1
|
Leal MG, Dos Martírios Luz JE, Fidelix YL, Roig-Hierro E, Bonuzzi GMG. The Effects of the Nocturnal Sleep on Learning of a Complex Motor Skill in Young and Older Adults. Exp Aging Res 2024:1-14. [PMID: 39666308 DOI: 10.1080/0361073x.2024.2439741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND/STUDY CONTEXT Research on older adults has shown impairments in nocturnal sleep, impacting motor memory consolidation and learning. However, previous studies primarily focus on simple tasks, limiting generalization to complex motor activities. Moreover, no evidence exists on how sleep influences adaptability and relearning in older adults. METHODS Sixty older adults and 60 young adults practiced an underarm dart-throwing task. The participants were divided into 2 sub-groups: SLEEP, which practiced in the evening and was retested on the morning of the following day, and CONTROL, which practiced in the morning and was retested in the evening on the same day. The practice and retention phases were spaced 12 hours. We analyzed motor learning through persistence, adaptability and relearning rate. RESULTS Sleep did not enhance motor learning for any group. While young adults exhibited retention, older adults did not, especially after nocturnal sleep. There was no difference between sub-groups in adaptability. Older adults demonstrated inferior relearning compared to young adults, independently of sleep. CONCLUSION Nocturnal sleep did not influence memory consolidation in any group. On the contrary, our findings suggest that nocturnal sleep harms retention in older adults. Age-related characteristics induce a worse relearning rate regardless of sleep occurrence.
Collapse
Affiliation(s)
- Marina Gonçalves Leal
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina, Brazil
| | | | - Yara Lucy Fidelix
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Eric Roig-Hierro
- Department of Applied Didatics, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
2
|
Ukraintseva YV, Saltykov KA, Tkachenko ON. Neither fifty percent slow-wave sleep suppression nor fifty percent rapid eye movement sleep suppression does impair memory consolidation. Sleep Med 2024; 124:223-235. [PMID: 39326217 DOI: 10.1016/j.sleep.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Establishing well-defined relationships between sleep features and memory consolidation is essential in comprehending the pathophysiology of cognitive decline commonly seen in patients with insomnia, depression, and other sleep-disrupting conditions. Twenty-eight volunteers participated in two experimental sessions: a session with selective SWS suppression during one night and a session with undisturbed night sleep (as a control condition). Fifteen of them also participated in a third session with REM suppression. Suppression was achieved by presenting an acoustic tone. In the evening and the morning, the participants completed procedural and declarative memory tasks and the Psychomotor vigilance task (PVT). Heart rate variability analysis and salivary cortisol were used to control possible stress reactions to sleep interference. SWS and REM suppression led to more than 50 percent reduction in the amount of these stages. Neither vigilance nor memory consolidation was impaired after SWS or REM suppression. Unexpectedly, a beneficial effect of selective SWS suppression on PVT performance was found. Similarly, after a night with SWS suppression, the overnight improvement in procedural skills was higher than after a night with REM suppression and after a night with undisturbed sleep. Our data brings into question the extent to which SWS and REM are truly necessary for effective memory consolidation to proceed. Moreover, SWS suppression may even improve the performance of some tasks, possibly by reducing sleep inertia associated with undisturbed sleep.
Collapse
Affiliation(s)
- Yulia V Ukraintseva
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia.
| | - Konstantin A Saltykov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia
| | - Olga N Tkachenko
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485, Moscow, Russia
| |
Collapse
|
3
|
Ameen MS, Petzka M, Peigneux P, Hoedlmoser K. Post-training sleep modulates motor adaptation and task-related beta oscillations. J Sleep Res 2024; 33:e14082. [PMID: 37950689 DOI: 10.1111/jsr.14082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
Motor adaptation reflects the ability of the brain's sensorimotor system to flexibly deal with environmental changes to generate effective motor behaviour. Whether sleep contributes to the consolidation of motor adaptation remains controversial. In this study, we investigated the impact of sleep on motor adaptation and its neurophysiological correlates in a novel motor adaptation task that leverages a highly automatised motor skill, that is, typing. We hypothesised that sleep-associated memory consolidation would benefit motor adaptation and induce modulations in task-related beta band (13-30 Hz) activity during adaptation. Healthy young male experts in typing on the regular computer keyboard were trained to type on a vertically mirrored keyboard while brain activity was recorded using electroencephalography. Typing performance was assessed either after a full night of sleep with polysomnography or a similar period of daytime wakefulness. Results showed improved motor adaptation performance after nocturnal sleep but not after daytime wakefulness, and decreased beta power: (a) during mirrored typing as compared with regular typing; and (b) in the post-sleep versus the pre-sleep mirrored typing sessions. Furthermore, the slope of the electroencephalography signal, a measure of aperiodic brain activity, decreased during mirrored as compared with regular typing. Changes in the electroencephalography spectral slope from pre- to post-sleep mirrored typing sessions were correlated with changes in task performance. Finally, increased fast sleep spindle density (13-15 Hz) during the night following motor adaptation training was predictive of successful motor adaptation. These findings suggest that post-training sleep modulates neural activity supporting adaptive motor functions.
Collapse
Affiliation(s)
- Mohamed S Ameen
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Marit Petzka
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Muñoz-García D, Serrano JI, Ferrer-Peña R, d'Eudeville V, Brero M, Boisson M, Del Castillo MD. Visually-Induced Motor Imagery Effects on Motor Adaptation to Reverse Steering Cycling. A Randomized Controlled Trial. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:458-465. [PMID: 37826855 DOI: 10.1080/02701367.2023.2252479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2023] [Indexed: 10/14/2023]
Abstract
Purpose: First, testing an intervention of neuromodulation based on motor imagery and action observation as a promoter of motor adaptation of a complex motor task involving balance. Second, determining what prior balance factors can affect the motor adaptation task. Methods: A double-blind randomized controlled trial was performed. Forty-eight healthy subjects were recruited. The balance of all participants during gait and standing was assessed before adapting to the complex, multi-limb motor task of riding an inverse steering bicycle (ISB). Two interventions were carried out interleaved among trials of adaptation to the motor task: the experimental group (n = 24) was asked to perform neuromodulation (EN) by watching first-person ISB riding through immersive VR glasses and, simultaneously, mentally mimicking the movements. The control group (CG) was asked to watch a slideshow video of steady landscape images. Results: The results showed that the EN group did not improve the motor adaptation rate and induced higher adaptation times with respect to the CG. However, while the motor adaptation success showed a significant dependence on the prior proprioceptive participation in balance in the CG, the EN group did not present any relationship between the prior balance profile and motor adaptation outcome. Conclusions: Results point to a benefit of the visually guided neuromodulation for the motor adaptation of the subjects with low participation of proprioception in balance. Moreover, the results from the control group would allow to disclose prognostic factors about the success of the motor adaptation, and also prescription criteria for the proposed neuromodulation based on the balance profile.
Collapse
|
5
|
Magnard J, Macaulay TR, Schroeder ET, Laine C, Gordon J, Schweighofer N. Initial development of skill with a reversed bicycle and a case series of experienced riders. Sci Rep 2024; 14:4334. [PMID: 38383561 PMCID: PMC10881966 DOI: 10.1038/s41598-024-54595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Riding a bicycle is considered a durable skill that cannot be forgotten. Here, novice participants practiced riding a reversed bicycle, in which a reversing gear inverted the handlebar's rotation. Although learning to ride the reversed bicycle was possible, it was slow, highly variable, implicit, and followed an S-shape pattern. In the initial learning phase, failed attempts to ride the normal bicycle indicated strong interference between the two bicycle skills. While additional practice decreased this interference effect, a subset of learners could not ride either bicycle after eight sessions of practice. Experienced riders who performed extensive practice could switch bicycles without failed attempts and exhibited similar performance (i.e., similar handlebar oscillations) on both bicycles. However, their performance on the normal bicycle was worse than that of the novice bicycle riders at baseline. In conclusion, "unlearning" of the normal bicycle skill precedes the initial learning of the reversed bicycle skill, and a signature of such unlearning is still present following extensive practice.
Collapse
Affiliation(s)
- Justine Magnard
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
- Faculté des Sciences de la Motricité, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Timothy R Macaulay
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
- KBR, Houston, TX, USA
| | - E Todd Schroeder
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Christopher Laine
- Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - James Gordon
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Erlacher D, Schmid D, Zahno S, Schredl M. Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters. Life (Basel) 2024; 14:203. [PMID: 38398711 PMCID: PMC10890242 DOI: 10.3390/life14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Previous research has shown that learning procedural tasks enhances REM sleep the following night. Here, we investigate whether complex motor learning affects sleep architecture. An experiment in which twenty-two subjects either learned a motor task (trampolining) or engaged in a control task (ergometer) was carried out in a balanced within-group design. After an initial laboratory adaptation night, two experimental nights were consecutive. The results indicate that learning a motor task had an effect on REM sleep parameters and, therefore, support the hypothesis that learning a procedural skill is related to an increase in REM sleep parameters. However, the statistical effect on REM sleep is smaller than found in previous studies. One might speculate that the motor learning was not intense enough compared to other studies. For sports practice, the results suggest that REM sleep, which is particularly rich in the morning, plays an important role in motor memory consolidation. Thus, this phase should not be interrupted after complex motor skill learning sessions. In future studies, other motor tasks should be applied.
Collapse
Affiliation(s)
- Daniel Erlacher
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Daniel Schmid
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Stephan Zahno
- Institute of Sport Science, University of Bern, CH-3012 Bern, Switzerland; (D.S.); (S.Z.)
| | - Michael Schredl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany;
| |
Collapse
|
7
|
Apinis-Deshaies A, Tremblay J, Trempe M. Temporal and Spatial Accuracy of Reaching Movements do not Improve Off-line. J Mot Behav 2023; 56:241-252. [PMID: 38008910 DOI: 10.1080/00222895.2023.2284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/25/2023] [Indexed: 11/28/2023]
Abstract
Consolidation has been associated with performance gains without additional practice (i.e., off-line learning). However, the movement characteristics improving off-line remain poorly understood. To investigate this question, participants were trained to produce a sequence of planar reaching movements toward four different visual targets. The training session with feedback required them to learn the relative time of the movements, the total movement time and aim accurately at each target. The retention test was performed either 10-min or 24-h after. Results revealed that a 24-h consolidation interval did not result in better temporal or spatial accuracy. This finding suggests that off-line learning may be restricted to sequence production tasks in which the different segments must be regrouped ("chunked") together to accelerate their execution.
Collapse
Affiliation(s)
- Amélie Apinis-Deshaies
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Jonathan Tremblay
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Maxime Trempe
- Sport Studies Department, Bishop's University, Sherbrooke, Canada
| |
Collapse
|
8
|
Potential Benefits of Daytime Naps on Consecutive Days for Motor Adaptation Learning. Clocks Sleep 2022; 4:387-401. [PMID: 36134945 PMCID: PMC9497798 DOI: 10.3390/clockssleep4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Daytime napping offers benefits for motor memory learning and is used as a habitual countermeasure to improve daytime functioning. A single nap has been shown to ameliorate motor memory learning, although the effect of consecutive napping on motor memory consolidation remains unclear. This study aimed to explore the effect of daytime napping over multiple days on motor memory learning. Twenty university students were divided into a napping group and no-nap (awake) group. The napping group performed motor adaption tasks before and after napping for three consecutive days, whereas the no-nap group performed the task on a similar time schedule as the napping group. A subsequent retest was conducted one week after the end of the intervention. Significant differences were observed only for speed at 30 degrees to complete the retention task, which was significantly faster in the napping group than in the awake group. No significant consolidation effects over the three consecutive nap intervention periods were confirmed. Due to the limitations of the different experimental environments of the napping and the control group, the current results warrant further investigation to assess whether consecutive napping may benefit motor memory learning, which is specific to speed.
Collapse
|
9
|
Coel RA, Pujalte GGA, Applewhite AI, Zaslow T, Cooper G, Ton AN, Benjamin HJ. Sleep and the Young Athlete. Sports Health 2022:19417381221108732. [PMID: 35855519 DOI: 10.1177/19417381221108732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Sleep plays a vital role in cognitive and physical performance. Teenage athletes (ages 13-19 years) are considered especially at risk for disordered sleep and associated negative cognitive, physical, and psychosomatic effects. However, there is a paucity of evidence-based recommendations to promote sleep quality and quantity in athletes who fall within this age range. We performed a review of the literature to reveal evidence-based findings and recommendations to help sports instructors, athletic trainers, physical therapists, physicians, and other team members caring for young athletes provide guidance on sleep optimization for peak sports performance and injury risk reduction. METHODS PubMed, Scopus, and Cochrane CENTRAL were searched on May 11, 2016, and then again on September 1, 2020, for relevant articles published to date. STUDY DESIGN Narrative review. LEVEL OF EVIDENCE Level 4. RESULTS Few studies exist on the effects disordered sleep may have on teenage athletes. By optimizing sleep patterns in young athletes during training and competitions, physical and mental performance, and overall well-being, may be optimized. Adequate sleep has been shown to improve the performance of athletes, although further studies are needed. CONCLUSION Twenty-five percent of total sleep time should be deep sleep, with a recommended sleep time of 8 to 9 hours for most young athletes. Screen and television use during athletes' bedtime should be minimized to improve sleep quality and quantity. For young athletes who travel, jet lag can be minimized by allowing 1 day per time zone crossed for adjustment, limiting caffeine intake, planning meals and onboard sleeping to coincide with destination schedules, timing arrivals in the morning whenever possible, and using noise-canceling headphones and eyeshades. STRENGTH-OF-RECOMMENDATION TAXONOMY (SORT) B.
Collapse
Affiliation(s)
- Rachel A Coel
- Department of Family Medicine, University of Hawaii, Honolulu, Hawaii
| | - George G A Pujalte
- Department of Family Medicine, Mayo Clinic, Jacksonville, Florida.,Division of Sports Medicine, Mayo Clinic, Jacksonville, Florida
| | | | - Tracy Zaslow
- Children's Orthopedic Center, Children's Hospital Los Angeles, Los Angeles, California
| | - George Cooper
- Division of Sports Medicine, Mayo Clinic, Jacksonville, Florida
| | - Angie N Ton
- Department of Family Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Holly J Benjamin
- Department of Orthopaedic Surgery and Rehabilitation Medicine University of Chicago, Chicago, Illinois.,Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Leong RLF, Yu N, Ong JL, Ng ASC, Jamaluddin SA, Cousins JN, Chee NIYN, Chee MWL. Memory performance following napping in habitual and non-habitual nappers. Sleep 2021; 44:6031654. [PMID: 33313925 PMCID: PMC8193563 DOI: 10.1093/sleep/zsaa277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Study Objectives Afternoon naps benefit memory but this may depend on whether one is a habitual napper (HN; ≥1 nap/week) or non-habitual napper (NN). Here, we investigated whether a nap would benefit HN and NN differently, as well as whether HN would be more adversely affected by nap restriction compared to NN. Methods Forty-six participants in the nap condition (HN-nap: n = 25, NN-nap: n = 21) took a 90-min nap (14:00–15:30 pm) on experimental days while 46 participants in the Wake condition (HN-wake: n = 24, NN-wake: n = 22) remained awake in the afternoon. Memory tasks were administered after the nap to assess short-term topographical memory and long-term memory in the form of picture encoding and factual knowledge learning respectively. Results An afternoon nap boosted picture encoding and factual knowledge learning irrespective of whether one habitually napped (main effects of condition (nap/wake): ps < 0.037). However, we found a significant interaction for the hippocampal-dependent topographical memory task (p = 0.039) wherein a nap, relative to wake, benefitted habitual nappers (HN-nap vs HN-wake: p = 0.003) compared to non-habitual nappers (NN-nap vs. NN-wake: p = 0.918). Notably for this task, habitual nappers’ performance significantly declined if they were not allowed to nap (HN-wake vs NN-wake: p = 0.037). Conclusions Contrary to concerns that napping may be disadvantageous for non-habitual nappers, we found that an afternoon nap was beneficial for long-term memory tasks even if one did not habitually nap. Naps were especially beneficial for habitual nappers performing a short-term topographical memory task, as it restored the decline that would otherwise have been incurred without a nap. Clinical Trial Information NCT04044885.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicole Yu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alyssa S C Ng
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S Azrin Jamaluddin
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James N Cousins
- Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Centre, EN, Nijmegen, The Netherlands
| | - Nicholas I Y N Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Picard-Deland C, Aumont T, Samson-Richer A, Paquette T, Nielsen T. Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiol Learn Mem 2021; 183:107460. [PMID: 34015442 DOI: 10.1016/j.nlm.2021.107460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sleep facilitates memory consolidation through offline reactivations of memory traces. Dreaming may play a role in memory improvement and may reflect these memory reactivations. To experimentally address this question, we used targeted memory reactivation (TMR), i.e., application, during sleep, of a stimulus that was previously associated with learning, to assess whether it influences task-related dream imagery (or task-dream reactivations). Specifically, we asked if TMR or task-dream reactivations in either slow-wave (SWS) or rapid eye movement (REM) sleep benefit whole-body procedural learning. Healthy participants completed a virtual reality (VR) flying task prior to and following a morning nap or rest period during which task-associated tones were readministered in either SWS, REM sleep, wake or not at all. Findings indicate that learning benefits most from TMR when applied in REM sleep compared to a Control-sleep group. REM dreams that reactivated kinesthetic elements of the VR task (e.g., flying, accelerating) were also associated with higher improvement on the task than were dreams that reactivated visual elements (e.g., landscapes) or that had no reactivations. TMR did not itself influence dream content but its effects on performance were greater when coexisting with task-dream reactivations in REM sleep. Findings may help explain the mechanistic relationships between dream and memory reactivations and may contribute to the development of sleep-based methods to optimize complex skill learning.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Tomy Aumont
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Samson-Richer
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Debarnot U, Perrault AA, Sterpenich V, Legendre G, Huber C, Guillot A, Schwartz S. Motor imagery practice benefits during arm immobilization. Sci Rep 2021; 11:8928. [PMID: 33903619 PMCID: PMC8076317 DOI: 10.1038/s41598-021-88142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Motor imagery (MI) is known to engage motor networks and is increasingly used as a relevant strategy in functional rehabilitation following immobilization, whereas its effects when applied during immobilization remain underexplored. Here, we hypothesized that MI practice during 11 h of arm-immobilization prevents immobilization-related changes at the sensorimotor and cortical representations of hand, as well as on sleep features. Fourteen participants were tested after a normal day (without immobilization), followed by two 11-h periods of immobilization, either with concomitant MI treatment or control tasks, one week apart. At the end of each condition, participants were tested on a hand laterality judgment task, then underwent transcranial magnetic stimulation to measure cortical excitability of the primary motor cortices (M1), followed by a night of sleep during which polysomnography data was recorded. We show that MI treatment applied during arm immobilization had beneficial effects on (1) the sensorimotor representation of hands, (2) the cortical excitability over M1 contralateral to arm-immobilization, and (3) sleep spindles over both M1s during the post-immobilization night. Furthermore, (4) the time spent in REM sleep was significantly longer, following the MI treatment. Altogether, these results support that implementing MI during immobilization may limit deleterious effects of limb disuse, at several levels of sensorimotor functioning.
Collapse
Affiliation(s)
- Ursula Debarnot
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland. .,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland. .,Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| | - Aurore A Perrault
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland.,Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Chieko Huber
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| |
Collapse
|
13
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
14
|
Prior cortical activity differences during an action observation plus motor imagery task related to motor adaptation performance of a coordinated multi-limb complex task. Cogn Neurodyn 2020; 14:769-779. [PMID: 33101530 DOI: 10.1007/s11571-020-09633-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Motor adaptation is the ability to develop new motor skills that makes performing a consolidated motor task under different psychophysical conditions possible. There exists a proven relationship between prior brain activity at rest and motor adaptation. However, the brain activity at rest is highly variable both between and within subjects. Here we hypothesize that the cortical activity during the original task to be later adapted is a more reliable and stronger determinant of motor adaptation. Consequently, we present a study to find cortical areas whose activity, both at rest and during first-person virtual reality simulation of bicycle riding, characterizes the subjects who did and did not adapt to ride a reverse steering bicycle, a complex motor adaptation task involving all limbs and balance. The results showed that cortical activity differences during the simulated task were higher, more significant, spatially larger, and spectrally wider than at rest for good performers. In this sense, the activity of the left anterior insula, left dorsolateral and ventrolateral inferior prefrontal areas, and left inferior premotor cortex (action understanding hub of the mirror neuron circuit) during simulated bicycle riding are the areas with the most descriptive power for the ability of adapting the motor task. Trials registration Trial was registered with the NIH Clinical Trials Registry (clinicaltrials.gov), with the registration number NCT02999516 (21/12/2016).
Collapse
|
15
|
Freitas E, Saimpont A, Blache Y, Debarnot U. Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice. Scand J Med Sci Sports 2020; 30:2477-2484. [PMID: 32777113 DOI: 10.1111/sms.13799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Sleep-dependent performance enhancement has been consistently reported after explicit sequential finger learning, even using motor imagery practice (MIP), but whether similar sleep benefits occur after explicit sequential gross motor learning with the lower limbs has been addressed less often. Here, we investigated both acquisition and consolidation processes in an innovative sequential footstep task performed either physically or mentally. Forty-eight healthy young participants were tested before and after physical practice (PP) or MIP on the footstep task, following either a night of sleep (PPsleep and MIPsleep groups) or an equivalent daytime period (PPday and MIPday groups). Results showed that all groups improved motor performance following the acquisition session, albeit the magnitude of enhancement in the MIP groups remained lower relative to the PP groups. Importantly, only the MIPsleep group further improved performance after a night of sleep, while the other groups stabilized their performance after consolidation. Together, these findings demonstrate a sleep-dependent gain in performance after MIP in a sequential motor task with the lower limbs but not after PP. Overall, the present study is of particular importance in the context of motor learning and functional rehabilitation.
Collapse
Affiliation(s)
- Emilie Freitas
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard-Lyon1, University of Lyon, Villeurbanne, France
| | - Arnaud Saimpont
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard-Lyon1, University of Lyon, Villeurbanne, France
| | - Yoann Blache
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard-Lyon1, University of Lyon, Villeurbanne, France
| | - Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard-Lyon1, University of Lyon, Villeurbanne, France
| |
Collapse
|
16
|
Sleep-dependent motor memory consolidation in healthy adults: A meta-analysis. Neurosci Biobehav Rev 2020; 118:270-281. [PMID: 32730847 DOI: 10.1016/j.neubiorev.2020.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that sleep better facilitates the consolidation of motor memories than does a corresponding wake interval (King et al., 2017). However, no in-depth analysis of the various motor tasks and their relative sleep gain has been conducted so far. Therefore, the present meta-analysis considered 48 studies with a total of 53 sleep (n = 829) and 53 wake (n = 825) groups. An overall comparison between all sleep and wake groups resulted in a small effect for the relative sleep gain in motor memory consolidation (g = 0.43). While no subgroup differences were identified for differing designs, a small effect for the finger tapping task (g = 0.47) and a medium effect for the mirror tracing task (g = 0.62) were found. In summary, the meta-analysis substantiates that sleep generally benefits the consolidation of motor memories. However, to further our understanding of the mechanisms underlying this effect, examining certain task dimensions and their relative sleep gain would be a promising direction for future research.
Collapse
|
17
|
Bothe K, Hirschauer F, Wiesinger HP, Edfelder JM, Gruber G, Hoedlmoser K, Birklbauer J. Gross motor adaptation benefits from sleep after training. J Sleep Res 2019; 29:e12961. [PMID: 31868978 PMCID: PMC7540033 DOI: 10.1111/jsr.12961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023]
Abstract
Sleep has been shown to facilitate the consolidation of newly acquired motor memories. However, the role of sleep in gross motor learning, especially in motor adaptation, is less clear. Thus, we investigated the effects of nocturnal sleep on the performance of a gross motor adaptation task, i.e. riding an inverse steering bicycle. Twenty‐six male participants (M = 24.19, SD = 3.70 years) were randomly assigned to a PM‐AM‐PM (n = 13) or an AM‐PM‐AM (n = 13) group, i.e. they trained in the evening/morning and were re‐tested the next morning/evening and the following evening/morning (PM‐AM‐PM/AM‐PM‐AM group) so that every participant spent one sleep as well as one wake interval between the three test sessions. Inverse cycling performance was assessed by speed (riding time) and accuracy (standard deviation of steering angle) measures. Behavioural results showed that in the PM‐AM‐PM group a night of sleep right after training stabilized performance (accuracy and speed) and was further improved over the subsequent wake interval. In the AM‐PM‐AM group, a significant performance deterioration after the initial wake interval was followed by the restoration of subjects' performance levels from right after training when a full night of sleep was granted. Regarding sleep, right hemispheric fast N2 sleep spindle activity was related to better stabilization of inverse cycling skills, thus possibly reflecting the ongoing process of updating the participants' mental model from “how to ride a bicycle” to “how to ride an inverse steering bicycle”. Our results demonstrate that sleep facilitates the consolidation of gross motor adaptation, thus adding further insights to the role of sleep for tasks with real‐life relevance.
Collapse
Affiliation(s)
- Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Franziska Hirschauer
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Janina M Edfelder
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Juergen Birklbauer
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| |
Collapse
|
18
|
Davidson P, Hellerstedt R, Jönsson P, Johansson M. Suppression-induced forgetting diminishes following a delay of either sleep or wake. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1705311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Per Davidson
- Department of Psychology, Lund University, Lund, Sweden
| | - Robin Hellerstedt
- Department of Psychology, Lund University, Lund, Sweden
- School of Psychology, University of Kent, Canterbury, Kent, UK
| | - Peter Jönsson
- School of Education and Environment, Centre for Psychology, Kristianstad University, Kristianstad, Sweden
| | | |
Collapse
|
19
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
20
|
Bothe K, Hirschauer F, Wiesinger H, Edfelder J, Gruber G, Birklbauer J, Hoedlmoser K. The impact of sleep on complex gross-motor adaptation in adolescents. J Sleep Res 2019; 28:e12797. [PMID: 30565337 PMCID: PMC6766860 DOI: 10.1111/jsr.12797] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022]
Abstract
Sleep has been shown to facilitate the consolidation of newly acquired motor memories in adults. However, the role of sleep in motor memory consolidation is less clear in children and adolescents, especially concerning real-life gross-motor skills. Therefore, we investigated the effects of sleep and wakefulness on a complex gross-motor adaptation task by using a bicycle with an inverse steering device. A total of 29 healthy adolescents aged between 11 and 14 years (five female) were either trained to ride an inverse steering bicycle (learning condition) or a stationary bicycle (control condition). Training took place in the morning (wake, n = 14) or in the evening (sleep, n = 15) followed by a 9-hr retention interval and a subsequent re-test session. Slalom cycling performance was assessed by speed (riding time) and accuracy (standard deviation of steering angle) measures. Behavioural results showed no evidence for sleep-dependent memory consolidation. However, overnight gains in accuracy were associated with an increase in left hemispheric N2 slow sleep spindle activity from control to learning night. Furthermore, decreases in REM and tonic REM duration were related to higher overnight improvements in accuracy. Regarding speed, an increase in REM and tonic REM duration was favourable for higher overnight gains in riding time. Thus, although not yet detectable on a behavioural level, sleep seemed to play a role in the acquisition of gross-motor skills. A promising direction for future research is to focus on the possibility of delayed performance gains in adolescent populations.
Collapse
Affiliation(s)
- Kathrin Bothe
- Laboratory for SleepCognition and Consciousness ResearchCentre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| | - Franziska Hirschauer
- Laboratory for SleepCognition and Consciousness ResearchCentre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| | | | - Janina Edfelder
- Department of Sport and Exercise ScienceUniversity of SalzburgSalzburgAustria
| | - Georg Gruber
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Juergen Birklbauer
- Department of Sport and Exercise ScienceUniversity of SalzburgSalzburgAustria
| | - Kerstin Hoedlmoser
- Laboratory for SleepCognition and Consciousness ResearchCentre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
21
|
Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process of Skills Acquisition After Stroke? Front Neurol 2018; 9:1002. [PMID: 30524365 PMCID: PMC6262055 DOI: 10.3389/fneur.2018.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains.
Collapse
Affiliation(s)
- Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
23
|
Lugassy D, Herszage J, Pilo R, Brosh T, Censor N. Consolidation of complex motor skill learning: evidence for a delayed offline process. Sleep 2018; 41:5042787. [DOI: 10.1093/sleep/zsy123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diva Lugassy
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, , Israel
| | - Jasmine Herszage
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Raphael Pilo
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, , Israel
| | - Tamar Brosh
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
24
|
Selective improvements in balancing associated with offline periods of spaced training. Sci Rep 2018; 8:7836. [PMID: 29777133 PMCID: PMC5959909 DOI: 10.1038/s41598-018-26228-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/09/2018] [Indexed: 11/15/2022] Open
Abstract
Benefits from post-training memory processing have been observed in learning many procedural skills. Here, we show that appropriate offline periods produce a performance gain during learning to stand on a multiaxial balance board. The tilt angle and the area of sway motion of the board were much more reduced in participants performing a training spaced by an interval of one day with respect to participants executing the same amount of practice over a concentrated period. In particular, offline memory encoding was specifically associated with the motion along the anterior-posterior direction, the spatio-temporal dynamics, and the frequency contents of the board sway. Overall, quantification of spaced learning in a whole-body postural task reveals that offline memory processes enhance the performance by encoding single movement components. From a practical perspective, we believe that the amount of practice and the length of inter-session interval, adopted in this study, may provide objective insights to develop appropriate programs of postural training.
Collapse
|
25
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
26
|
Abstract
Scientific investigation into the possible role of sleep in memory consolidation began with the early studies of Jenkins and Dallenbach (1924). Despite nearly a century of investigation with a waxing and waning of interest, the role of sleep in memory processing remains controversial and elusive. This review provides the historical background for current views and considers the relative contribution of two sleep states, rapid eye movement sleep and slow-wave sleep, to offline memory processing. The sequential hypothesis, until now largely ignored, is discussed, and recent literature supporting this view is reviewed.
Collapse
|
27
|
Abstract
It is possible that one of the essential functions of sleep is to take out the garbage, as it were, erasing and "forgetting" information built up throughout the day that would clutter the synaptic network that defines us. It may also be that this cleanup function of sleep is a general principle of neuroscience, applicable to every creature with a nervous system.
Collapse
|
28
|
Blischke K, Malangré A. Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills. Front Hum Neurosci 2017; 11:374. [PMID: 28790905 PMCID: PMC5525265 DOI: 10.3389/fnhum.2017.00374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed). Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.
Collapse
Affiliation(s)
- Klaus Blischke
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| | - Andreas Malangré
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| |
Collapse
|
29
|
Blischke K, Malangré A. Chunk concatenation evolves with practice and sleep-related enhancement consolidation in a complex arm movement sequence. J Hum Kinet 2016; 51:5-17. [PMID: 28149363 PMCID: PMC5260543 DOI: 10.1515/hukin-2015-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper addresses the notion of chunk concatenation being associated with sleep-related enhancement consolidation of motor sequence memory, thereby essentially contributing to improvements in sequence execution speed. To this end, element movement times of a multi-joint arm movement sequence incorporated in a recent study by Malangré et al. (2014) were reanalyzed. As sequence elements differed with respect to movement distance, element movement times had to be purged from differences solely due to varying trajectory lengths. This was done by dividing each element movement time per subject and trial block by the respective "reference movement time" collected from subjects who had extensively practiced each sequence element in isolation. Any differences in these "relative element movement times" were supposed to reflect element-specific "production costs" imposed solely by the sequence context. Across all subjects non-idiosyncratic, lasting sequence segmentation was shown, and four possible concatenation points (i.e. transition points between successive chunks) within the original arm movement sequence were identified. Based on theoretical suppositions derived from previous work with the discrete sequence production task and the dual processor model (Abrahamse et al., 2013), significantly larger improvements in transition speed occurring at these four concatenation points as compared to the five fastest transition positions within the sequence (associated with mere element execution) were assumed to indicate increased chunk concatenation. As a result, chunk concatenation was shown to proceed during acquisition with physical practice, and, most importantly, to significantly progress some more during retention following a night of sleep, but not during a waking interval.
Collapse
Affiliation(s)
- Klaus Blischke
- Institute of Sport Science, Saarland University, Saarbruecken, Germany
| | - Andreas Malangré
- Institute of Sport Science, Saarland University, Saarbruecken, Germany
| |
Collapse
|
30
|
Backhaus W, Braass H, Renné T, Gerloff C, Hummel FC. Motor Performance Is not Enhanced by Daytime Naps in Older Adults. Front Aging Neurosci 2016; 8:125. [PMID: 27303292 PMCID: PMC4886106 DOI: 10.3389/fnagi.2016.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
The impact of sleep on motor learning in the aging brain was investigated using an experimental diurnal nap setup. As the brain ages several components of learning as well as motor performance change. In addition, aging is also related to sleep architectural changes. This combination of slowed learning processes and impaired sleep behavior raises the question of whether sleep can enhance learning and specifically performance of procedural tasks in healthy, older adults. Previous research was able to show sleep-dependent consolidation overnight for numerous tasks in young adults. Some of these study findings can also be replicated for older adults. This study aims to clarify whether sleep-dependent consolidation can also be found during shorter periods of diurnal sleep. The impact of midday naps on motor consolidation was analyzed by comparing procedural learning using a sequence and a motor adaptation task, in a crossover fashion in healthy, non-sleep deprived, older adults randomly subjected to wake (45 min), short nap (10–20 min sleep) or long nap (50–70 min sleep) conditions. Older adults exhibited learning gains, these were not found to be sleep-dependent in either task. The results suggest that daytime naps do not have an impact on performance and motor learning in an aging population.
Collapse
Affiliation(s)
- Winifried Backhaus
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Hanna Braass
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-EppendorfHamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska InstitutetStockholm, Sweden
| | - Christian Gerloff
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Friedhelm C Hummel
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany; University Sleep Medicine Center Hamburg, University Medical Center Hamburg-Eppendorf and Agaplesion HospitalHamburg, Germany
| |
Collapse
|
31
|
Malangré A, Blischke K. Sleep-Related Offline Improvements in Gross Motor Task Performance Occur Under Free Recall Requirements. Front Hum Neurosci 2016; 10:134. [PMID: 27065834 PMCID: PMC4809884 DOI: 10.3389/fnhum.2016.00134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
Nocturnal sleep effects on memory consolidation following gross motor sequence learning were examined using a complex arm movement task. This task required participants to produce non-regular spatial patterns in the horizontal plane by successively fitting a small peg into different target-holes on an electronic pegboard. The respective reaching movements typically differed in amplitude and direction. Targets were visualized prior to each transport movement on a computer screen. With this task we tested 18 subjects (22.6 ± 1.9 years; 8 female) using a between-subjects design. Participants initially learned a 10-element arm movement sequence either in the morning or in the evening. Performance was retested under free recall requirements 15 min post training, as well as 12 and 24 h later. Thus, each group was provided with one sleep-filled and one wake retention interval. Dependent variables were error rate (number of Erroneous Sequences, ES) and average sequence execution time (correct sequences only). Performance improved during acquisition. Error rate remained stable across retention. Sequence execution time (inverse to execution speed) significantly decreased again during the sleep-filled retention intervals, but remained stable during the respective wake intervals. These results corroborate recent findings on sleep-related enhancement consolidation in ecological valid, complex gross motor tasks. At the same time, they suggest this effect to be truly memory-based and independent from repeated access to extrinsic sequence information during retests.
Collapse
Affiliation(s)
- Andreas Malangré
- Sport Science, Training Science, Saarland University Saarbruecken, Saarland, Germany
| | - Klaus Blischke
- Sport Science, Training Science, Saarland University Saarbruecken, Saarland, Germany
| |
Collapse
|
32
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
33
|
Heib DPJ, Hoedlmoser K, Anderer P, Gruber G, Zeitlhofer J, Schabus M. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link? J Cogn Neurosci 2015; 27:1648-58. [PMID: 25774427 DOI: 10.1162/jocn_a_00804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.
Collapse
Affiliation(s)
| | | | - Peter Anderer
- Medical University of Vienna.,The Siesta Group, Vienna, Austria
| | - Georg Gruber
- Medical University of Vienna.,The Siesta Group, Vienna, Austria
| | | | | |
Collapse
|