1
|
Oda A, Furukawa S, Kitabatake M, Ouji-Sageshima N, Ito T, Takahashi R, Kawamura T, Nakajima Y, Shimonishi N, Ogiwara K, Shima M, Nogami K. Generation of a Severe Hemophilia A Humanized Mouse Model Capable of Inducing an Anti-FVIII Immune Response. Thromb Haemost 2025; 125:435-446. [PMID: 40300593 DOI: 10.1055/a-2518-7157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Factor VIII (FVIII) replacement therapy induces anti-FVIII neutralizing antibodies in approximately 30% of patients with severe hemophilia A (HA). Owing to the lack of experimental systems that allow for the study of human anti-FVIII immune responses, the mechanisms underlying replacement therapy-induced anti-FVIII antibodies in HA patients remain largely unknown. Therefore, experimental systems that enable the study of human anti-FVIII immune responses are needed.We generated severe immunodeficient NOD-scid IL-2Rnull; FVIIInull mice (NOG HA) that can serve as hosts for human cord blood (hCB) transplantation and established a HA mouse with a humanized immune system to induce the anti-FVIII responses in human immune cells in vivo.The proportions of immune cell subsets (CD8+ T cells, CD4+ T cells, CD19+ B cells, CD33+ macrophages, and CD56+ natural killer (NK) cells) in the bone marrow, spleen, and peripheral blood were similar between NOG HA and NOG mice 4 months after hCB transplantation. The hCB-engrafted NOG HA mice retained HA severity. To activate the anti-FVIII immune response in hCB-engrafted NOG HA mice, we administered recombinant (r)FVIII plus lipopolysaccharide (LPS) once a week for 3 months. We detected both anti-FVIII IgM and IgG in the plasma of hCB-engrafted NOG HA mice after treatment with 12 doses of rFVIII and LPS. Taken together, our humanized mice with HA maintained a severe phenotype and generated human anti-FVIII IgG antibodies in vivo, thus representing a valuable model for studying human anti-FVIII immune responses.
Collapse
Affiliation(s)
- Akihisa Oda
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | | | | | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takeshi Kawamura
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | - Naruto Shimonishi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
- The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Midori Shima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
- Thrombosis and Hemostasis Research Center, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
2
|
Asmani AZA, Zainuddin AFF, Azmi Murad NA, Mohd Darwis NH, Suhaimi NS, Zaini E, Taher M, Susanti D, Khotib J. Immunogenicity of monoclonal antibody: Causes, consequences, and control strategies. Pathol Res Pract 2024; 263:155627. [PMID: 39357185 DOI: 10.1016/j.prp.2024.155627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Antibody-based treatment was first used in 1891 for the treatment of diphtheria. Since then, monoclonal antibodies (mAbs) have been developed to treat many diseases such as cancer and act as vaccines. However, murine-derived therapeutic mAbs were found to be highly immunogenic, and caused anti-drug antibodies (ADAs) reaction, reducing their efficacy and causing severe infusion reactions. Fully human, humanised, and chimeric antibodies were then introduced for better therapeutic efficacy. With the introduction of immune response associated with mAbs immunogenicity. This review explores the immunogenicity of mAbs, its mechanism, contributing factors, and its impact on therapeutic efficacy. It also discusses immunogenicity assessment for preclinical studies and strategies for minimising immunogenicity for effective therapeutic treatment in various diseases. Finally, predicting immunogenicity in drug development is essential for selecting top drug candidates. A lot of methods can be implemented by the researchers and developers to reduce the development of ADAs while simultaneously minimising the immunogenicity reaction of mAbs.
Collapse
Affiliation(s)
- Ahmad Zafran Amin Asmani
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Ahmad Faris Fahmi Zainuddin
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nadhirah Ahmad Azmi Murad
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nur Hidayati Mohd Darwis
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Nur Suhaida Suhaimi
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia
| | - Erizal Zaini
- Faculty of Pharmacy, Universitas Andalas, Padang 25175, Indonesia
| | - Muhammad Taher
- Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia.
| | - Deny Susanti
- Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan, Pahang 25200, Malaysia.
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Sarangi P, Senthilkumar MB, Amit S, Kumar N, Jayandharan GR. AAV mediated repression of Neat1 lncRNA combined with F8 gene augmentation mitigates pathological mediators of joint disease in haemophilia. J Cell Mol Med 2024; 28:e18460. [PMID: 38864710 PMCID: PMC11167708 DOI: 10.1111/jcmm.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Mohankumar B. Senthilkumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Sonal Amit
- Department of PathologyAutonomous State Medical CollegeKanpurUttar PradeshIndia
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| |
Collapse
|
4
|
Sarangi P, Kumar N, Sambasivan R, Ramalingam S, Amit S, Chandra D, Jayandharan GR. AAV mediated genome engineering with a bypass coagulation factor alleviates the bleeding phenotype in a murine model of hemophilia B. Thromb Res 2024; 238:151-160. [PMID: 38718473 DOI: 10.1016/j.thromres.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Ramkumar Sambasivan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh, India
| | | | - Sonal Amit
- Autonomous State Medical College, Kumbhi, Akbarpur, Kanpur, UP, India
| | - Dinesh Chandra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
5
|
Shamsara M, Jamshidizad A, Rahim-Tayefeh A, Davari M, Rajabi Zangi A, Masoumi F, Zomorodipour A. Generation of Mouse Model of Hemophilia A by Introducing Novel Mutations, Using CRISPR/Nickase Gene Targeting System. CELL JOURNAL 2023; 25:655-659. [PMID: 37718768 PMCID: PMC10520988 DOI: 10.22074/cellj.2023.1999800.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 09/19/2023]
Abstract
Developing mouse models of hemophilia A has been shown to facilitate in vivo studies to explore the probable mechanism(s) underlying the disease and to examine the efficiency of the relevant potential therapeutics. This study aimed to knockout (KO) the coagulation factor viii (fviii) gene in NMRI mice, using CRISPR/Cas9 (D10A/nickase) system, to generate a mouse model of hemophilia A. Two single guide RNAs (sgRNAs), designed from two distinct regions on NMRI mouse FVIII (mFVIII) exon 3, were designed and inserted in the pX335 vector, expressing both sgRNAs and nickase. The recombinant construct was delivered into mouse zygotes and implanted into the pseudopregnant female mice's uterus. Mutant mice were identified by genotyping, genomic sequencing, and mFVIII activity assessment. Two separate lines of hemophilia A were obtained through interbreeding the offspring of the female mice receiving potential CRISPR-Cas9-edited zygotes. Genomic DNA analysis revealed disruptions of the mfviii gene reading frame through a 22-bp deletion and a 23-bp insertion in two separate founder mice. The founder mice showed all the clinical signs of hemophilia A including; excessive bleeding after injuries, and spontaneous bleeding in joints and other organs. Coagulation test data showed that mFVIII coagulation activity was significantly diminished in the mFVIII knockout (FVIIIKO) mice compared to normal mice. The CRISPR/nickase system was successfully applied to generate mouse lines with the knockout fviii gene. The two novel FVIIIKO mice demonstrated all clinical symptoms of hemophilia A, which could be successfully inherited. Therefore, both of the developed FVIIIKO mouse lines are eligible for being considered as proper mouse models of hemophilia A for in vivo therapeutic studies.
Collapse
Affiliation(s)
- Mehdi Shamsara
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Jamshidizad
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Aidin Rahim-Tayefeh
- Department of Animal Biotechnology, Institute Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Maliheh Davari
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Rajabi Zangi
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Masoumi
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
6
|
Sun J, Chen X, Chai Z, Niu H, Dobbins AL, Nichols TC, Li C. Adeno-associated virus-mediated expression of activated factor V (FVa) for hemophilia phenotypic correction. Front Med (Lausanne) 2022; 9:880763. [PMID: 35991645 PMCID: PMC9388760 DOI: 10.3389/fmed.2022.880763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Adeno-associated virus (AAV) gene therapy has been successfully applied in hemophilia patients excluding patients with inhibitors. During the coagulation pathway, activated factor V (FVa) functions downstream as a cofactor of activated factor X (FXa) to amplify thrombin generation. We hypothesize that the expression of FVa via gene therapy can improve hemostasis of both factor IX and FVIII deficiencies, regardless of clotting factor inhibitor. A human FVa (hFVa) expression cassette was constructed, and AAV8 vectors encoding hFVa (AAV8/TTR-hFVa) were intravenously administrated into mice with hemophilia A and B with or without FVIII inhibitors. Hemostasis, including hFVa level, activated partial thromboplastin time (aPTT), tail clip, and the saphenous vein bleeding assay (SVBA), was evaluated. In hemophilia B mice, a dose of 4 × 1013 vg/kg AAV8/TTR-hFVa vectors achieved a complete phenotypic correction over 28 weeks. In hemophilia A mice, hemostasis improvement was also achieved, regardless of FVIII inhibitor development. In vivo hemostasis efficacy was confirmed by tail clip and SVBA. Interestingly, while minimal shortening of aPTT was observed at a lower dose of AAV8 vectors, hemostasis improvement was still achieved via in vivo bleeding assays. Collectively, FVa-based AAV gene therapy shows promise for hemostasis correction in hemophilia, regardless of inhibitor development and no potential risk for thrombosis.
Collapse
Affiliation(s)
- Junjiang Sun
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Chen
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zheng Chai
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hongqian Niu
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda L. Dobbins
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy C. Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Zerra PE, Parker ET, Baldwin WH, Healey JF, Patel SR, McCoy JW, Cox C, Stowell SR, Meeks SL. Engineering a Therapeutic Protein to Enhance the Study of Anti-Drug Immunity. Biomedicines 2022; 10:1724. [PMID: 35885029 PMCID: PMC9313379 DOI: 10.3390/biomedicines10071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.
Collapse
Affiliation(s)
- Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - John F. Healey
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - James W. McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University, Atlanta, GA 30322, USA; (P.E.Z.); (J.W.M.)
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (E.T.P.); (W.H.B.); (J.F.H.); (S.R.P.); (C.C.)
| |
Collapse
|
8
|
Kaminski TW, Ju EM, Gudapati S, Vats R, Arshad S, Dubey RK, Katoch O, Tutuncuoglu E, Frank J, Brzoska T, Stolz DB, Watkins SC, Chan SY, Ragni MV, Novelli EM, Sundd P, Pradhan-Sundd T. Defenestrated endothelium delays liver-directed gene transfer in hemophilia A mice. Blood Adv 2022; 6:3729-3734. [PMID: 35427414 PMCID: PMC9631574 DOI: 10.1182/bloodadvances.2021006388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Hemophilia A is an inherited bleeding disorder caused by defective or deficient coagulation factor VIII (FVIII) activity. Until recently, the only treatment for prevention of bleeding involved IV administration of FVIII. Gene therapy with adeno-associated vectors (AAVs) has shown some efficacy in patients with hemophilia A. However, limitations persist due to AAV-induced cellular stress, immunogenicity, and reduced durability of gene expression. Herein, we examined the efficacy of liver-directed gene transfer in FVIII knock-out mice by AAV8-GFP. Surprisingly, compared with control mice, FVIII knockout (F8TKO) mice showed significant delay in AAV8-GFP transfer in the liver. We found that the delay in liver-directed gene transfer in F8TKO mice was associated with absence of liver sinusoidal endothelial cell (LSEC) fenestration, which led to aberrant expression of several sinusoidal endothelial proteins, causing increased capillarization and decreased permeability of LSECs. This is the first study to link impaired liver-directed gene transfer to liver-endothelium maladaptive structural changes associated with FVIII deficiency in mice.
Collapse
Affiliation(s)
- Tomasz W. Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Eun-Mi Ju
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shweta Gudapati
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, and
| | - Sanya Arshad
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rikesh K. Dubey
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Omika Katoch
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Egemen Tutuncuoglu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Frank
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, and
| | | | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Margaret V. Ragni
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, and
- Hemophilia Center of Western Pennsylvania, Pittsburgh, PA
| | - Enrico M. Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, and
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, and
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; and
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, and
- Division of Hematology/Oncology, and
| |
Collapse
|
9
|
Patel SR, Lundgren TS, Baldwin WH, Cox C, Parker ET, Healey JF, Jajosky RP, Zerra PE, Josephson CD, Doering CB, Stowell SR, Meeks SL. Neutralizing Antibodies Against Factor VIII Can Occur Through a Non-Germinal Center Pathway. Front Immunol 2022; 13:880829. [PMID: 35634288 PMCID: PMC9132091 DOI: 10.3389/fimmu.2022.880829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Humoral immunity to factor VIII (FVIII) represents a significant challenge for the treatment of patients with hemophilia A. Current paradigms indicate that neutralizing antibodies against FVIII (inhibitors) occur through a classical CD4 T cell, germinal center (GC) dependent process. However, clinical observations suggest that the nature of the immune response to FVIII may differ between patients. While some patients produce persistent low or high inhibitor titers, others generate a transient response. Moreover, FVIII reactive memory B cells are only detectable in some patients with sustained inhibitor titers. The determinants regulating the type of immune response a patient develops, let alone how the immune response differs in these patients remains incompletely understood. One hypothesis is that polymorphisms within immunoregulatory genes alter the underlying immune response to FVIII, and thereby the inhibitor response. Consistent with this, studies report that inhibitor titers to FVIII differ in animals with the same F8 pathogenic variant but completely distinct backgrounds; though, how these genetic disparities affect the immune response to FVIII remains to be investigated. Given this, we sought to mechanistically dissect how genetics impact the underlying immune response to FVIII. In particular, as the risk of producing inhibitors is weakly associated with differences in HLA, we hypothesized that genetic factors other than HLA influence the immune response to FVIII and downstream inhibitor formation. Our data demonstrate that FVIII deficient mice encoding the same MHC and F8 variant produce disparate inhibitor titers, and that the type of inhibitor response formed associates with the ability to generate GCs. Interestingly, the formation of antibodies through a GC or non-GC pathway does not appear to be due to differences in CD4 T cell immunity, as the CD4 T cell response to an immunodominant epitope in FVIII was similar in these mice. These results indicate that genetics can impact the process by which inhibitors develop and may in part explain the apparent propensity of patients to form distinct inhibitor responses. Moreover, these data highlight an underappreciated immunological pathway of humoral immunity to FVIII and lay the groundwork for identification of biomarkers for the development of approaches to tolerize against FVIII.
Collapse
Affiliation(s)
- Seema R Patel
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Taran S Lundgren
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, United States
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Ernest T Parker
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - John F Healey
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States.,Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
10
|
Winterling K, Martin WD, De Groot AS, Daufenbach J, Kistner S, Schüttrumpf J. Development of a novel fully functional coagulation factor VIII with reduced immunogenicity utilizing an in silico prediction and deimmunization approach. J Thromb Haemost 2021; 19:2161-2170. [PMID: 34060724 PMCID: PMC8456792 DOI: 10.1111/jth.15413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Up to 30% of hemophilia A patients develop inhibitory antibodies against the infused factor VIII (FVIII). The development of a deimmunized FVIII is an unmet high medical need. Although improved recombinant FVIII (rFVIII) products evolved within the last years, the immunogenicity has not been solved. A deimmunized FVIII could reduce the probability of inhibitor development, providing safer therapy. OBJECTIVE To develop a deimmunized FVIII molecule by modifying major histocompatibility complex (MHC) class II presentation, leading to a functional but less immunogenic molecule. METHODS We performed (1) in silico prediction of potentially immunogenic T cell epitopes and their modification by amino acid substitutions in the FVIII sequence, (2) evaluation of functional and structural similarity of the modified rFVIII to unmodified FVIII and registered products, and (3) confirmation of the reduced immunogenicity by in vitro testing. RESULTS A partially deimmunized fully functional FVIII molecule incorporating 19 amino acid substitutions was generated. The substitutions led to a reduction of the immunogenicity score, indicating a reduced immunogenicity based on in silico calculations. This was confirmed in an in vitro dendritic cell (DC)--T cell assay. Using this assay, cells from healthy donors proved the significantly reduced immunogenicity of the modified FVIII variant by revealing less proliferation of T helper cells to this variant than to the unmodified FVIII. CONCLUSION In silico predictions resulted in a partially deimmunized FVIII. This FVIII is fully functional and was demonstrated to be less immunogenic in in vitro testing. This approach may result in a reduction of the inhibitor risk for patients with hemophilia A.
Collapse
Affiliation(s)
| | | | - Anne S. De Groot
- EpiVax, Inc.ProvidenceRhode IslandUSA
- Center for Vaccines and ImmunologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | | | |
Collapse
|
11
|
Jankowska KI, Chattopadhyay M, Sauna ZE, Atreya CD. A Foundational Study for Normal F8-Containing Mouse Models for the miRNA Regulation of Hemophilia A: Identification and Analysis of Mouse miRNAs that Downregulate the Murine F8 Gene. Int J Mol Sci 2020; 21:E5621. [PMID: 32781510 PMCID: PMC7460574 DOI: 10.3390/ijms21165621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hemophilia A (HA) is associated with defects in the F8 gene, encoding coagulation factor VIII (FVIII). Our previous studies show that F8-targeting micro RNAs (miRNAs), a group of small RNAs involved in gene regulation, can downregulate F8 expression causing HA in individuals with normal F8-genotypes and increased HA severity in patients with mutations in F8. Understanding the mechanistic underpinnings of human genetic diseases caused or modulated by miRNAs require a small animal model, such as a mouse model. Here, we report a foundational study to develop such a model system. We identified the mouse 3'untranslated region (3'UTR) on murine F8-mRNA (muF8-mRNA) that can bind to murine miRNAs. We then selected three miRNAs for evaluation: miR-208a, miR-351 and miR-125a. We first demonstrate that these three miRNAs directly target the 3'UTR of muF8-mRNA and reduce the expression of a reporter gene (luciferase) mRNA fused to the muF8-3' UTR in mammalian cells. Furthermore, in mouse cells that endogenously express the F8 gene and produce FVIII protein, the ectopic expression of these miRNAs downregulated F8-mRNA and FVIII protein. These results provide proof-of-concept and reagents as a foundation for using a normal F8-containing mouse as a model for the miRNA regulation of normal F8 in causing or aggravating the genetic disease HA.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| | - Maitreyi Chattopadhyay
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
- OTAT//DCGT/GTB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| |
Collapse
|
12
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice. Blood Adv 2020; 3:288-300. [PMID: 30700417 DOI: 10.1182/bloodadvances.2018027557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Hemophilia A (HA), a rare X-linked recessive genetic disorder caused by insufficient blood clotting factor VIII, leaves affected individuals susceptible to spontaneous and traumatic hemorrhage. Although males generally exhibit severe symptoms, due to variable X inactivation, females can also be severely impacted. Osteoporosis is a disease of the skeleton predisposing patients to fragility fracture, a cause of significant morbidity and mortality and a common comorbidity in HA. Because the causes of osteoporosis in HA are unclear and in humans confounded by other traditional risk factors for bone loss, in this study, we phenotyped the skeletons of F8 total knockout (F8 TKO) mice, an animal model of severe HA. We found that trabecular bone accretion in the axial and appendicular skeletons of male F8 TKO mice lagged significantly between 2 and 6 months of age, with more modest cortical bone decline. By contrast, in female mice, diminished bone accretion was mostly limited to the cortical compartment. Interestingly, bone loss was associated with a decline in bone formation in male mice but increased bone resorption in female mice, a possible result of sex steroid insufficiency. In conclusion, our studies reveal a sexual dimorphism in the mechanism driving bone loss in male and female F8 TKO mice, preventing attainment of peak bone mass and strength. If validated in humans, therapies aimed at promoting bone formation in males but suppressing bone resorption in females may be indicated to facilitate attainment of peak mass in children with HA to reduce the risk for fracture later in life.
Collapse
|
14
|
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 2017; 130:2559-2568. [PMID: 28978569 DOI: 10.1182/blood-2017-05-782912] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a significant number of patients and actively block FVIII activity, making bleeding difficult to control and prevent. Although a variety of downstream immune factors likely regulate inhibitor formation, the identification and subsequent targeting of key initiators in inhibitor development may provide an attractive approach to prevent inhibitor formation before amplification of the FVIII immune response occurs. As the initial steps in FVIII inhibitor development remain incompletely understood, we sought to define early regulators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the marginal sinus of the spleen of FVIII-deficient mice shortly after injection, with significant colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell reconstitution resulted in a primary antibody response, demonstrating that MZ B-cell depletion did not result in FVIII tolerance. Although recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A.
Collapse
|
15
|
Sun J, Hua B, Chen X, Samulski RJ, Li C. Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies. Hum Gene Ther 2017; 28:654-666. [PMID: 28478688 DOI: 10.1089/hum.2017.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
While therapeutic expression of coagulation factors from adeno-associated virus (AAV) vectors has been successfully achieved in patients with hemophilia, neutralizing antibodies to the vector and inhibitory antibodies to the transgene severely limit efficacy. Indeed, approximately 40% of mice transduced with human factor VIII using the AAV8 serotype developed inhibitory antibodies to factor VIII (FVIII inhibitor), as well as extremely high titers (≥1:500) of neutralizing antibodies to AAV8. To correct hemophilia in these mice, AAV9, a serotype with low in vitro cross-reactivity (≤1:5) to anti-AAV8, was used to deliver mouse-activated factor VII (mFVIIa). It was found that within 6 weeks of systemic administration of 2 × 1013 particles/kg of AAV9/mFVIIa, hemophiliac mice with FVIII inhibitors and neutralizing antibodies (NAb) to AAV8 achieved hemostasis comparable to that in wild-type mice, as measured by rotational thromboelastometry. A level of 737 ng/mL mFVIIa was achieved after AAV9/mFVIIa adminstration compared to around 150 ng/mL without vector treatment, and concomitantly prothrombin time was shortened. Tissues collected after intra-articular hemorrhage from FVIII-deficient mice and mice with FVIII inhibitors were scored 4.7 and 5.5, respectively, on a scale of 0-10, indicating significant pathological damage. However, transduction with AAV9/mFVIIa decreased pathology scores to 3.6 and eliminated hemosiderin iron deposition in the synovium in most mice. Collectively, these results suggest that application of alternative serotypes of AAV vector to deliver bypassing reagents has the potential to correct hemophilia and prevent hemoarthrosis, even in the presence of FVIII inhibitor and neutralizing antibodies to AAV.
Collapse
Affiliation(s)
- Junjiang Sun
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,2 Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | - Baolai Hua
- 3 Department of Hematology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,4 Department of Hematology, Northern Jiangsu People's Hospital , Yangzhou, Jiangsu, China
| | - Xiaojing Chen
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| | - Richard J Samulski
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,5 Department of Pharmacology, University of North Carolina , Chapel Hill, North Carolina
| | - Chengwen Li
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,6 Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
16
|
Abstract
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Collapse
Affiliation(s)
- Ching-Tzu Yen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ni Fan
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Chou
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan ; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|