1
|
Jung P, Briegel-Williams L, Dultz S, Neff C, Heibrock G, Monger C, Pietrasiak N, Keller L, Hale J, Friedek J, Schmidt T, Guggenberger G, Lakatos M. Hard shell, soft blue-green core: Ecology, processes, and modern applications of calcification in terrestrial cyanobacteria. iScience 2024; 27:111280. [PMID: 39628580 PMCID: PMC11613180 DOI: 10.1016/j.isci.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Cyanobacteria are the oldest photoautotrophic lineage that release oxygen during photosynthesis, an ability that possibly evolved as far as 3.5 billion years ago and changed the Earth's environment-both in water and on land. Linked to the mechanism of carbon accumulation by cyanobacteria during photosynthesis are their calcifying properties, a process of biologically mediated mineralization of CO2 by precipitation with calcium to CaCO3. In recent decades, scientific research has mainly focused on calcifying cyanobacteria from aquatic habitats, while their terrestrial relatives have been neglected. This review not only presents the ecology of terrestrial calcifying cyanobacteria in caves and biocrusts but also discusses recent biotechnological applications, such as the production of living building materials through microbial-induced carbonate precipitation for structural engineering, which has the potential to open a new and efficient pathway for mitigating climate change, e.g., as carbon capture and storage technology.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Laura Briegel-Williams
- University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| | - Stefan Dultz
- Leibniz Universität Hannover, Institute of Earth System Sciences, Section Soil Science, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Carina Neff
- University of Applied Sciences Kaiserslautern, Building and Design, Schoenstr. 6, 67659 Kaiserslautern, Germany
| | - Gunnar Heibrock
- University of Applied Sciences Kaiserslautern, Building and Design, Schoenstr. 6, 67659 Kaiserslautern, Germany
| | - Curtis Monger
- New Mexico State University, Plant and Environmental Science, Las Cruces, NM, USA
| | | | - Lena Keller
- University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
- Weincampus Neustadt, University of Applied Sciences Kaiserslautern, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Breitenweg 71, 67435 Neustadt a.d. Weinstraße, Germany
| | - Julia Hale
- University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
- Weincampus Neustadt, University of Applied Sciences Kaiserslautern, Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Breitenweg 71, 67435 Neustadt a.d. Weinstraße, Germany
| | - Jan Friedek
- University of Applied Sciences Kaiserslautern, Building and Design, Schoenstr. 6, 67659 Kaiserslautern, Germany
| | - Timo Schmidt
- University of Applied Sciences Augsburg, Architecture, An der Hochschule 1, 86161 Augsburg, Germany
| | - Georg Guggenberger
- Leibniz Universität Hannover, Institute of Earth System Sciences, Section Soil Science, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Michael Lakatos
- University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany
| |
Collapse
|
2
|
Kidron GJ, Kronenfeld R, Xiao B, Starinsky A, McKay CP, Or D. Vapor flux induced by temperature gradient is responsible for providing liquid water to hypoliths. Sci Rep 2024; 14:23140. [PMID: 39366992 PMCID: PMC11452694 DOI: 10.1038/s41598-024-73555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Commonly comprised of cyanobacteria, algae, bacteria and fungi, hypolithic communities inhabit the underside of cobblestones and pebbles in diverse desert biomes. Notwithstanding their abundance and widespread geographic distribution and their growth in the driest regions on Earth, the source of water supporting these communities remains puzzling. Adding to the puzzle is the presence of cyanobacteria that require liquid water for net photosynthesis. Here we report results from six-year monitoring in the Negev Desert (with average annual precipitation of ~ 90 mm) during which periodical measurements of the water content of cobblestone undersides were carried out. We show that while no effective wetting took place following direct rain, dew or fog, high vapor flux, induced by a sharp temperature gradient, took place from the wet subsurface soil after rain, resulting in wet-dry cycles and wetting of the cobblestone undersides. Up to 12 wet-dry cycles were recorded following a single rain event, which resulted in vapor condensation on the undersides of the cobblestones, with the daily wet phase lasting for several hours during daylight. This 'concealed mechanism' expands the distribution of photoautotrophic organisms into hostile regions where the abiotic conditions limit their growth, and provides the driving force for important evolutionary processes not yet fully explored.
Collapse
Affiliation(s)
- Giora J Kidron
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem, 91904, Israel.
| | - Rafael Kronenfeld
- Meteorological unit, Israel Meteorological Service, Kibbutz Sede Boqer, 84993, Israel
| | - Bo Xiao
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Abraham Starinsky
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem, 91904, Israel
| | - Christopher P McKay
- Space Science Division, Ames Research Center, National Aeronautics and Space Administration, Mountain View, CA, USA
| | - Dani Or
- Department of Environmental Systems Science, Swiss Federal Institute of Technology ETH, Universitätstrasse 16, Zürich, CH-8092, Switzerland.
- Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV, 89512, USA.
| |
Collapse
|
3
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
5
|
Ray AE, Tribbia DZ, Cowan DA, Ferrari BC. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis. Microbiol Mol Biol Rev 2023; 87:e0004823. [PMID: 37914532 PMCID: PMC10732025 DOI: 10.1128/mmbr.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotrophic microbial primary production. The proposed process relies on the oxidation of trace concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane (≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon monoxide oxidation have been primarily linked to microbial growth in desert surface soils scarce in liquid water and organic nutrients, and low in photosynthetic communities. It is well established that the oxidation of trace hydrogen and carbon monoxide gases widely supports the persistence of microbial communities in a diminished metabolic state, with the former potentially providing a reliable source of metabolic water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils and is widespread throughout copiotrophic environments, with established links to microbial growth. Despite these findings, the direct link between trace gas oxidation and carbon fixation remains disputable. Here, we review the supporting evidence, outlining major gaps in our understanding of this phenomenon, and propose approaches to validate atmospheric chemosynthesis as a primary production process. We also explore the implications of this minimalistic survival strategy in terms of nutrient cycling, climate change, aerobiology, and astrobiology.
Collapse
Affiliation(s)
- Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Dana Z. Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
6
|
Dabravolski SA, Isayenkov SV. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3225. [PMID: 36501264 PMCID: PMC9736550 DOI: 10.3390/plants11233225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
7
|
Ray AE, Zaugg J, Benaud N, Chelliah DS, Bay S, Wong HL, Leung PM, Ji M, Terauds A, Montgomery K, Greening C, Cowan DA, Kong W, Williams TJ, Hugenholtz P, Ferrari BC. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. THE ISME JOURNAL 2022; 16:2547-2560. [PMID: 35933499 PMCID: PMC9561532 DOI: 10.1038/s41396-022-01298-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.
Collapse
|
8
|
Drahorad S, Felix‐Henningsen P, Siemens J, Marschner B, Heinze S. Patterns of enzyme activities and nutrient availability within biocrusts under increasing aridity in Negev desert. Ecosphere 2022. [DOI: 10.1002/ecs2.4051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sylvie Drahorad
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Peter Felix‐Henningsen
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Jan Siemens
- Institute for Soil Science and Soil Conservation, Research Centre for Biosystems Landuse and Nutrition (IFZ), Justus‐Liebig‐University Giessen Giessen Germany
| | - Bernd Marschner
- Department of Geography, Soil Science and Soil Ecology Ruhr‐Universität Bochum Bochum Germany
| | - Stefanie Heinze
- Department of Geography, Soil Science and Soil Ecology Ruhr‐Universität Bochum Bochum Germany
| |
Collapse
|
9
|
Mehda S, Muñoz-Martín MÁ, Oustani M, Hamdi-Aïssa B, Perona E, Mateo P. Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life. Environ Microbiol 2021; 24:451-474. [PMID: 34837297 DOI: 10.1111/1462-2920.15850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
The hyperarid Sahara Desert presents extreme and persistent dry conditions with a limited number of hours during which the moisture availability, temperature and light allow phototrophic growth. Some cyanobacteria can live in these hostile conditions by seeking refuge under (hypolithic) or inside (endolithic) rocks, by colonizing porous spaces (cryptoendoliths) or fissures in stones (chasmoendoliths). Chroococcidiopsis spp. have been reported as the dominant or even the only phototrophs in these hot desert lithic communities. However, the results of this study reveal the high diversity of and variability in cyanobacteria among the sampled habitats in the Sahara Desert. The chasmoendolithic samples presented high coccoid cyanobacteria abundances, although the dominant cyanobacteria were distinct among different locations. A high predominance of a newly described cyanobacterium, Pseudoacaryochloris sahariense, was found in hard, compact, and more opaque stones with cryptoendolithic colonization. On the other hand, the hypolithic samples were dominated by filamentous, non-heterocystous cyanobacteria. Thermophysiological bioassays confirmed desiccation and extreme temperature tolerance as drivers in the cyanobacterial community composition of these lithic niches. The results of the present study provide key factors for understanding life strategies under polyextreme environmental conditions. The isolated strains, especially the newly described cyanobacterium P. sahariense, might represent suitable microorganisms in astrobiology studies aimed at investigating the limits of life.
Collapse
Affiliation(s)
- Smail Mehda
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, Ouargla, 30000, Algeria.,Faculty of Life and Natural Sciences, Department of Agronomy, University of El Oued, El Oued, 39000, Algeria
| | - M Ángeles Muñoz-Martín
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Mabrouka Oustani
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Ouargla, Ouargla, 30000, Algeria
| | - Baelhadj Hamdi-Aïssa
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, Ouargla, 30000, Algeria
| | - Elvira Perona
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pilar Mateo
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
10
|
Jung P, Brust K, Schultz M, Büdel B, Donner A, Lakatos M. Opening the Gap: Rare Lichens With Rare Cyanobionts - Unexpected Cyanobiont Diversity in Cyanobacterial Lichens of the Order Lichinales. Front Microbiol 2021; 12:728378. [PMID: 34690969 PMCID: PMC8527099 DOI: 10.3389/fmicb.2021.728378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The last decades of research led to a change in understanding of lichens that are now seen as self-sustaining micro-ecosystems, harboring diverse microbial organisms in tight but yet not fully understood relationships. Among the diverse interdependencies, the relationship between the myco- and photobiont is the most crucial, determining the shape, and ecophysiological properties of the symbiotic consortium. Roughly 10% of lichens associate with cyanobacteria as their primary photobiont, termed cyanolichens. Up to now, the diversity of cyanobionts of bipartite lichens resolved by modern phylogenetic approaches is restricted to the filamentous and heterocytous genera of the order Nostocales. Unicellular photobionts were placed in the orders Chroococcales, Pleurocapsales, and Chroococcidiopsidales. However, especially the phylogeny and taxonomy of the Chroococcidiopsidales genera remained rather unclear. Here we present new data on the identity and phylogeny of photobionts from cyanolichens of the genera Gonohymenia, Lichinella, Peccania, and Peltula from a broad geographical range. A polyphasic approach was used, combining morphological and cultivation-depending characteristics (microscopy, staining techniques, life cycle observation, baeocyte motility, and nitrogen fixation test) with phylogenetic analyses of the 16S rRNA and 16S–23S ITS gene region. We found an unexpectedly high cyanobiont diversity in the cyanobacterial lichens of the order Lichinales, including two new genera and seven new species, all of which were not previously perceived as lichen symbionts. As a result, we describe the novel unicellular Chroococcidiopsidales genera Pseudocyanosarcina gen. nov. with the species Pseudocyanosarcina phycocyania sp. nov. (from Peltula clavata, Australia) and Compactococcus gen. nov. with the species Compactococcus sarcinoides sp. nov. (from Gonohymenia sp., Australia) and the new Chroococcidiopsidales species Aliterella compacta sp. nov. (from Peltula clavata, Australia), Aliterella gigantea sp. nov. (from Peltula capensis; South Africa), Sinocapsa ellipsoidea sp. nov. (from Peccania cerebriformis, Austria), as well as the two new Nostocales species Komarekiella gloeocapsoidea sp. nov. (from Gonohymenia sp., Czechia) and Komarekiella globosa sp. nov. (from Lichinella cribellifera, Canary Islands, Spain). Our study highlights the role of cyanolichens acting as a key in untangling cyanobacterial taxonomy and diversity. With this study, we hope to stimulate further research on photobionts, especially of rare cyanolichens.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Katharina Brust
- Ecology Group, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Schultz
- Institute for Plant Science and Microbiology, Herbarium Hamburgense, University of Hamburg, Hamburg, Germany
| | - Burkhard Büdel
- Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Antje Donner
- Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
11
|
Limaye SS, Mogul R, Baines KH, Bullock MA, Cockell C, Cutts JA, Gentry DM, Grinspoon DH, Head JW, Jessup KL, Kompanichenko V, Lee YJ, Mathies R, Milojevic T, Pertzborn RA, Rothschild L, Sasaki S, Schulze-Makuch D, Smith DJ, Way MJ. Venus, an Astrobiology Target. ASTROBIOLOGY 2021; 21:1163-1185. [PMID: 33970019 DOI: 10.1089/ast.2020.2268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.
Collapse
Affiliation(s)
- Sanjay S Limaye
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, Cal Poly Pomona, Pomona, California, USA
| | - Kevin H Baines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - James A Cutts
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | | | - Vladimir Kompanichenko
- Institute for Complex Analysis of Regional Problems, Russian Academy of Sciences, Birobidzhan, Russia
| | - Yeon Joo Lee
- Zentrum für Astronomie und Astrophysik, Technical University of Berlin, Berlin, Germany
| | - Richard Mathies
- Chemistry Department and Space Sciences Lab, University of California, Berkeley, Berkeley, California, USA
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rosalyn A Pertzborn
- Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology, Hachioji, Japan
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - David J Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, New York, New York, USA
| |
Collapse
|
12
|
Jung P, Azua-Bustos A, Gonzalez-Silva C, Mikhailyuk T, Zabicki D, Holzinger A, Lakatos M, Büdel B. Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile). Front Microbiol 2021; 12:671742. [PMID: 34305839 PMCID: PMC8295473 DOI: 10.3389/fmicb.2021.671742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S–23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S–23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Tatiana Mikhailyuk
- M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daniel Zabicki
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | | | - Michael Lakatos
- University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Burkhard Büdel
- Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
13
|
Khomutovska N, de los Ríos A, Syczewski MD, Jasser I. Connectivity of Edaphic and Endolithic Microbial Niches in Cold Mountain Desert of Eastern Pamir (Tajikistan). BIOLOGY 2021; 10:314. [PMID: 33918726 PMCID: PMC8069199 DOI: 10.3390/biology10040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Microbial communities found in arid environments are commonly represented by biological soil crusts (BSCs) and endolithic assemblages. There is still limited knowledge concerning endoliths and BSCs occurring in the cold mountain desert of Pamir. The aim of the study was to investigate the composition and structure of endolithic bacterial communities in comparison to surrounding BSCs in three subregions of the Eastern Pamir (Tajikistan). The endolithic and BSC communities were studied using culture-independent and culture-dependent techniques. The structure of the endolithic bacterial communities can be characterized as Actinobacteria-Proteobacteria-Bacteroidetes-Chloroflexi-Cyanobacteria, while the BSCs' can be described as Proteobacteria-Actinobacteria-Bacteroidetes-Cyanobacteria assemblages with low representation of other bacteria. The endolithic cyanobacterial communities were characterized by the high percentage of Chroococcidiopsaceae, Nodosilineaceae, Nostocaceae and Thermosynechococcaceae, while in the BSCs were dominated by Nodosilineaceae, Phormidiaceae and Nostocaceae. The analysis of 16S rRNA genes of the cyanobacterial cultures revealed the presence of possibly novel species of Chroococcidiopsis, Gloeocapsopsis and Wilmottia. Despite the niches' specificity, which is related to the influence of microenvironment factors on the composition and structure of endolithic communities, our results illustrate the interrelation between the endoliths and the surrounding BSCs in some regions. The structure of cyanobacterial communities from BSC was the only one to demonstrate some subregional differences.
Collapse
Affiliation(s)
- Nataliia Khomutovska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland;
| | - Asunción de los Ríos
- Department of Biogeochemistry and Microbial Ecology, The National Museum of Natural Sciences-CSIC, 28006 Madrid, Spain;
| | - Marcin D. Syczewski
- Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland;
| | - Iwona Jasser
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland;
| |
Collapse
|
14
|
Mehda S, Muñoz-Martín MÁ, Oustani M, Hamdi-Aïssa B, Perona E, Mateo P. Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert. Microorganisms 2021; 9:microorganisms9030487. [PMID: 33669110 PMCID: PMC7996595 DOI: 10.3390/microorganisms9030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Sahara Desert is characterized by extreme environmental conditions, which are a unique challenge for life. Cyanobacteria are key players in the colonization of bare soils and form assemblages with other microorganisms in the top millimetres, establishing biological soil crusts (biocrusts) that cover most soil surfaces in deserts, which have important roles in the functioning of drylands. However, knowledge of biocrusts from these extreme environments is limited. Therefore, to study cyanobacterial community composition in biocrusts from the Sahara Desert, we utilized a combination of methodologies in which taxonomic assignation, for next-generation sequencing of soil samples, was based on phylogenetic analysis (16S rRNA gene) in parallel with morphological identification of cyanobacteria in natural samples and isolates from certain locations. Two close locations that differed in microenvironmental conditions were analysed. One was a dry salt lake (a “chott”), and the other was an extension of sandy, slightly saline soil. Differences in cyanobacterial composition between the sites were found, with a clear dominance of Microcoleus spp. in the less saline site, while the chott presented a high abundance of heterocystous cyanobacteria as well as the filamentous non-heterocystous Pseudophormidium sp. and the unicellular cf. Acaryochloris. The cyanobacteria found in our study area, such as Microcoleus steenstrupii, Microcoleus vaginatus, Scytonema hyalinum, Tolypothrix distorta, and Calothrix sp., are also widely distributed in other geographic locations around the world, where the conditions are less severe. Our results, therefore, indicated that some cyanobacteria can cope with polyextreme conditions, as confirmed by bioassays, and can be considered extremotolerant, being able to live in a wide range of conditions.
Collapse
Affiliation(s)
- Smail Mehda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, 30000 Ouargla, Algeria;
- Department of Agronomy, Faculty of Life and Natural Sciences, University of El Oued, 39000 El Oued, Algeria
| | - Maria Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
| | - Mabrouka Oustani
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Ouargla, 30000 Ouargla, Algeria;
| | - Baelhadj Hamdi-Aïssa
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, 30000 Ouargla, Algeria;
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
- Correspondence: ; Tel.: +34-914978184
| |
Collapse
|
15
|
Satjarak A, Graham LE, Piotrowski MJ, Trest MT, Wilcox LW, Cook ME, Knack JJ, Arancibia-Avila P. Shotgun metagenomics and microscopy indicate diverse cyanophytes, other bacteria, and microeukaryotes in the epimicrobiota of a northern Chilean wetland Nostoc (Cyanobacteria). JOURNAL OF PHYCOLOGY 2021; 57:39-50. [PMID: 33070358 DOI: 10.1111/jpy.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free-living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Linda E Graham
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | | | - Marie T Trest
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Lee W Wilcox
- Department of Botany, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Jennifer J Knack
- Department of Biology, University of Minnesota, Duluth, Minnesota, 55812, USA
| | | |
Collapse
|
16
|
Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Appl Environ Microbiol 2020; 87:AEM.01850-20. [PMID: 33097513 DOI: 10.1128/aem.01850-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
The atmosphere contains diverse living microbes, of which the heterotrophic community has been the best studied. Microbes with other trophic modes, such as photoautotrophy, have received much less attention. In this study, culture-independent and dependent methods were used to examine the presence and diversity of oxygenic photoautotrophic microbes in clouds and rain collected at or around puy de Dôme Mountain, central France. Cloud water was collected from the summit of puy de Dôme (1,465 m above sea level [a.s.l.]) for cultivation and metagenomic analysis. Cyanobacteria, diatoms, green algae, and other oxygenic photoautotrophs were found to be recurrent members of clouds, while green algae affiliated with the Chlorellaceae were successfully cultured from three different clouds. Additionally, rain samples were collected below the mountain from Opme meteorological station (680 m a.s.l.). The abundance of chlorophyll a-containing cells and the diversity of cyanobacteria and green algae in rain were assessed by flow cytometry and amplicon sequencing. The corresponding downward flux of chlorophyll a-containing organisms to the ground, entering surface ecosystems with rain, varied with time and was estimated to be between ∼1 and >300 cells cm-2 day-1 during the sampling period. Besides abundant pollen from Pinales and Rosales, cyanobacteria of the Chroococcidiopsidales and green algae of the Trebouxiales were dominant in rain samples. Certain members of these taxa are known to be ubiquitous and stress tolerant and could use the atmosphere for dispersal. Overall, our results indicate that the atmosphere carries diverse, viable oxygenic photoautotrophic microbes and acts as a dispersal vector for this microbial guild.IMPORTANCE Information regarding the diversity and abundance of oxygenic photoautotrophs in the atmosphere is limited. More information from diverse locations is needed. These airborne organisms could have important impacts upon atmospheric processes and on the ecosystems they enter after deposition. Oxygenic photoautotrophic microbes are integral to ecosystem functioning, and some have the potential to affect human health. A better understanding of the diversity and the movements of these aeolian dispersed organisms is needed to understand their ecology, as well as how they could affect ecosystems and human health.
Collapse
|
17
|
Jung P, Baumann K, Emrich D, Springer A, Felde VJ, Dultz S, Baum C, Frank M, Büdel B, Leinweber P. Lichens Bite the Dust - A Bioweathering Scenario in the Atacama Desert. iScience 2020; 23:101647. [PMID: 33103085 PMCID: PMC7578742 DOI: 10.1016/j.isci.2020.101647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022] Open
Abstract
Bioweathering mediated by microorganisms plays a significant role in biogeochemical cycles on global scales over geological timescales. Single processes induced by specific taxa have been described but could rarely be demonstrated for complex communities that dominate whole landscapes. The recently discovered grit crust of the coastal Atacama Desert, which is a transitional community between a cryptogamic ground cover and a rock-bound lithic assemblage, offers the unique chance to elucidate various bioweathering processes that occur simultaneously. Here, we present a bioweathering scenario of this biocenosis including processes such as penetration of the lithomatrix, microbial responses to wet-dry cycles, alkalinolysis, enzyme activity, and mineral re-localization. Frequently occurring fog, for example, led to a volume increase of microorganisms and the lithomatrix. This, together with pH shifts and dust accumulation, consequently results in biophysical breakdown and the formation of a terrestrial protopedon, an initial stage of pedogenesis fueled by the grit crust.
Collapse
Affiliation(s)
- Patrick Jung
- Applied Logistics and Polymer Sciences, University of Applied Sciences Kaiserslautern, Carl-Schurz-Straße 10-16, 66953 Pirmasens, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| | - Dina Emrich
- University of Freiburg, Faculty of Environment and Natural Resources, Chair of Applied Vegetation Ecology, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Vincent J.M.N.L. Felde
- Department of Soil Science, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christel Baum
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße 14, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Peter Leinweber
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051 Rostock, Germany
| |
Collapse
|
18
|
Jung P, Mikhailyuk T, Emrich D, Baumann K, Dultz S, Büdel B. Shifting Boundaries: Ecological and Geographical Range extension Based on Three New Species in the Cyanobacterial Genera Cyanocohniella, Oculatella, and, Aliterella. JOURNAL OF PHYCOLOGY 2020; 56:1216-1231. [PMID: 32422688 DOI: 10.1111/jpy.13025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The polyphasic approach has been widely applied in cyanobacterial taxonomy, which frequently led to additions to the species inventory. Increasing our knowledge about species and the habitats they were isolated from enables new insights into the ecology of newly established genera and species allowing speculations about the ecological niche of taxa. Here, we are describing three new species belonging to three genera that broadens the ecological amplitude and the geographical range of each of the three genera. Cyanocohniella crotaloides sp. nov. is described from sandy beach mats of the temperate island Schiermonnikoog, Netherlands, Oculatella crustae-formantes sp. nov. was isolated from biological soil crusts of the Arctic Spitsbergen, Norway, and Aliterella chasmolithica originated from granitic stones of the arid Atacama Desert, Chile. All three species could be separated from related species using molecular sequencing of the 16S rRNA gene and 16S-23S ITS gene region, the resulting secondary structures as well as p-distance analyses of the 16S-23S ITS and various microscopic techniques. The novel taxa described in this study contribute to a better understanding of the diversity of the genera Cyanocohniella, Oculatella, and Aliterella in different habitats.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| | - Tatiana Mikhailyuk
- G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv, 01004, Ukraine
| | - Dina Emrich
- Faculty of Environment and Natural Resources, Chair of Applied Vegetation Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, University of Rostock, Soil Science, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| |
Collapse
|
19
|
Biodiversity of Algae and Cyanobacteria in Biological Soil Crusts Collected Along a Climatic Gradient in Chile Using an Integrative Approach. Microorganisms 2020; 8:microorganisms8071047. [PMID: 32674483 PMCID: PMC7409284 DOI: 10.3390/microorganisms8071047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.
Collapse
|
20
|
Jung P, Baumann K, Lehnert LW, Samolov E, Achilles S, Schermer M, Wraase LM, Eckhardt KU, Bader MY, Leinweber P, Karsten U, Bendix J, Büdel B. Desert breath-How fog promotes a novel type of soil biocenosis, forming the coastal Atacama Desert's living skin. GEOBIOLOGY 2020; 18:113-124. [PMID: 31721410 DOI: 10.1111/gbi.12368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 05/20/2023]
Abstract
The Atacama Desert is the driest non-polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet-dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit-sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio-weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit-crust. We conclude that this type of CGC can be expected in all non-polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Rostock, Germany
| | - Lukas W Lehnert
- Department of Geography, Ludwig-Maximilians-University, Munich, Germany
| | - Elena Samolov
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Sebastian Achilles
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Marburg, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Luise M Wraase
- Faculty of Geography, Ecological Plant Geography, Philipps-University of Marburg, Marburg, Germany
| | - Kai-Uwe Eckhardt
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Rostock, Germany
| | - Maaike Y Bader
- Faculty of Geography, Ecological Plant Geography, Philipps-University of Marburg, Marburg, Germany
| | - Peter Leinweber
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Jörg Bendix
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Marburg, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|