1
|
Lu C, Wang Y, Huang Z, Mo K, Li Z. Salivary lipid metabolism in periodontitis patients with spleen-stomach dampness-heat syndrome. BMC Oral Health 2025; 25:476. [PMID: 40181453 PMCID: PMC11966919 DOI: 10.1186/s12903-025-05847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Spleen-stomach damp-heat syndrome is one of the most common syndrome types in periodontitis from traditional Chinese medicine theory. However, its pathological mechanism is still uncertain. Tissue metabolism is driven by microbes in the host and its microenvironment. Hostmicrobe-metabolism is an interacting and closely related complex. Lipid metabolomics can find lipid metabolites in disease or healthy state, which is beneficial to explore the metabolic process and change mechanism of lipids that may be involved in organisms in healthy or disease state from the perspective of systems biology. METHODS In this study, 10 patients in the periodontitis group (CP), 10 patients in the periodontitis with spleen-stomach dampness-heat syndrome group (SP) and 10 patients in the healthy group (H) were recruited for participation, whose unstimulated saliva was collected. The differential metabolites between the groups were detected by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and screened out based on the variable importance in projection (VIP) combined with the P-value and fold change (FC) value of univariate analysis. Finally, KEEG pathway enrichment analysis was performed on these differential metabolites. RESULTS A total of 1131 metabolites were detected in saliva in this study. 497 metabolites were significantly up-regulated in periodontitis, mainly plasma-membrane-associated lipids, unsaturated fatty acids and oxidized lipids. Compared with the healthy group, the lipid metabolism pathways of periodontitis with or without spleen-stomach dampness-heat syndrome group were mainly characterized by significant enrichment of glycerophospholipid metabolism and unsaturated fatty acid metabolism such as arachidonic acid metabolism. CONCLUSION Compared with periodontally healthy patients, periodontitis with or without spleen-stomach dampness-heat syndrome can cause changes in lipid metabolism in saliva samples of patients. These metabolites are mainly plasma membrane lipids, unsaturated fatty acids and oxidized lipids quality. These lipids may be potential biomarkers of periodontitis. The downstream metabolites of unsaturated fatty acids in the saliva samples of patients with periodontitis and spleen-stomach dampness-heat syndrome were abnormal, and the oxidized lipid (±)5-HETE was significantly abnormal. We speculate that this may be related to the increased state of oxidative stress in saliva samples in disease states.
Collapse
Affiliation(s)
- Chunting Lu
- Science and Education Office, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yijue Wang
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhanyu Huang
- School of stomatology, Jinan University, Guangzhou, China
| | - Keyin Mo
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- School of stomatology, Jinan University, Guangzhou, China.
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Domini MC, Castroflorio T, Deregibus A, Ravera S, Migliaretti G, Costalonga M. Proton-Nuclear Magnetic Resonance Metabolomics of Gingival Crevicular Fluid During Orthodontic Tooth Movement With Aligners. Orthod Craniofac Res 2025. [PMID: 40110902 DOI: 10.1111/ocr.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES To determine the correlation between orthodontic tooth movement and a pre-defined set of gingival crevicular fluid (GCF) metabolites through proton nuclear magnetic resonance (1H-NMR) spectroscopy. MATERIALS AND METHODS A clinical randomised prospective split-mouth study comparing the GCF metabolites around stationary and moving second maxillary molars. Twenty-four healthy subjects diagnosed with dental class II malocclusion undergoing orthodontic clear aligner treatment (CAT) were enrolled. GCF samples from the mesial and distal sulcus of second molars under stationary conditions or under 1 N of distalising force were harvested at baseline, 1 h, 7 days and 21 days after the application of CAT. 1H-NMR was utilised for GCF sample analysis. The 2-dimensional total correlation spectroscopy spectral signature of 35 known GCF metabolites was compared in moving and stationary teeth. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), variable importance in projection (VIP) score and area under the curve (AUC) were computed utilising MetaboAnalyst 5.0 software. RESULTS VIP-score values showed statistically significant differences between the metabolites involved in moving and stationary molars (p < 0.05). PCA and PLS-DA results showed potential differences between the metabolite clusters. The variation of the 1H-NMR signals of Glutamine, Uracil, N-Acetylneuraminate and alpha-ketoglutarate contributes primarily to the variance across metabolites in moving versus stationary teeth at 1 h, 7 days and 21 days. CONCLUSION High values of Glutamine and low values of Uracil, N-Acetylneurinamate and alpha-ketoglutarate could be utilised to predict the progress of orthodontic tooth movement over time. Knowledge of metabolites predictive of tooth movement could contribute to the design of tailored orthodontic treatment planning, reducing time, costs and side-effects.
Collapse
Affiliation(s)
- Maria Chiara Domini
- School of Orthodontics, Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Andrea Deregibus
- School of Orthodontics, Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Serena Ravera
- School of Orthodontics, Dental School, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giuseppe Migliaretti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Kosho MXF, Ciurli A, Giera M, Neefjes J, Loos BG. Metabolomic Profiles of Oral Rinse Samples to Distinguish Severe Periodontitis Patients From Non-Periodontitis Controls. J Periodontal Res 2025. [PMID: 40083241 DOI: 10.1111/jre.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/16/2025]
Abstract
AIMS To explore the potential of metabolomic profiles of oral rinse samples to distinguish between patients with severe periodontitis (stage III/IV) and non-periodontitis controls. This is coupled to an analysis of differences in metabolomic profiles between individuals without periodontitis, patients with localized periodontitis, and patients with generalized periodontitis. METHODS Periodontitis patients and controls were recruited, all aged ≥ 40 years. Study participants were asked to rinse vigorously for 30 s with 10 mL phosphate buffered saline. Metabolites were identified using a semi-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) platform. RESULTS In total, 38 periodontitis patients (18 localized, 20 generalized stage III/IV periodontitis patients) and 16 controls were included. Metabolomic profiles of oral rinse samples were able to distinguish patients with severe periodontitis (stage III/IV) from non-periodontitis controls. Among various variables for the severity of periodontitis, we found that the number of sites with deep pockets (PPD) ≥ 6 mm explained best the differences in metabolomic profiles between controls and patients with severe periodontitis. Subjects with a high number of sites with PPD ≥ 6 mm were characterized by a higher level of phosphorylated nucleotides, amino acids, peptides, and dicarboxylic acids. Metabolomic profiles were also significantly different between controls vs. generalized periodontitis and between localized periodontitis vs. generalized periodontitis (p < 0.05). CONCLUSION Our study demonstrates that simply collected oral rinse samples are suitable for LC-MS/MS based metabolomic analysis. We show that a metabolomic profile with a substantial number of metabolites can distinguish severe periodontitis patients from non-periodontitis controls. These observations can be a basis for further studies into screening to identify subjects with the risk of having severe periodontitis.
Collapse
Affiliation(s)
- Madeline X F Kosho
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alessio Ciurli
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Sikora R, Duspara K, Matić A, Petrović A, Kralik K, Smolić R, Sikora M, Šarac MČ, Bojanić K, Smolić M. Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:375. [PMID: 40142185 PMCID: PMC11944041 DOI: 10.3390/medicina61030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: In recent years, numerous studies have investigated and analyzed the levels of molecular biomarkers of temporomandibular disorders (TMD) from various tissue samples and body fluids. However, no study has investigated gingival crevicular fluid (GCF) in TMD patients. The purpose of this study was to determine the concentrations of pro-inflammatory cytokines in GCF before and after stabilization splint (SS) therapy in patients with painful TMD, to investigate whether SS administration causes changes in the concentrations of pro-inflammatory cytokines. An additional aim was to investigate the relationship of GCF cytokine levels with chronic pain intensity and clinical parameters. Materials and Methods: This prospective cohort study included 36 patients who were diagnosed with painful TMD using the Diagnostic Criteria for TMD (DC/TMD). GCF samples were collected at baseline before SS treatment (T0) and at one month (T1) and three months (T2) after the start of therapy. Customized ProcartaPlex Multiplex assays from eBioscience (Invitrogen™, Thermo Fisher Scientific, Viena, Austria) were used for the quantitative analysis of pro-inflammatory cytokines (IL-1β, IL-6, IL-7, IL-8, IL-13, and TNF-α). Patients filled out Croatian versions of questionnaires for self-assessment from Axis II DK/TMP: Graded Chronic Pain Scale (v2) (GCPSv2) and Jaw Function Limitation Scale-20 (JFLS-20). Results: The results showed that the GCF levels of IL-7 (Friedman's test, p = 0.008) and IL-13 (Friedman's test, p = 0.003) were significantly decreased at T2. The GCF level of IL-13 was in negative correlation with chronic pain grade score at T2 (Rho = -0.333), while the GCF level of IL-8 was in positive correlation with mobility limitation (Rho = 0.382) at T1. Conclusions: The results indicate that SS therapy might have a role in reducing inflammation and that the GCF could be a valuable medium for assessing molecular biomarkers.
Collapse
Affiliation(s)
- Renata Sikora
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Kristina Duspara
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Public Health Scientific Institution Medical Center “Dr. Mustafa Sehovic”, 75000 Tuzla, Bosnia and Herzegovina
| | - Anita Matić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
| | - Ana Petrović
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Kristina Kralik
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
| | - Miroslav Sikora
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Martina Čalušić Šarac
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Kristina Bojanić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Martina Smolić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (R.S.); (K.D.); (A.M.); (A.P.); (R.S.); (M.S.); (M.Č.Š.); (K.B.)
| |
Collapse
|
5
|
Bud A, Lazăr L, Mârțu MA, Dakó T, Suciu M, Vlasiu A, Lazăr AP. Challenges and Perspectives Regarding the Determination of Gingival Crevicular Fluid Biomarkers During Orthodontic Treatment: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2004. [PMID: 39768884 PMCID: PMC11728204 DOI: 10.3390/medicina60122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Background: Changes in the positions of teeth occur during orthodontic treatment due to the application of forces that cause restructuring of the periodontal tissue. In the last decade, substantial research has been conducted to detect different biomarkers in the gingival crevicular fluid (GCF) to obtain a better assessment of the periodontal status. Aim: The purpose of this review is to describe how the levels of certain biomarkers from the gingival fluid change during tissue remodeling throughout orthodontic treatment. Materials and methods: To carry out the purpose of this research, electronic databases were searched using specific keywords, leading to 387 articles, out of which 19 were used in writing this narrative review. A sampling period of the last 10 years was used in selecting the articles. Results: The results highlight that the origin of the gingival crevicular fluid is at the gingival blood vessels' plexus. GCF has a complex composition with differences depending on the periodontal status and the tissue restructuring which takes place in the periodontium. The levels of inflammatory mediators, enzymes, and metabolic products of tissue remodeling in GCF change during orthodontic treatment. Being aware of their specific role, they can provide valuable information about bone remodeling during orthodontic tooth movement. Conclusions: By determining the biomarkers in GCF, as an investigative method, clinicians could easily monitor the orthodontic tooth movement, and, subsequently, the treatment period could be shortened and the adverse effects associated with it could be avoided.
Collapse
Affiliation(s)
- Anamaria Bud
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Luminița Lazăr
- Department of Periodontology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Timea Dakó
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania;
| | - Mircea Suciu
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| | - Andreea Vlasiu
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Ana-Petra Lazăr
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| |
Collapse
|
6
|
Zhang Q, Wang Z, Shen S, Wang J, Cao J, Deng Y, Meng H, Ma L. Integrating enzyme-nanoparticles bring new prospects for the diagnosis and treatment of immune dysregulation in periodontitis. Front Cell Infect Microbiol 2024; 14:1494651. [PMID: 39554809 PMCID: PMC11564189 DOI: 10.3389/fcimb.2024.1494651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Enzymes play a significant role in mediating inflammatory and immune responses in periodontitis. Effective diagnosis, timely treatment, and continuous management of periodontal enzymes are essential to prevent undesirable consequences; however, this remains a significant challenge. Nanoparticles (NPs) have attracted significant attention in biomedicine because of their advantageous nanosized effects. NPs are conjugated with specific enzyme substrates at responsive sites that are triggered by periodontitis enzyme biomarkers, leading to functional or characteristic changes. In contrast, NPs with enzyme-mimetic activities exhibit catalytic activity, effectively destroying pathogenic biofilms and modulating the immune response in periodontitis. The unique properties of enzyme-targeting NPs have enabled the development of biosensors and fluorescent probes capable of identifying enzyme biomarkers associated with periodontitis. Enzyme-responsive and enzyme-mimetic NPs both exert therapeutic applications in the treatment of periodontitis. In this review, we provide a comprehensive overview of the enzymes associated with periodontitis, the mechanisms of enzyme-responsive and enzyme-mimetic NPs, recent advancements in the use of NPs for detecting these enzymes, and the therapeutic applications of NPs in targeting or mimicking enzyme functions. We also discuss the challenges and prospects of using NPs in the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiyi Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Shijiao Shen
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Junzhe Wang
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Cao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqiang Deng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
- School of Stomatology, Shenzhen University, Shenzhen, Guangdong, China
| | - Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Chu S, Chan AKY, Chu CH. Polyamines in Dysbiotic Oral Conditions of Older Adults: A Scoping Review. Int J Mol Sci 2024; 25:10596. [PMID: 39408925 PMCID: PMC11477423 DOI: 10.3390/ijms251910596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Polyamines modulate cellular proliferation and function. Their dysregulation results in inflammatory and oncological repercussions. This study aims to map the current literature and provide an overview of polyamines in dysbiotic oral conditions among older adults. English publications indexed in MEDLINE, Scopus, and Web of Science from January 2000 to May 2024 were screened. Eligibility criteria included clinical and laboratory studies using samples from adults aged 65 or above. This scoping review identified 2725 publications and included 19 publications. Ten studies detected that older adults with oral carcinoma had increased levels of polyamines such as spermidine in saliva and tumour-affected tissues. Eight studies reported older adults suffering from periodontal infection had increased levels of polyamines such as putrescine in saliva, gingival crevicular fluid, and biofilm from the gingival crevice. Two studies showed polyamine levels could reflect the success of periodontal therapy. Three studies found older adults with halitosis had increased levels of polyamines such as cadaverine in saliva and tongue biofilm. Polyamines were suggested as biomarkers for these oral conditions. In conclusion, certain polyamine levels are elevated in older adults with oral cancer, periodontal infections, and halitosis. Polyamines may be used as a simple and non-invasive tool to detect dysbiotic oral conditions and monitor treatment progress in older adults (Open Science Framework registration).
Collapse
Affiliation(s)
| | | | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
8
|
Fratini A, Izzetti R, Riccetti N, Gennai S, Graziani F, Marchetti E. Diagnostic Accuracy of Urinary Biomarkers in Periodontitis: A Systematic Review and Meta-Analysis. Int J Dent 2024; 2024:9769772. [PMID: 39105056 PMCID: PMC11300057 DOI: 10.1155/2024/9769772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Background Biomarkers can be measured in various biological samples. Urine is among the most useful biofluids for routine testing, and several experimental and clinical studies support its role as a tool for the diagnosis and prevention of various diseases. The present systematic review aimed to examine periodontitis-specific urine biomarkers that could have a diagnostic relevance and to provide a qualitative assessment of the current literature. Materials and Methods Relevant studies identified from PubMed, Embase, Cochrane Library, and Scopus databases were examined to answer the following PECO question: "Could the concentration of specific metabolites in the urine be related to periodontal health and what is their diagnostic accuracy?". Quality of included studies was rated using ROBINS-I tool. Meta-analysis was conducted on available quantitative data. Results After the screening of 768 titles, five studies were included in qualitative synthesis. The studies included referred to the evaluation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and neopterin. Meta-analysis was conducted for neopterin concentration on data available in four studies involving 129 participants. Higher concentrations of neopterin were found in periodontitis-affected patients compared to controls and patients treated for periodontitis. Conclusions The literature appears controversial in attributing a role to neopterin and 8-OHdG as periodontal biomarkers, highlighting the need for further clinical studies on this topic. While some studies report variations in 8-OHdG and neopterin levels in periodontally affected patients versus either controls or periodontally treated patients, the level of evidence appears still limited to draw firm conclusions (PROSPERO CRD42020222681).
Collapse
Affiliation(s)
- Adriano Fratini
- Department of Life, Health and Environmental SciencesUniversity of L'Aquila, L'Aquila 67100, Italy
| | - Rossana Izzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of Pisa, Pisa 56126, Italy
| | - Nicola Riccetti
- Institute of Medical BiostatisticsEpidemiology and InformaticsUniversity Medical CentreJohannes Gutenberg University Mainz, Mainz, Germany
| | - Stefano Gennai
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of Pisa, Pisa 56126, Italy
| | - Filippo Graziani
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of Pisa, Pisa 56126, Italy
| | - Enrico Marchetti
- Department of Life, Health and Environmental SciencesUniversity of L'Aquila, L'Aquila 67100, Italy
| |
Collapse
|
9
|
Song L, Lu H, Jiang J, Xu A, Huang Y, Huang JP, Ding PH, He F. Metabolic profiling of peri-implant crevicular fluid in peri-implantitis. Clin Oral Implants Res 2024; 35:719-728. [PMID: 38624226 DOI: 10.1111/clr.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTS This study aims to explore the etiology of peri-implantitis by comparing the metabolic profiles in peri-implant crevicular fluid (PICF) from patients with healthy implants (PH) and those with peri-implantitis (PI). MATERIALS AND METHODS Fifty-six patients were enrolled in this cross-sectional study. PICF samples were collected and analyzed using both non-targeted and targeted metabolomics approaches. The relationship between metabolites and clinical indices including probing depth (PD), bleeding on probing (BOP), and marginal bone loss (MBL) was examined. Additionally, submucosal microbiota was collected and analyzed using 16S rRNA gene sequencing to elucidate the association between the metabolites and microbial communities. RESULTS Significant differences in metabolic profiles were observed between the PH and PI groups, with 179 distinct metabolites identified. In the PI group, specific amino acids and fatty acids were significantly elevated compared to the PH group. Organic acids including succinic acid, fructose-6-phosphate, and glucose-6-phosphate were markedly higher in the PI group, showing positive correlations with mean PD, BOP, and MBL. Metabolites that increased in the PI group positively correlated with the presence of Porphyromonas and Treponema and negatively with Streptococcus and Haemophilus. CONCLUSIONS This study establishes a clear association between metabolic compositions and peri-implant condition, highlighting enhanced metabolite activity in peri-implantitis. These findings open avenues for further research into metabolic mechanisms of peri-implantitis and their potential therapeutic implications.
Collapse
Affiliation(s)
- Lu Song
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hongye Lu
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jimin Jiang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanli Huang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jia-Ping Huang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Pei-Hui Ding
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Ding D, Li N, Ge Y, Wu H, Yu J, Qiu W, Fang F. Current status of superoxide dismutase 2 on oral disease progression by supervision of ROS. Biomed Pharmacother 2024; 175:116605. [PMID: 38688168 DOI: 10.1016/j.biopha.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The recent Global Burden of Disease results have demonstrated that oral diseases are some of the most significant public health challenges facing the world. Owing to its specific localization advantage, superoxide dismutase 2 (SOD2 or MnSOD) has the ability to process the reactive oxygen species (ROS) produced by mitochondrial respiration before anything else, thereby impacting the occurrence and development of diseases. In this review, we summarize the processes of common oral diseases in which SOD2 is involved. SOD2 is upregulated in periodontitis to protect the tissue from the distant damage caused by excessive ROS and further reduce inflammatory progression. SOD2 also participates in the specific pathogenesis of oral cancers and dental diseases. The clinical application prospects of SOD2 in oral diseases will be discussed further, referencing the differences and relationship between oral diseases and other clinical systemic diseases.
Collapse
Affiliation(s)
- Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jinzhao Yu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Buduneli N, Bıyıkoğlu B, Kinane DF. Utility of gingival crevicular fluid components for periodontal diagnosis. Periodontol 2000 2024; 95:156-175. [PMID: 39004819 DOI: 10.1111/prd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Periodontal diseases are highly prevalent chronic diseases, and severe periodontitis creates functional and esthetic problems and decreases self-esteem for a large percentage of the older population worldwide. In many cases of periodontitis, there is no distinct tell-tale pain that motivates a patient to seek treatment, rather the signs become clinically detectable late, and typically when the disease has progressed to a problematic level for the life of the dentition. Early periodontal screening and diagnostics tools will provide early recognition of periodontal diseases and facilitate timely management of the disease to reduce tooth loss. To this goal, gingival crevicular fluid is easily sampled, can be repeatedly and non-invasively collected, and can be tested for potential biomarkers. Moreover, the site specificity of periodontal diseases enhances the usefulness of gingival crevicular fluid sampled from specific sites as a biofluid for diagnosis and longitudinal monitoring of periodontal diseases. The present review aimed to provide up-to-date information on potential diagnostic biomarkers with utility that can be assayed from gingival crevicular fluid samples, focusing on what is new and useful and providing only general historic background textually and in a tabulated format.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Başak Bıyıkoğlu
- Department of Periodontology, School Dentistry, Altinbas University, Istanbul, Turkey
| | - Denis F Kinane
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Gürsoy UK, Özdemir Kabalak M, Gürsoy M. Advances in periodontal biomarkers. Adv Clin Chem 2024; 120:145-168. [PMID: 38762240 DOI: 10.1016/bs.acc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Due to technologic advancements, periodontology has witnessed a boost in biomarker research over the past three decades. Indeed, with the aid of omics, our understanding of the healthy periodontium, pathogenesis of periodontal diseases, and healing after periodontal treatment has improved significantly. Yet, the traditional methods, periodontal probing and radiographies, remain the most common methods to diagnose periodontal disease and monitor treatment. Although these approaches can produce reliable diagnostic outcomes, they generally detect disease only after significant tissue degradation thus making treatment outcome highly uncertain. Accordingly, laboratories worldwide have collaborated with clinicians to design accurate, rapid and cost-effective biomarkers for periodontal disease diagnosis. Despite these efforts, biomarkers that can be widely used in early disease diagnosis and for treatment outcome prediction are far from daily use. The aim of this chapter is to give a general overview on periodontal health and diseases, and review recent advancements in periodontal biomarker research. A second aim will discuss the strengths and limitations of translating periodontal biomarker research to clinical practice. Genetic biomarkers of periodontitis are not discussed as the available confirmatory data is scarce.
Collapse
Affiliation(s)
| | | | - Mervi Gürsoy
- Periodontology, Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
13
|
Jia L, Jiang Y, Wu L, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis. Nat Commun 2024; 15:1617. [PMID: 38388542 PMCID: PMC10883948 DOI: 10.1038/s41467-024-45473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Periodontitis is closely related to inflammatory bowel disease (IBD). An excessive and non-self-limiting immune response to the dysbiotic microbiome characterizes the two. However, the underlying mechanisms that overlap still need to be clarified. We demonstrate that the critical periodontal pathogen Porphyromonas gingivalis (Pg) aggravates intestinal inflammation and Th17/Treg cell imbalance in a gut microbiota-dependent manner. Specifically, metagenomic and metabolomic analyses shows that oral administration of Pg increases levels of the Bacteroides phylum but decreases levels of the Firmicutes, Verrucomicrobia, and Actinobacteria phyla. Nevertheless, it suppresses the linoleic acid (LA) pathway in the gut microbiota, which was the target metabolite that determines the degree of inflammation and functions as an aryl hydrocarbon receptor (AHR) ligand to suppress Th17 differentiation while promoting Treg cell differentiation via the phosphorylation of Stat1 at Ser727. Therapeutically restoring LA levels in colitis mice challenged with Pg exerts anti-colitis effects by decreasing the Th17/Treg cell ratio in an AHR-dependent manner. Our study suggests that Pg aggravates colitis via a gut microbiota-LA metabolism-Th17/Treg cell balance axis, providing a potential therapeutically modifiable target for IBD patients with periodontitis.
Collapse
Affiliation(s)
- Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
14
|
Yu X, Devine D, Vernon J. Manipulating the diseased oral microbiome: the power of probiotics and prebiotics. J Oral Microbiol 2024; 16:2307416. [PMID: 38304119 PMCID: PMC10833113 DOI: 10.1080/20002297.2024.2307416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their aetiology is rooted in microbial activity within the oral cavity, through the generation of detrimental metabolites and the instigation of potentially adverse host immune responses. Due to the increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are necessary. Advances in sequencing technologies have established relationships between disease and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formulations to tackle preventable oral disorders through colonisation with, or promotion of, beneficial microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident species which underlie health status. Research emphasis on the metabolic environment of the oral cavity has elucidated relationships between commensal and pathogenic organisms, for example, the sequential metabolism of fermentable carbohydrates deemed central to acid production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis in the oral environment may be the most appropriate approach to health conservation. In this review we discuss an ecological approach to the maintenance of a healthy oral environment and debate the potential use of probiotic and prebiotic supplementation, specifically targeted at sustaining oral niches to preserve the delicately balanced microbiome.
Collapse
Affiliation(s)
- X. Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - D.A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - J.J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Chu Z, Zhao T, Zhang Z, Chu CH, Cai K, Wu J, Wu W, Tang C. Untargeted Metabolomics Analysis of Gingival Tissue in Patients with Severe Periodontitis. J Proteome Res 2024; 23:3-15. [PMID: 38018860 DOI: 10.1021/acs.jproteome.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Tong Zhao
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Catherine Huihan Chu
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
16
|
Alqahtani AA, Alhalabi F, Alam MK. Salivary elemental signature of dental caries: a systematic review and meta-analysis of ionomics studies. Odontology 2024; 112:27-50. [PMID: 37526792 DOI: 10.1007/s10266-023-00839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Trace- and macro-chemical elements are crucial for cellular physiological functioning, and their alterations in biological fluids might be associated with an underlying pathological state. Hence, this study aimed to examine and summarize the published literature concerning the application of salivary ionomics for caries diagnosis. An extensive search of studies was conducted using PubMed, EMBASE, Web of Science, and Scopus, without any language and year restriction for answering the following PECO question: "In subjects (i.e., children, adolescents, or adults) with good systematic health, are there any variations in the salivary concentrations of trace- or macro-elements between caries-free (CF) individuals and caries-active (CA) subjects?" A modified version of the QUADOMICS tool was used to assess the quality of the included studies. The Review Manager Version 5.4.1. was used for data analyses. The analysis of salivary chemical elements that significantly differed between CF and CA subjects was also performed. Thirty-four studies were included, involving 2299 CA and 1669 CF subjects, having an age range from 3 to 64 years in over 16 countries. The meta-analysis revealed a statistically significant difference (p < 0.05) in the salivary levels of calcium, phosphorus, chloride, magnesium, potassium, sodium, and zinc between CA and CF subjects, suggesting higher levels of calcium, phosphorus, potassium, and sodium in CF subjects while higher levels of chloride, magnesium, and zinc in CA patients. Half of the included studies (17/34) were considered high quality, while the remaining half were considered medium quality. Only zinc and chloride ions were found to be higher significantly and consistent in CF and CA subjects, respectively. Conflicting outcomes were observed for all other salivary chemical elements including aluminum, bromine, calcium, copper, fluoride, iron, potassium, magnesium, manganese, sodium, ammonia, nitrite, nitrate, phosphorus, lead, selenium, and sulfate ions.
Collapse
Affiliation(s)
- Abdullah Ali Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia.
| | - Feras Alhalabi
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Mohammad Khursheed Alam
- Orthodontics, Department of Preventive Dental Science, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
17
|
Alamri MM, Williams B, Le Guennec A, Mainas G, Santamaria P, Moyes DL, Nibali L. Metabolomics analysis in saliva from periodontally healthy, gingivitis and periodontitis patients. J Periodontal Res 2023; 58:1272-1280. [PMID: 37787434 DOI: 10.1111/jre.13183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The aim of this study was to investigate metabolomics markers in the saliva of patients with periodontal health, gingivitis and periodontitis. BACKGROUND The use of metabolomics for diagnosing and monitoring periodontitis is promising. Although several metabolites have been reported to be altered by inflammation, few studies have examined metabolomics in saliva collected from patients with different periodontal phenotypes. METHODS Saliva samples collected from a total of 63 patients were analysed by nuclear magnetic resonance (NMR) followed by ELISA for interleukin (IL)-1β. The patient sample, well-characterised clinically, included periodontal health (n = 8), gingivitis (n = 19) and periodontitis (n = 36) cases, all non-smokers and not diabetic. RESULTS Periodontal diagnosis (healthy/gingivitis/periodontitis) was not associated with any salivary metabolites in this exploratory study. Periodontal staging showed nominal associations with acetoin (p = .030) and citrulline (p = .047). Among other investigated variables, the use of systemic antibiotics in the previous 3 months was associated with higher values of the amino acids taurine, glycine and ornithine (p = .002, p = .05 and p = .005, respectively, at linear regression adjusted for age, gender, ethnicity, body mass index and staging). CONCLUSION While periodontal staging was marginally associated with some salivary metabolites, other factors such as systemic antibiotic use may have a much more profound effect on the microbial metabolites in saliva. Metabolomics in periodontal disease is still an underresearched area that requires further observational studies on large cohorts of patients, aiming to obtain data to be used for clinical translation.
Collapse
Affiliation(s)
- Meaad M Alamri
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Benjamin Williams
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pasquale Santamaria
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - David L Moyes
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
18
|
Blanco-Pintos T, Regueira-Iglesias A, Seijo-Porto I, Balsa-Castro C, Castelo-Baz P, Nibali L, Tomás I. Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: A systematic review and meta-analysis. J Clin Periodontol 2023; 50:1420-1443. [PMID: 37608638 DOI: 10.1111/jcpe.13854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023]
Abstract
AIM To determine the accuracy of biomarker combinations in gingival crevicular fluid (GCF) and saliva through meta-analysis to diagnose periodontitis in systemically healthy subjects. METHODS Studies on combining two or more biomarkers providing a binary classification table, sensitivity/specificity values or group sizes in subjects diagnosed with periodontitis were included. The search was performed in August 2022 through PUBMED, EMBASE, Cochrane, LILACS, SCOPUS and Web of Science. The methodological quality of the articles selected was evaluated using the QUADAS-2 checklist. Hierarchical summary receiver operating characteristic modelling was employed to perform the meta-analyses (CRD42020175021). RESULTS Twenty-one combinations in GCF and 47 in saliva were evaluated. Meta-analyses were possible for six salivary combinations (median sensitivity/specificity values): IL-6 with MMP-8 (86.2%/80.5%); IL-1β with IL-6 (83.0%/83.7%); IL-1β with MMP-8 (82.7%/80.8%); MIP-1α with MMP-8 (71.0%/75.6%); IL-1β, IL-6 and MMP-8 (81.8%/84.3%); and IL-1β, IL-6, MIP-1α and MMP-8 (76.6%/79.7%). CONCLUSIONS Two-biomarker combinations in oral fluids show high diagnostic accuracy for periodontitis, which is not substantially improved by incorporating more biomarkers. In saliva, the dual combinations of IL-1β, IL-6 and MMP-8 have an excellent ability to detect periodontitis and a good capacity to detect non-periodontitis. Because of the limited number of biomarker combinations evaluated, further research is required to corroborate these observations.
Collapse
Affiliation(s)
- T Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - I Seijo-Porto
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - P Castelo-Baz
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - L Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
19
|
Zhang Y, Jia R, Zhang Y, Sun X, Mei Y, Zou R, Niu L, Dong S. Effect of non-surgical periodontal treatment on cytokines/adipocytokines levels among periodontitis patients with or without obesity: a systematic review and meta-analysis. BMC Oral Health 2023; 23:717. [PMID: 37798684 PMCID: PMC10552206 DOI: 10.1186/s12903-023-03383-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The objective of this systematic review and meta-analysis was to evaluate the effects of non-surgical periodontal therapy (NSPT) on inflammatory-related cytokines/adipocytokines in periodontitis patients with or without obesity. METHODS We followed the preferred reporting items for systematic reviews and meta-analyses statement and registered the study (CRD42022375331) in the Prospective International Register of Systematic Reviews. We screened randomized-controlled trials and controlled clinical trials from six databases up to December 2022. Quality assessment was performed with RoB-2 and ROBINS-I tools for randomized trials and non-randomized trials, respectively. Meta-analysis was carried out using a random-effect model. RESULTS We included seventeen references in the systematic analysis, and sixteen in the meta-analysis. Baseline results of pro-inflammatory biomarkers, including serum interleukin (IL)-6, serum and gingival crevicular fluid (GCF), tumor necrosis factor (TNF)-a, serum C-reactive protein (CRP)/hs-CRP, and serum and GCF resistin, were higher in obesity subjects than in normal weight subjects. The effect of NSPT with respect to levels of cytokines/adipocytokines, including IL-6, TNF-a, CRP/hs-CRP, resistin, adiponectin, leptin and retinol binding protein 4 (RBP4), were then analyzed in the systematic and meta-analysis. After three months of NSPT, serum (MD = -0.54, CI = -0.62 - -0.46), and GCF (MD = -2.70, CI = -4.77 - -0.63) levels of IL-6, along with the serum RBP4 (MD = -0.39, CI = -0.68-0.10) decreased in periodontitis individuals with obesity. NSPT also improved GCF adiponectin levels after three months (MD = 2.37, CI = 0.29 - 4.45) in periodontitis individuals without obesity. CONCLUSIONS Obese status altered the baseline levels of cytokines/adipocytokines (serum IL-6, serum and GCF TNF-a, serum CRP/hs-CRP, and serum and GCF resistin). Then NSPT can shift the levels of specific pro-inflammatory mediators and anti-inflammatory mediators in biological fluids, both in obesity and non-obesity individuals. NSPT can reduce serum and GCF IL-6 levels together with serum RBP4 level in individuals with obesity after 3 months, besides, there is no sufficient evidence to prove that obese patients have a statistically significant decrease in the levels of other cytokines compared to patients with normal weight. NSPT can also increase GCF adiponectin level in normal weight individuals after 3 months. Our findings imply the potential ideal follow-up intervals and sensitive biomarkers for clinical bioanalysis in personalized decision-making of effect of NSPT due to patients' BMI value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
20
|
Aimetti M, Baima G, Aliyeva N, Lorenzetti V, Citterio F, Franco F, Di Scipio F, Berta GN, Romano F. Influence of locally delivered doxycycline on the clinical and molecular inflammatory status of intrabony defects prior to periodontal regeneration: A double-blind randomized controlled trial. J Periodontal Res 2023; 58:1096-1104. [PMID: 37553767 DOI: 10.1111/jre.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES To test the effect of locally delivered doxycycline (DOX) administered 2 weeks prior to minimally invasive periodontal regeneration in terms of presurgical inflammatory status and cytokine expression profile in the gingival crevicular fluid (GCF). Secondary aim was to assess the early wound healing index (EHI) at 2 weeks after surgery. BACKGROUND It is hypothesized that healing after periodontal regeneration is dependent on preoperative soft tissue condition, and that local antibiotics may improve the site-specific inflammatory status at short time. METHODS Sites associated with periodontal intrabony defects requiring regenerative surgery and showing bleeding on probing (BoP) were included. At T0, experimental sites were randomly treated with subgingival instrumentation with or without topic DOX application. After 2 weeks (T1), defects were approached by means of minimally invasive surgical technique. GCF was sampled at both T0 and T1 for inflammatory biomarker analysis. Two weeks after surgery, the EHI was evaluated (T2). RESULTS Forty-four patients were included. At T1, the number of BoP+ sites was statistically significantly less in the test group (27.3% vs. 72.7%; p < .01). The total amount of interleukin (IL)-1β (p < .001), matrix-metalloproteinases (MMP)-8 (p < .001), and MMP-9 (p = .010) in the GCF significantly decreased in the test group at T1, with relevant differences compared to controls. At T2, the EHI had an average value of 1.45 ± 0.86 in the test group while in the control, it was 2.31 ± 1.43 (p = .027). A statistically significantly positive correlation was observed between the amount of IL-1β and MMP-9 and EHI scores. CONCLUSIONS Within the limitations of this study, sites treated with DOX showed improved clinical and molecular inflammatory parameters before surgery, as well as soft tissue healing 2 weeks after surgery.
Collapse
Affiliation(s)
- Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Nargiz Aliyeva
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Virginia Lorenzetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
22
|
Liang F, Zhou Y, Zhang Z, Zhang Z, Shen J. Association of vitamin D in individuals with periodontitis: an updated systematic review and meta-analysis. BMC Oral Health 2023; 23:387. [PMID: 37312090 PMCID: PMC10265775 DOI: 10.1186/s12903-023-03120-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND There are differences in vitamin D levels between periodontitis and healthy individuals, but the effect of vitamin D on periodontitis is controversial. The purpose of this Meta-analysis is twofold: (1) compare vitamin D levels in individuals with or without periodontitis; (2) assess the effects of vitamin D supplementation during scaling and root planing (SRP) on periodontal clinical parameters in individuals with periodontitis. METHODS A systematic search was conducted in five databases (PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane library), published from the database inception to 12 September 2022. The Cochrane Collaboration Risk of bias (ROB) assessment tool, the risk of bias in non-randomized studies of intervention (ROBINS-I) tool, the Newcastle-Ottawa Quality Assessment Scale (NOS), and Agency for Healthcare Quality and Research (AHRQ) were used to evaluate randomized controlled trial (RCT), non-RCT, case-control study, and cross-sectional study, respectively. Statistical analysis was performed using RevMan 5.3 and Stata 14.0 software, with weighted mean difference (WMD), standardized mean difference (SMD) and 95% confidence intervals (CI) as the effect measures, and heterogeneity was tested by subgroup analysis, sensitivity analysis, Meta-regression. RESULTS A total of 16 articles were included. The results of Meta-analysis showed that periodontitis was associated with lower serum vitamin D levels compared to normal population (SMD = -0.88, 95%CI -1.75 ~ -0.01, P = 0.048), while there was no significant difference in serum or saliva 25(OH)D levels between periodontitis and normal population. Additionally, the Meta-analysis showed that SRP + vitamin D and SRP alone had a statistically significant effect on serum vitamin D levels in individuals with periodontitis (SMD = 23.67, 95%CI 8.05 ~ 32.29, P = 0.003; SMD = 1.57, 95%CI 1.08 ~ 2.06, P < 0.01). And SRP + vitamin D could significantly reduce clinical attachment level compared to SRP alone (WMD = -0.13, 95%CI -0.19 ~ -0.06, P < 0.01), but had no meaningful effect on probing depth, gingival index, bleeding index, respectively. CONCLUSION The evidence from this Meta-analysis suggests that the serum vitamin D concentration of individuals with periodontitis is lower than that of normal people, and SRP along with vitamin D supplementation has been shown to play a significant role in improving periodontal clinical parameters. Therefore, vitamin D supplementation as an adjuvant to nonsurgical periodontal therapy has a positive impact on the prevention and treatment of periodontal disease in clinical practice.
Collapse
Affiliation(s)
- Fangfang Liang
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanzhu Zhou
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China
| | - Zhenyu Zhang
- The School of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Zheng Zhang
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| | - Jing Shen
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
23
|
Jun L, Yuanyuan L, Zhiqiang W, Manlin F, Chenrui H, Ouyang Z, Jiatong L, Xi H, Zhihua L. Multi-omics study of key genes, metabolites, and pathways of periodontitis. Arch Oral Biol 2023; 153:105720. [PMID: 37285682 DOI: 10.1016/j.archoralbio.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE This study aimed to explore the key genes, metabolites, and pathways that influence periodontitis pathogenesis by integrating transcriptomic and metabolomic studies. DESIGN Gingival crevicular fluid samples from periodontitis patients and healthy controls were collected for liquid chromatography/tandem mass-based metabolomics. RNA-seq data for periodontitis and control samples were obtained from the GSE16134 dataset. Differential metabolites and differentially expressed genes (DEGs) between the two groups were then compared. Based on the protein-protein interaction (PPI) network module analysis, key module genes were selected from immune-related DEGs. Correlation and pathway enrichment analyses were performed for differential metabolites and key module genes. A multi-omics integrative analysis was performed using bioinformatic methods to construct a gene-metabolite-pathway network. RESULTS From the metabolomics study, 146 differential metabolites were identified, which were mainly enriched in the pathways of purine metabolism and Adenosine triphosphate binding cassette transporters (ABC transporters). The GSE16134 dataset revealed 102 immune-related DEGs (458 upregulated and 264 downregulated genes), 33 of which may play core roles in the key modules of the PPI network and are involved in cytokine-related regulatory pathways. Through a multi-omics integrative analysis, a gene-metabolite-pathway network was constructed, including 28 genes (such as platelet derived growth factor D (PDGFD), neurturin (NRTN), and interleukin 2 receptor, gamma (IL2RG)); 47 metabolites (such as deoxyinosine); and 8 pathways (such as ABC transporters). CONCLUSION PDGFD, NRTN, and IL2RG may be potential biomarkers of periodontitis and may affect disease progression by regulating deoxyinosine to participate in the ABC transporter pathway.
Collapse
Affiliation(s)
- Luo Jun
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Li Yuanyuan
- Pingxiang People's Hospital, Pingxiang, China
| | - Wan Zhiqiang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Fan Manlin
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Chenrui
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Ouyang
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Liu Jiatong
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hu Xi
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China; Pingxiang People's Hospital, Pingxiang, China
| | - Li Zhihua
- Orthodontic Department of Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
24
|
Bencivenga D, Arcadio F, Piccirillo A, Annunziata M, Della Ragione F, Cennamo N, Borriello A, Zeni L, Guida L. Plasmonic optical fiber biosensor development for point-of-care detection of malondialdehyde as a biomarker of oxidative stress. Free Radic Biol Med 2023; 199:177-188. [PMID: 36841362 DOI: 10.1016/j.freeradbiomed.2023.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Numerous pieces of evidence demonstrate that oxidative stress impairs biological functions, speeds up aging, and has a role in a variety of human diseases, including systemic and oral inflammatory disorders, and even cancer. Therefore, technologies providing accurate measures of oxidative stress indicators or biomarkers appear essential in the identification/prevention of such diseases, and in their management. Particularly advantageous is the employement of point-of-care tests based on affordable and small biochips since they can quickly process biological samples and deliver results near the point of care for a prompt therapeutic intervention. Malondialdehyde (MDA) is a key byproduct of oxidative reaction and has been identified as an effective marker of oxidative stress. Herein, we describe the detection of MDA in buffer and in a complex matrix such as saliva, using a plasmonic optical fiber device combined with a highly selective anti-MDA antibody. The experimental results highlight the excellent performance of the proposed biosensor, as well as its ability to provide a low-cost point-of-care test (PoC-T) to be used in real life situations. We demonstrated that a single saliva dilution step and a short incubation time are required for the accurate detection of low concentrations of total MDA (free and conjugated). As a proof-of-concept of future biomedical applications, the method has been tested to determine MDA concentration in saliva of a periodontitis patient compared to that of a healthy control. The obtained findings represent the basis for developing PoC-Ts to be employed in monitoring oral diseases like periodontitis, oral cancers or systemic oxidative-stress associated pathologies. Conclusively, our study puts the ground for an oxidative stress biosensor widely-applicable to different scenarios.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy
| | - Angelantonio Piccirillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy.
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via de Crecchio, 7 - 80138, Naples, Italy.
| | - Luigi Zeni
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma, 9 - 81031, Aversa, (CE), Italy
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", via De Crecchio, 6 - 80138, Naples, Italy
| |
Collapse
|
25
|
Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules 2023; 28:molecules28031075. [PMID: 36770741 PMCID: PMC9921997 DOI: 10.3390/molecules28031075] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The success of a prosthetic treatment is closely related to the periodontal health of the individual. The aim of this article was to review and present the importance of prosthetic restorative materials on the condition of the periodontium, the changes that occur in the composition of the subgingival microbiota and the levels of inflammatory markers in gingival crevicular fluid. Articles on the influence of different prosthetic restorative materials on subgingival microbiota and proinflammatory cytokines were searched for using the keywords "prosthetic biomaterials", "fixed prosthesis", "periodontal health", "subgingival microbiota", "periodontal biomarkers" and "gingival crevicular fluid" in PubMed/Medline, Science Direct, Scopus and Google Scholar. The type of material used for prosthesis fabrication together with poor marginal and internal fit can result in changes in the composition of the subgingival microbiota, as well as increased accumulation and retention of dentobacterial plaque, thus favoring the development of periodontal disease and prosthetic treatment failure. Biological markers have helped to understand the inflammatory response of different prosthetic materials on periodontal tissues with the main purpose of improving their clinical application in patients who need them. Metal-free ceramic prostheses induce a lower inflammatory response regardless of the fabrication method; however, the use of CAD/CAM systems is recommended for their fabrication. In addition, it is presumed that metal-ceramic prostheses cause changes in the composition of the subgingival microbiota producing a more dysbiotic biofilm with a higher prevalence of periodontopathogenic bacteria, which may further favor periodontal deterioration.
Collapse
|
26
|
Fraser D, Ganesan SM. Microbiome, alveolar bone, and metabolites: Connecting the dots. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1074339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oral microbiome (OM) is a diverse and dynamic collection of species, separated from alveolar bone by the oral mucosa. Pathogenic shifts in the OM (dysbiosis) during periodontitis are associated with an inflammatory response in the oral mucosa that drives alveolar bone resorption. Alveolar bone is also affected by metabolic disorders such as osteoporosis. Accumulating evidence has linked another microbial community, the gut microbiome (GM), to systemic bone metabolism and osteoporosis. Underlying this connection is the biologic activity of metabolites, byproducts of host and bacterial activity. Limited evidence also suggests that metabolites in the oral cavity signal between the OM and immune system, influencing both alveolar bone homeostasis and pathologic bone destruction in periodontitis. While the oral cavity and gut are connected through the gastrointestinal tract, dissimilar roles for known metabolites between these two niches exemplify the difficulty in translating knowledge on gut-derived metabolites and bone metabolism to alveolar bone. Integrated metabolomic, transcriptomic, and metagenomic approaches hold promise for resolving these challenges and identifying novel metabolites which impact alveolar bone health. Further interrogation through mechanistic testing in pre-clinical models and carefully controlled clinical studies have potential to lead toward translation of these discoveries into meaningful therapies.
Collapse
|
27
|
Qu H. The association between oxidative balance score and periodontitis in adults: a population-based study. Front Nutr 2023; 10:1138488. [PMID: 37187879 PMCID: PMC10178495 DOI: 10.3389/fnut.2023.1138488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction The pathogenesis between oxidative stress and periodontitis was correlated. The Oxidative Balance Score (OBS) is a systematic tool to assess the effects of diet and lifestyle in relation to oxidative stress. However, the association between OBS and periodontitis has not been reported previously. Methods Sixteen dietary factors and four lifestyle factors were selected to score the OBS. Multivariate logistic regression and sensitivity analysis were used to investigate the relationship between OBS and periodontitis based on data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Subgroup analysis and interaction tests were used to investigate whether this association was stable across populations. Results This study included 3,706 participants. There was a negative linear association between OBS and periodontitis in all participants [0.89 (0.80, 0.97)], and after converting OBS to a quartile variable, participants with OBS in the highest quartile had a 29% lower risk of periodontitis than those with OBS in the lowest quartile [0.71 (0.42, 0.98)]. This negative association differed with respect to age and diabetes. Conclusion There is a negative association between OBS and periodontitis in US adults. Our results suggest that OBS may be used as a biomarker for measuring periodontitis.
Collapse
|
28
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
29
|
Brahim Belhaouari D, Baudoin JP, Lagier JC, Monnet-Corti V, La Scola B, Antezack A. Microscopic observations of SARS-CoV-2 like particles in different oral samples. Eur J Oral Sci 2022; 130:e12903. [PMID: 36404273 PMCID: PMC10099536 DOI: 10.1111/eos.12903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022]
Abstract
The emerging coronavirus pneumonia epidemic caused by the SARS-CoV-2 infection has spread rapidly around the world. The main routes of transmission of SARS-CoV-2 are currently recognised as aerosol/droplet inhalation. However, the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly known. The current data indicates the presence of viral RNA in oral samples, suggesting the implication of saliva in SARS-CoV-2 transmission, however, no direct observation of SARS-CoV-2 particles in different oral samples has been reported. In this study, we investigated whether particles of SARS-CoV-2 were present in oral samples collected from three symptomatic COVID-19 patients. Using scanning electron microscopy (SEM), the correlative strategy of light microscopy and electron microscopy and immunofluorescence staining, we showed the presence of SARS-like particles in RT-qPCR SARS-CoV-2-positive saliva, dental plaque and gingival crevicular fluid (GCF) samples. In the saliva samples, we demonstrated the presence of epithelial oral cells with morphogenetic features of SARS-CoV-2 infected cells. Inside those cells, vacuoles filled with nascent particles were observed, suggesting the potential infection and replication of SARS-CoV-2 in oral tissues. Our results corroborate previous studies and confirm that the oral cavity may be a potential niche for SARS-CoV-2 infection and a potential source of transmission.
Collapse
Affiliation(s)
- Djamal Brahim Belhaouari
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jean-Pierre Baudoin
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Assistance Publique-Hopitaux de Marseille, Hopital Timone, Marseille, France
| | - Jean-Christophe Lagier
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Assistance Publique-Hopitaux de Marseille, Hopital Timone, Marseille, France
| | - Virginie Monnet-Corti
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Assistance Publique-Hopitaux de Marseille, Hopital Timone, Marseille, France.,Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix Marseille Univ, Marseille, France
| | - Bernard La Scola
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Assistance Publique-Hopitaux de Marseille, Hopital Timone, Marseille, France
| | - Angéline Antezack
- IRD, AP-HM, IHU Méditerranée Infection, MEPHI, Aix Marseille Univ, Marseille, France.,Assistance Publique-Hopitaux de Marseille, Hopital Timone, Marseille, France.,Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix Marseille Univ, Marseille, France
| |
Collapse
|
30
|
Zhang Y, Guo Y, Wei W, Zhang Z, Xu X. Metabolomics profiling reveals berberine-inhibited inflammatory response in human gingival fibroblasts by regulating the LPS-induced apoptosis signaling pathway. Front Pharmacol 2022; 13:940224. [PMID: 36071855 PMCID: PMC9441553 DOI: 10.3389/fphar.2022.940224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
This article examines berberine’s biological effects and molecular mechanisms with an inflammatory response model induced by lipopolysaccharide (LPS) in human gingival fibroblasts (HGFs) using metabolomics. The viability of HGFs was determined using the cell counting kit-8 (CCK8). ELISA was used to measure inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α). An investigation of western blots was conducted to investigate the related proteins of apoptosis. Low concentrations of berberine (0.1, 0.5, and 1 μmol L−1) did not affect HGF growth, whereas high concentrations of berberine (5–25 μmol L−1) significantly activated cell proliferation. Berberine suppressed the elevated secretion of IL-6, IL-1β, and TNF-α induced by LPS in HGF. Western blot analysis showed that 10 μmol L−1 of berberine significantly inhibited LPS-induced apoptosis signaling pathway activation. Our results suggested that berberine could inhibit LPS-induced apoptosis and the production of proinflammatory mediators in HGFs cells. Berberine may be a potential therapeutic drug for the management of periodontitis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyang Guo
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjia Wei
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| | - Xiaodong Xu
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| |
Collapse
|
31
|
Advances in Experimental Research About Periodontitis: Lessons from the Past, Ideas for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:1-15. [DOI: 10.1007/978-3-030-96881-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Baima G, Iaderosa G, Corana M, Romano F, Citterio F, Giacomino A, Berta GN, Aimetti M. Macro and trace elements signature of periodontitis in saliva: A systematic review with quality assessment of ionomics studies. J Periodontal Res 2021; 57:30-40. [PMID: 34837226 PMCID: PMC9298699 DOI: 10.1111/jre.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Objectives The present systematic review examined the available evidence on distinctive salivary ion profile in periodontitis compared to periodontal health and provided a qualitative assessment of the literature. Background Macro and trace elements are essential for cellular physiology, and their changes in biological fluids can be revelatory of an underlying pathological status. Methods Data from relevant studies identified from PubMed, Embase, and Scopus databases were retrieved to answer the following PECO question: “In systemically healthy individuals, are there any differences in any salivary macro or trace element concentration between periodontally healthy subjects (H) and patients with periodontitis (P)?” Quality of included studies was rated using a modified version of the QUADOMICS tool. A consistency analysis was performed to identify significantly discriminant chemical elements. Results After the screening of 873 titles, 13 studies were included reporting data on 22 different elements. Among them, levels of sodium and potassium were consistently and significantly higher in P compared to H. Conflicting results were found for all the other elements, despite concentration of calcium, copper, and manganese mostly increased in saliva of P. Levels of magnesium were found higher in P than in H in 2 studies but lower in 3. Zinc resulted significantly increased in saliva from H compared to P individuals in 2 studies, but one study reported opposite results. Four studies were considered as high quality, while reporting of operative protocols and statistical analysis was a major limitation for the others. Due to high methodologic heterogeneity, meta‐analysis was not performed. Conclusions Levels of macro or trace elements were differentially identified in saliva across diverse periodontal conditions, having a major potential for investigation of oral homeostasis and for high‐resolution periodontal diagnosis. Products of inflammatory physiologic cellular impairment, such as sodium and potassium, were the most consistently associated with periodontitis (PROSPERO CRD42021235744).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Han P, Bartold PM, Ivanovski S. The emerging role of small extracellular vesicles in saliva and gingival crevicular fluid as diagnostics for periodontitis. J Periodontal Res 2021; 57:219-231. [PMID: 34773636 DOI: 10.1111/jre.12950] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis is a highly prevalent multifactorial chronic inflammatory disease associated with a destructive host immune-inflammatory response to microbial dysbiosis. Current clinical diagnosis is reliant on measuring past periodontal tissue loss, with a lack of molecular biomarkers to accurately diagnose periodontitis activity in 'real-time'. Thus, discovery of new classes of diagnostic biomarkers is of critical importance in periodontology. Small extracellular vesicles (<200 nm in diameter; sEVs) from oral biofluids (saliva and gingival crevicular fluid-GCF) are lipid-encapsulated bilayered vesicles and have recently emerged as a potential source of biomarkers for periodontal disease (gingivitis and periodontitis), due to the cargo of protein, genetic material and lipids derived from their parent cells. There is limited information on the isolation and characterisation methods of saliva/GCF-sEVs or the characterisation of sEVs cargo as biomarkers for periodontitis. In this review, we detail the composition of sEVs and summarise their isolation and characterisation from saliva and GCF. The potential role of saliva and GCF-derived sEVs in periodontitis diagnosis is also explored. It is proposed that sEVs cargo, including protein, microRNA, message RNA and DNA methylation, are potential biomarkers for periodontitis with good diagnostic power (area under the curve-AUC > 0.9).
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Epigenetics Nanodiagnostic and Therapeutic Group, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia.,School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter Mark Bartold
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, Epigenetics Nanodiagnostic and Therapeutic Group, Center for Orofacial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia.,School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Yaykasli KO, Schauer C, Muñoz LE, Mahajan A, Knopf J, Schett G, Herrmann M. Neutrophil Extracellular Trap-Driven Occlusive Diseases. Cells 2021; 10:2208. [PMID: 34571857 PMCID: PMC8466545 DOI: 10.3390/cells10092208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.
Collapse
Affiliation(s)
- Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
35
|
Serum Inflammatory and Prooxidant Marker Levels in Different Periodontal Disease Stages. Healthcare (Basel) 2021; 9:healthcare9081070. [PMID: 34442206 PMCID: PMC8391602 DOI: 10.3390/healthcare9081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Periodontitis has been associated to systemic diseases and this association could be due to an increase in circulating inflammatory and oxidative stress biomarkers in the periodontal disease. This study aimed to evaluate the relationship between inflammatory and pro-oxidant markers according to different stages of periodontitis. METHODS This cross-sectional study included 70 subjects who were divided into three groups according to periodontitis stage: stage II (n = 22), stage III (n = 30), and stage IV (n = 18). We evaluated periodontal parameters and levels of high-sensitivity C-reactive protein (hsCRP), fibrinogen, and malondialdehyde (MDA) in serum, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine. RESULTS Serum hsCRP and fibrinogen levels were associated with periodontitis severity, which were higher in stage IV than in stages III and II of periodontitis (p = 0.003 and p = 0.025, respectively). We observed a slight yet insignificant increase in MDA levels related to periodontitis severity. Probing depth and clinical attachment loss were associated with serum fibrinogen and hsCRP levels. However, there were no significant associations between periodontal variables and MDA and 8-OHdG levels. CONCLUSION Our data support an association between periodontitis and systemic inflammation, which increases with periodontal disease severity. This indicates the importance of the early diagnosis and treatment of periodontal disease to avoid the development or worsening of systemic inflammatory diseases.
Collapse
|