms21082920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis represents one of the main risk factors for the development of cardiovascular diseases. Their etiologies have been studied in recent years in order to better define therapeutic targets for intervention and to identify diagnostic methods. Two different subtypes of macrophages, M1 and M2, have been described in physiological conditions. They can also be found in the atherosclerotic process, where they both have opposite roles in disease progression. Perivascular brown adipose tissue is also involved in inflammation and endothelial damage. In this work, we provide insights into the protective role of melatonin in the atherosclerotic process by morphological and 18F-FDG-PET/CT analyses. In particular, we examined the effects of melatonin on pathways that are linked to atherosclerosis development. We showed that melatonin, by suppressing M1 activity, reduced inflammation and directed macrophage polarization toward the M2 macrophage subtype. Moreover, melatonin preserved the activity of perivascular brown adipose tissue. In addition, 18F-FDG uptake is very high in mice treated with melatonin, confirming that other factors may alter 18F-FDG distribution. In conclusion, we showed that melatonin affects inflammatory pathways that have been linked to atherosclerosis, assessed the relationships of the 18F-FDG PET/CT parameters with macrophage markers and the production of their cytokines, which that have been defined by morphological evaluations.
Collapse
|
38
|
Xiong Z, Li Y, Zhao Z, Zhang Y, Man W, Lin J, Dong Y, Liu L, Wang B, Wang H, Guo B, Li C, Li F, Wang H, Sun D. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165806. [PMID: 32320827 DOI: 10.1016/j.bbadis.2020.165806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Fatty Acids/metabolism
- Fatty Acids/toxicity
- Forkhead Box Protein O3/agonists
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation
- Hepatocyte Growth Factor
- Humans
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase Kinase 1/genetics
- MAP Kinase Kinase Kinase 1/metabolism
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidation-Reduction
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Signal Transduction
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengqing Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
39
|
Li HR, Wang C, Sun P, Liu DD, Du GQ, Tian JW. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. J Cell Mol Med 2020; 24:3634-3646. [PMID: 32068341 PMCID: PMC7131936 DOI: 10.1111/jcmm.15057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
There are increasing concerns related to the cardiotoxicity of doxorubicin in the clinical setting. Recently, melatonin has been shown to exert a cardioprotective effect in various cardiovascular diseases, including cardiotoxic conditions. In this study, we examined the possible protective effects of melatonin on doxorubicin‐induced cardiotoxicity and explored the underlying mechanisms related to this process. We found that in vitro doxorubicin treatment significantly decreased H9c2 cell viability and induced apoptosis as manifested by increased TUNEL‐positive cells, down‐regulation of anti‐apoptotic protein Bcl‐2, as well as up‐regulation of pro‐apoptotic protein Bax. This was associated with increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potentials (MMP). In vivo, five weeks of doxorubicin treatment significantly decreased cardiac function, as evaluated by echocardiography. TUNEL staining results confirmed the increased apoptosis caused by doxorubicin. On the other hand, combinational treatment of doxorubicin with melatonin decreased cardiomyocyte ROS and apoptosis levels, along with increasing MMP. Such doxorubicin‐melatonin co‐treatment alleviated in vivo doxorubicin‐induced cardiac injury. Western Blots, along with in vitro immunofluorescence and in vivo immunohistochemical staining confirmed that doxorubicin treatment significantly down‐regulated Yes‐associated protein (YAP) expression, while YAP levels were maintained under co‐treatment of doxorubicin and melatonin. YAP inhibition by siRNA abolished the protective effects of melatonin on doxorubicin‐treated cardiomyocytes, with reversed ROS level and apoptosis. Our findings suggested that melatonin treatment attenuated doxorubicin‐induced cardiotoxicity through preserving YAP levels, which in turn decreases oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hai-Ru Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dan-Dan Liu
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo-Qing Du
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jia-Wei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
40
|
Zhou Y, Wang C, Si J, Wang B, Zhang D, Ding D, Zhang J, Wang H. Melatonin up-regulates bone marrow mesenchymal stem cells osteogenic action but suppresses their mediated osteoclastogenesis via MT 2 -inactivated NF-κB pathway. Br J Pharmacol 2020; 177:2106-2122. [PMID: 31900938 DOI: 10.1111/bph.14972] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Melatonin is a neurohormone involved in bone homeostasis. Melatonin directs bone remodelling and the role of bone marrow mesenchymal stem cells (BMMSCs) in the regulating melatonin-mediated bone formation-resorption balance remains undefined. EXPERIMENTAL APPROACH Osteoporosis models were established and bone tissue and serum were collected to test the effects of melatonin on bone homeostasis. Melatonin receptors were knocked down, the NF-κB signalling pathway and receptor activator of NF-κB ligand (RANKL) expression were investigated. Communication between bone marrow mesenchymal stem cells and osteoclasts was detected with direct-contact or indirect-contact system. KEY RESULTS Bone loss and microstructure disorder in mice were reversed after melatonin treatment, as a result of anabolic and anti-resorptive effects. In vitro, a physiological (low) concentration of melatonin promoted the bone marrow mesenchymal stem cells, osteogenic lineage commitment and extracellular mineralization but had no impact on extracellular matrix synthesis. After MT knockdown, especially MT2 , the positive effects of melatonin on osteogenesis were attenuated. The canonical NF-κB signalling pathway was the first discovered downstream signalling pathway after MT receptor activation and was found to be down-regulated by melatonin during osteogenesis. Melatonin suppressed BMMSC-mediated osteoclastogenesis by inhibiting RANKL production in BMMSCs and this effect only occurred when BMMSCs and osteoclast precursors were co-cultured in an indirect-contact manner. CONCLUSION AND IMPLICATIONS Our work suggests that melatonin plays a crucial role in bone balance, significantly accelerates the osteogenic differentiation of bone marrow mesenchymal stem cells by suppressing the MT2 -dependent NF-κB signalling pathway, and down-regulates osteoclastogenesis via RANKL paracrine secretion.
Collapse
Affiliation(s)
- Yi Zhou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Chaowei Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jinyan Si
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Baixiang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Denghui Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ding Ding
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
41
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019; 10:1360. [PMID: 31258534 PMCID: PMC6587666 DOI: 10.3389/fimmu.2019.01360] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Yeung YT, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res 2019; 143:151-165. [PMID: 30910741 DOI: 10.1016/j.phrs.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Human beings are facing emerging degenerative and cancer diseases, in large part, as a consequence of increased life expectancy. In the near future, researchers will have to put even more effort into fighting these new challenges, one of which will be prevention of cancer while continuing to improve the aging process through this increased life expectancy. In the last few decades, relevance of the Hippo pathway on cancer has become an important study since it is a major regulator of organ size control and proliferation. However, its deregulation can induce tumors throughout the body by regulating cell proliferation, disrupting cell polarity, releasing YAP and TAZ from the Scribble complexes and facilitating survival gene expression via activation of TEAD transcription factors. This pathway is also involved in some of the most important mechanisms that control the aging processes, such as the AMP-activated protein kinase and sirtuin pathways, along with autophagy and oxidative stress response/antioxidant defense. This could be the link between two tightly connected processes that could open a broader range of targeted molecular therapies to fight aging and cancer. Therefore, available knowledge of the processes involved in the Hippo pathway during aging and cancer must necessarily be well understood.
Collapse
Affiliation(s)
- Yiu To Yeung
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mario F Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
44
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019. [PMID: 31258534 DOI: 10.3389/fimmu.2019.01360/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Cheng Z, Zhang M, Hu J, Lin J, Feng X, Wang S, Wang T, Gao E, Wang H, Sun D. Cardiac-specific Mst1 deficiency inhibits ROS-mediated JNK signalling to alleviate Ang II-induced cardiomyocyte apoptosis. J Cell Mol Med 2018; 23:543-555. [PMID: 30338935 PMCID: PMC6307828 DOI: 10.1111/jcmm.13958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/15/2023] Open
Abstract
Apoptosis is associated with various myocardial diseases. Angiotensin II (Ang II) plays a central role in the pathogenesis of RAAS‐triggered cardiac apoptosis. Our previous studies showed that mammalian Ste20‐like kinase 1 (Mst1) aggravates cardiac dysfunction in cardiomyocyte under pathological conditions, but its role in Ang II‐mediated cardiomyocyte apoptosis is not known. We addressed this in the present study by investigating whether cardiac‐specific Mst1 knockout can alleviate Ang II‐induced cardiomyocyte apoptosis along with the underlying mechanisms. In vitro and in vivo experiments showed that Ang II increased intracellular reactive oxygen species (ROS) production and cardiomyocyte apoptosis; these were reversed by administration of the ROS scavenger N‐acetylcysteine and by Mst1 deficiency, which suppressed c‐Jun N‐terminal kinase (JNK) phosphorylation and downstream signaling. Interestingly, Mst1 knockout failed to alleviate Ang II‐induced phosphorylation of extracellular signal‐regulated kinase 1/2, and inactivated apoptosis signal‐regulating kinase1 (ASK1) by promoting its association with thioredoxin (Trx), which reversed the Ang II‐induced activation of the ASK1–JNK pathway and suppressed Ang II‐induced cardiomyocyte apoptosis. Thus, cardiac‐specific Mst1 knockout inhibits ROS‐mediated JNK signalling to block Ang II‐induced cardiomyocyte apoptosis, suggesting Mst1 as a potential therapeutic target for treatment of RAAS‐activated heart failure.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
46
|
Mst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptors. J Mol Cell Cardiol 2018; 125:117-128. [PMID: 30193956 DOI: 10.1016/j.yjmcc.2018.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
AIMS Angiotension II (Ang II) plays a central role in the pathogenesis of renin-angiotensin-aldosterone system (RAAS)-induced heart failure. Mst1 exerts its function in cardiomyocytes subjected to pathological stimuli via inhibiting autophagy and aggravating apoptosis, but its role in RAAS-mediated cardiac injury is still unknown. Here, we aimed to determine whether cardiomyocyte-specific Mst1 knockout can alleviate Ang II-induced cardiac injury by improving cardiomyocyte autophagy and whether these functions depend on Ang II receptors. RESULTS Mst1 knockout alleviated Ang II-induced heart failure, without affecting blood pressure and compensatory concentric hypertrophy. Mst1 specific knockout improved the effects of Ang II on cardiomyocyte autophagy, as evidenced by further increased LC3-II expression and decreased P62 expression. More typical autophagosomes accompanied by less damaged mitochondria were also observed by electron microscopy in Ang II-treated Mst1Δ/Δ mice. In vitro, Mst1 knockdown promoted cardiomyocyte autophagic flux, as demonstrated by more GFP-mRFP-LC3 puncta per cell. Increased LC3-II and decreased P62 expression both in the presence and absence of chloroquine were observed in Mst1 knockdown cardiomyocytes administered with Ang II. Treatment with 3-MA, an inhibitor of autophagy, abolished the beneficial effects of Mst1 knockout against Ang II-induced cardiac dysfunction. The compensatory effects of Ang II on upregulated autophagy were associated with Mst1 inhibition. Interestingly, the knockdown or antagonization of AT1R inhibited cardiomyocyte autophagy, which may represent a threat to cardiac function. Importantly, Mst1 knockout consistently enhanced cardiomyocyte autophagy following the knockdown or blocking of AT1R and AT2R. CONCLUSION Cardiomyocyte-specific Mst1 knockout alleviates Ang II-induced cardiac injury by enhancing cardiomyocyte autophagy. Mst1 inhibition may counteract the undesirable effects of Ang II receptors blockage on cardiomyocyte autophagy and represent a promising complementary treatment strategy against Ang II-induced cardiac injury.
Collapse
|
47
|
Gao Y, Zhao Y, Yuan A, Xu L, Huang X, Su Y, Gao L, Ji Q, Pu J, He B. Effects of farnesoid-X-receptor SUMOylation mutation on myocardial ischemia/reperfusion injury in mice. Exp Cell Res 2018; 371:301-310. [PMID: 30098335 DOI: 10.1016/j.yexcr.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury induces excessive cellular apoptosis and contributes significantly to final infarct size. We previously demonstrated that a nuclear receptor, Farnesoid X receptor (FXR), plays a crucial role in mediating myocardial apoptosis. The FXR functions are regulated by post translational modifications (PTM). However, whether the proapoptotic effect of FXR in MI/R injury is regulated by PTM remains unclear. Here, we aimed to study the effect of SUMOylation, a PTM involved in the pathogenesis of MI/R injury per se, on the proapoptotic effect of FXR in MI/R injury. We observed that FXR could be SUMOylated in heart tissues, and FXR SUMOylation levels were downregulated in ischemia reperfused myocardium. By overexpression of SUMOylation-defective FXR mutant, it was demonstrated that decreased SUMOylation augmented the detrimental effect of FXR, via activation of mitochondrial apoptosis pathway and autophagy dysfunction in MI/R injury. Further mechanistic studies suggested that decreased SUMOylation levels increased the transcription activity of FXR, and the subsequently upregulated FXR target gene SHP mediated the proapoptotic effects of FXR. Taken together, we provided the first evidence that the cardiac effects of FXR could be regulated by SUMOylation, and that manipulating FXR SUMOylation levels may hold therapeutic promise for constraining MI/R injury.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Longwei Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, China
| | - Yuanyuan Su
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingchen Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
48
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
49
|
Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, Lin J, Zhang M, Hu J, Fan Y, Reiter RJ, Wang H, Sun D. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 2018; 22:5132-5144. [PMID: 30063115 PMCID: PMC6156356 DOI: 10.1111/jcmm.13802] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.
Collapse
Affiliation(s)
- Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|