1
|
Vaitsiakhovich T, Hartenstein A, Privitera S, Patel MR, Piccini JP, Coleman CI, Abdelgawwad K, Holberg G, Khorlo I, Mundl H, Schaefer B, Viethen T, Vogtländer K, Vowinkel A, Kleinjung F. An External Control Arm for the Oral Factor XIa Inhibitor Asundexian Phase 2 Trial in Atrial Fibrillation (PACIFIC-AF) Using Electronic Health Records. Cardiol Ther 2025:10.1007/s40119-025-00411-x. [PMID: 40377841 DOI: 10.1007/s40119-025-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/08/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION The aim of this study was to assess the applicability of an external control arm (ECA) approach in the clinical development of the oral factor XIa inhibitor asundexian for stroke prevention in patients with atrial fibrillation (AF), using prospectively collected data from the phase 2 PACIFIC-AF trial (NCT04218266) and real-world individual-level data from patients with AF treated with apixaban in the Optum® de-identified Electronic Health Record data set (Optum® EHR) 2013-2019. METHODS To build ECAs, real-world patients meeting trial eligibility criteria were matched to patients enrolled in PACIFIC-AF. The primary outcome was the composite of International Society on Thrombosis and Haemostasis-defined major bleeding or clinically relevant non-major bleeding. Event rates were compared between PACIFIC-AF and ECAs at 85 days of trial duration and projected up to 2 years. RESULTS Overall, 160,153 real-world patients met PACIFIC-AF eligibility criteria and were matched to patients from the PACIFIC-AF apixaban arm on 101 variables, with matching ratios of 1:10, 1:5, and 1:1. At day 85, the number of events for the primary outcome was 92 (3.68%) in the 1:10 ECA (2500 patients) and 6 (2.40%) in the PACIFIC-AF apixaban arm (250 patients), with incidence rates of 16.67 (90% confidence interval [CI] 13.92-19.63) and 11.10 (90% CI 4.83-19.45) per 100 person-years, respectively. CONCLUSIONS ECAs matching the PACIFIC-AF apixaban arm could be built from EHRs with concordant event rates for key trial endpoints. The ECA approach enabled the determination of event rates for treatment duration up to 2 years, thereby informing the asundexian pivotal phase 3 trial in AF.
Collapse
Affiliation(s)
| | | | | | - Manesh R Patel
- Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Craig I Coleman
- University of Connecticut School of Pharmacy, Storrs, CT, 06269, USA
| | | | | | - Igor Khorlo
- Global Commercialization, Bayer AG, Berlin, Germany
| | - Hardi Mundl
- Research and Development, Bayer AG, Wuppertal, Germany
| | | | | | | | | | - Frank Kleinjung
- Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| |
Collapse
|
2
|
Gouin-Thibault I, Lecompte T, Lasne D. Anticoagulant drugs targeting factor XI/XIa and coagulation tests: we urgently need reliable pharmacodynamic data. J Thromb Haemost 2025; 23:1464-1468. [PMID: 40056986 DOI: 10.1016/j.jtha.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
Antifactor (F)XI/FXIa anticoagulants under development include antisense oligonucleotides, monoclonal antibodies, and small molecules. They do not require routine monitoring, but knowledge of their impact on coagulation tests is essential in view of their expected widespread use. A concentration-dependent prolongation of activated partial thromboplastin time has been shown but varies according to reagents, and the lack of comprehensive data makes interpretation of this test difficult. Measurement of FXI clotting activity is relevant only in case of treatment with antisense oligonucleotides. Measurement of contact pathway factors, if required, should be performed after multiple dilutions of the plasma sample to overcome any inhibitory effect of the anticoagulant. All other tests used in clinical trials (FXIa, FXI antigenic method, and specific thrombin generation assay) are not implemented in clinical laboratories. More comprehensive information on the effect of anti-FXI/FXIa anticoagulants on coagulation tests is urgently needed to anticipate the use of these drugs once they are approved.
Collapse
Affiliation(s)
- Isabelle Gouin-Thibault
- Department of Laboratory Hematology, University Hospital of Rennes, Institut de Recherche en Santé, environnement et travail-INSERM-1085, University of Rennes, Rennes, France.
| | - Thomas Lecompte
- Vascular Medicine Division, University Hospital of Nancy, University of Lorraine, Nancy, France
| | - Dominique Lasne
- Department of Laboratory Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, INSERM UMRS_1176, Paris, France
| |
Collapse
|
3
|
Gibson CM, Desai UR, Wesling ME. Factor XI/XIa inhibitors: a potential solution to anticoagulation dilemmas. Expert Opin Pharmacother 2025; 26:605-616. [PMID: 40035315 DOI: 10.1080/14656566.2025.2475192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Antithrombotic therapy is the cornerstone of stroke prevention, but standard of care therapies are underutilized and use is limited by bleeding rates, drug interactions, and renal elimination. Factor XI/XIa (FXI/XIa) inhibitors are a novel anticoagulation class that purportedly target thrombosis more than hemostasis, thereby raising the hope of reducing bleeding consequences while maintaining efficacy. AREAS COVERED This review covers the mechanistic rationale for FXI/XIa inhibitors, describes the various molecule sub-classes, addresses barriers to current anticoagulation use, and reviews clinical trial data to date for this novel class of anticoagulants. EXPERT OPINION FXI/XIa inhibitors offer several advantages over DOACs in stroke prevention such as reduced bleeding, fewer drug interactions, and less renal elimination. However, clinical trials must demonstrate non-inferior efficacy and improved safety compared to DOACs. Additional barriers to use will include cost, inadequacy of antidotes, and overall anticoagulant underutilization. The potential for a small molecule or monoclonal antibody to reach the clinic is very high.
Collapse
Affiliation(s)
- Caitlin M Gibson
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Megan E Wesling
- Department of Pharmacotherapy, University of North Texas Health Science Center College of Pharmacy, Fort Worth, TX, USA
| |
Collapse
|
4
|
Capodanno D, Alexander JH, Bahit MC, Eikelboom JW, Gibson CM, Goodman SG, Kunadian V, Lip GYH, Lopes RD, Mehran R, Mehta SR, Patel MR, Piccini JP, Rao SV, Ruff CT, Steg PG, Weitz JI, Angiolillo DJ. Factor XI inhibitors for the prevention and treatment of venous and arterial thromboembolism. Nat Rev Cardiol 2025:10.1038/s41569-025-01144-z. [PMID: 40164778 DOI: 10.1038/s41569-025-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Therapeutic anticoagulation is essential to prevent and treat venous and arterial thromboembolism. The available agents target coagulation factors involved in thrombus formation but are associated with an increased risk of bleeding. Factor XI plays a minor role in haemostasis but contributes substantially to thrombus expansion, making it an attractive target to mitigate bleeding while maintaining antithrombotic efficacy. Various novel inhibitors, including antisense oligonucleotides, monoclonal antibodies and small molecules, have been developed. Phase II trials in orthopaedic surgery showed dose-dependent reductions in venous thromboembolism without significantly increasing bleeding compared with enoxaparin. In the first phase III trial of a small-molecule inhibitor of activated factor XI in patients with atrial fibrillation, asundexian was associated with a reduction in bleeding but also a higher risk of stroke, compared with apixaban. Factor XI inhibitors appear safe and hold promise for secondary prevention in myocardial infarction and ischaemic stroke, with ongoing phase III trials assessing their broader efficacy and safety. This Review discusses the rationale, pharmacology, evidence and future directions of factor XI inhibitors across various clinical settings.
Collapse
Affiliation(s)
- Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | | | - M Cecilia Bahit
- INECO Neurociencias, Rosario, Argentina
- BAIM Institute for Clinical Research, Boston, MA, USA
| | - John W Eikelboom
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - C Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaun G Goodman
- St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Liverpool John Moores University, Liverpool, UK
- Liverpool Heart and Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Roxana Mehran
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shamir R Mehta
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | | | | | - Sunil V Rao
- New York University School of Medicine, New York, NY, USA
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - P Gabriel Steg
- Université Paris-Cité, INSERM-UMR1148, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, French Alliance for Cardiovascular Trials, Paris, France
- Institut Universitaire de France, Paris, France
| | - Jeffrey I Weitz
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Gibson CM. In the Wake of OCEANIC-AF, Is Equipoise Regarding Factor XI Inhibition Still Afloat? J Am Coll Cardiol 2025; 85:1210-1212. [PMID: 39641734 DOI: 10.1016/j.jacc.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Affiliation(s)
- C Michael Gibson
- Baim Institute for Clinical Research, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Luo Z, Wang J, Niu Z, Hu C, Chintala M, Luo X, Lee TI, Plotnikov AN, Zannikos P. Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Milvexian in Healthy Chinese Adults. Drug Des Devel Ther 2025; 19:1503-1514. [PMID: 40045992 PMCID: PMC11881624 DOI: 10.2147/dddt.s488414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/24/2025] [Indexed: 03/17/2025] Open
Abstract
Background Milvexian is a small molecule, selective factor XIa (FXIa) inhibitor being developed as an oral anticoagulant. This study assessed the pharmacokinetics, pharmacodynamics (activated partial thromboplastin time [aPTT]), and safety of milvexian in healthy Chinese subjects. Methods Part 1: Thirty subjects were randomly assigned 1:1:1 to receive milvexian 25 mg on Day 1 followed by 25 mg once daily (QD) on Days 5-12; milvexian 25 mg twice daily at 12-hour intervals (BID) on Days 1-8; or milvexian 100 mg BID on Days 1-8. Part 2: Ten subjects received milvexian 200 mg on Day 1 followed by 200 mg BID on Days 5-12. Plasma samples were collected for pharmacokinetics and aPTT assessments. Safety and tolerability were assessed. Results Milvexian was rapidly absorbed (median tmax of 3-4 hours after a single dose and repeated administration). Mean maximum concentrations or area under the concentration-time curve values of milvexian in plasma after single doses or BID administration of 25 mg, 100 mg, or 200 mg increased in a dose-dependent manner. Steady state conditions were achieved within 6 days of repeated administration based on milvexian trough concentration values. Mean terminal half-life values (9-10 hours) were independent of the dose. Milvexian reversibly prolonged aPTT in a manner that was directly related to milvexian dose and exposure. All milvexian regimens were safe and well tolerated, with only mild treatment-emergent adverse events and no clinically significant bleeding events. No new safety signals were identified. Conclusion The pharmacokinetic, pharmacodynamic, and safety profiles of milvexian demonstrate suitability for further clinical development in Chinese participants.
Collapse
Affiliation(s)
- Zhu Luo
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jie Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhuolu Niu
- Johnson & Johnson, Shanghai, People’s Republic of China
| | - Cuili Hu
- Johnson & Johnson, Beijing, People’s Republic of China
| | | | - Xinchao Luo
- Johnson & Johnson, Shanghai, People’s Republic of China
| | - Tsung-I Lee
- Johnson & Johnson, Shanghai, People’s Republic of China
| | | | | |
Collapse
|
7
|
Birchansky J, Frishman WH. Milvexian: A Focus on a New Oral Anticoagulant that Targets Factor XIa for Thromboembolism Prophylaxis. Cardiol Rev 2025; 33:93-97. [PMID: 38305253 DOI: 10.1097/crd.0000000000000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Drugs that target factor XI and/or XIa have been evaluated as alternatives to existing anticoagulants, in light of studies that indicate that a decrease in Factor XI/XIa levels or activity may result in a lower risk of thrombosis without a significant increase in bleeding risk. Milvexian is an investigational small-molecule factor XIa inhibitor that has recently completed phase 2 clinical trials. Preclinical studies were suggestive of its potential to prevent arterial and venous thrombosis. It was well-tolerated in healthy participants, as well as in participants with mild or moderate hepatic impairment and moderate or severe renal impairment. Notably, patients who received milvexian after knee arthroplasty had a dose-proportional lower incidence of venous thromboembolism compared to patients who received postoperative enoxaparin, and they had a lower incidence of clinically relevant bleeding. A separate phase 2 trial was conducted that assessed the use of milvexian for secondary stroke prevention in patients who had ischemic stroke or transient ischemic attack. It failed its primary objective of establishing a dose-response relationship between milvexian and a composite endpoint of symptomatic ischemic stroke or covert brain infarction. The trial did, however, show a reduction in the relative risk of symptomatic ischemic stroke across most of the treatment groups receiving various dosages of milvexian compared to placebo. The efficacy of milvexian in secondary stroke prevention will be further assessed in an upcoming phase 3 trial. Additional upcoming phase 3 trials will also assess its efficacy in stroke prevention in patients with atrial fibrillation as well as in event reduction in patients with acute coronary syndrome.
Collapse
Affiliation(s)
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College, Westchester Medical Center, Valhalla, NY
| |
Collapse
|
8
|
Ali AE, Becker RC. Factor XI: structure, function and therapeutic inhibition. J Thromb Thrombolysis 2024; 57:1315-1328. [PMID: 38622277 PMCID: PMC11645426 DOI: 10.1007/s11239-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Arterial and venous thromboembolism is a major medical concern that requires therapeutic anticoagulation in various medical fields to prevent its drastic consequences. Despite significant advances in anticoagulant therapy, thrombosis remains a leading cause of morbidity and mortality worldwide. Traditional anticoagulants like heparin and vitamin K antagonists (VKAs) have shown efficacy in preventing and treating thrombosis but come with an inherent risk of bleeding due to their non-specific inhibition of multiple coagulation factors. Subsequent direct oral anticoagulants (DOACs), targeting specific factors such as Xa or thrombin, demonstrated improved safety profiles compared to VKAs, yet bleeding remains a concern. Accordingly, research is focused on developing anticoagulants with improved safety profiles. A safer class of anticoagulants would have broad appeal. The intrinsic pathway of coagulation, involving factor XI (FXI), has attracted attention as a potential target for safer anticoagulants. Preclinical studies and epidemiological data indicate that FXI deficiency or inhibition protects against thrombosis with minimal bleeding. Current research involves evaluating various FXI-directed strategies, and phase 2 studies have shown promising results in orthopedic surgery, atrial fibrillation, end-stage renal disease (ESRD), myocardial infarction, and ischemic stroke. Several agents, such as antisense oligonucleotides, monoclonal antibodies, small synthetic molecules, natural peptides, and aptamers, have been developed to inhibit FXI at different stages, offering potentially safer alternatives to traditional anticoagulants. However, the optimal balance between preventing thrombosis and the risk of bleeding associated with FXI inhibitors requires validation through extensive phase 3 clinical trials using definite clinical endpoints. Several of such trials are currently underway or planned to define the role of FXI inhibitors in clinical practice and determine the most suitable FXI inhibitor for each specific indication. The current review highlights the rationale behind developing FXI inhibitors, presenting the most advanced agents in development, summarizing completed clinical trials, and discussing ongoing research efforts.
Collapse
Affiliation(s)
- Ahmed E Ali
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard C Becker
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Jain SS, Mahaffey KW, Pieper KS, Shimizu W, Potpara T, Ruff CT, Kamel H, Lewis BS, Cornel JH, Kowey PR, Horrow J, Strony J, Plotnikov AN, Li D, Weng S, Donahue J, Gibson CM, Steg PG, Mehran R, Weitz JI, Johnston SC, Hankey GJ, Harrington RA, Lam CSP. Milvexian vs apixaban for stroke prevention in atrial fibrillation: The LIBREXIA atrial fibrillation trial rationale and design. Am Heart J 2024; 277:145-158. [PMID: 39214801 DOI: 10.1016/j.ahj.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Direct oral anticoagulants are the standard of care for stroke prevention in eligible patients with atrial fibrillation and atrial flutter; however, bleeding remains a significant concern, limiting their use. Milvexian is an oral Factor XIa inhibitor that may offer similar anticoagulant efficacy with less bleeding risk. METHODS LIBREXIA AF (NCT05757869) is a global phase III, randomized, double-blind, parallel-group, event-driven trial to compare milvexian with apixaban in participants with atrial fibrillation or atrial flutter. Participants are randomly assigned to milvexian 100 mg or apixaban (5 mg or 2.5 mg per label indication) twice daily. The primary efficacy objective is to evaluate if milvexian is noninferior to apixaban for the prevention of stroke and systemic embolism. The principal safety objective is to evaluate if milvexian is superior to apixaban in reducing the endpoint of International Society of Thrombosis and Hemostasis (ISTH) major bleeding events and the composite endpoint of ISTH major and clinically relevant nonmajor (CRNM) bleeding events. In total, 15,500 participants from approximately 1,000 sites in over 30 countries are planned to be enrolled. They will be followed until both 430 primary efficacy outcome events and 530 principal safety events are observed, which is estimated to take approximately 4 years. CONCLUSION The LIBREXIA AF study will determine the efficacy and safety of the oral Factor XIa inhibitor milvexian compared with apixaban in participants with either atrial fibrillation or atrial flutter. TRIAL REGISTRATION ClinicalTrials.gov NCT05757869.
Collapse
Affiliation(s)
- Sneha S Jain
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University, Stanford, CA; Stanford Center for Clinical Research, Stanford, CA
| | - Kenneth W Mahaffey
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University, Stanford, CA; Stanford Center for Clinical Research, Stanford, CA
| | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Tatjana Potpara
- School of Medicine, University of Belgrade, Belgrade, Serbia; Cardiology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Christian T Ruff
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY
| | - Basil S Lewis
- Lady Davis Carmel Medical Center and Technion-Israel Institute of Technology, Haifa, Israel
| | - Jan H Cornel
- Noordwest Ziekenhuisgroep, Alkmaar and Radboud, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter R Kowey
- Lankenau Institute for Medical Research, Thomas Jefferson University, Philadelphia, PA
| | | | - John Strony
- Janssen Research & Development, LLC, a Johnson & Johnson Company, Raritan, NJ
| | - Alexei N Plotnikov
- Janssen Research & Development, LLC, a Johnson & Johnson Company, Raritan, NJ
| | | | - Stephen Weng
- Janssen Research & Development, LLC, a Johnson & Johnson Company, Raritan, NJ
| | | | - C Michael Gibson
- Beth Israel Lahey Health Harvard Medical School and Baim Institute for Clinical Research, Harvard Medical School, Boston, MA
| | - P Gabriel Steg
- Université Paris-Cité, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Roxana Mehran
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Graeme J Hankey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | | | - Carolyn S P Lam
- National Heart Centre, Singapore, Duke-National University of Singapore (C.S.P.L), Singapore.
| |
Collapse
|
10
|
Cohen O, Santagata D, Ageno W. Novel horizons in anticoagulation: the emerging role of factor XI inhibitors across different settings. Haematologica 2024; 109:3110-3124. [PMID: 38779744 PMCID: PMC11443408 DOI: 10.3324/haematol.2023.283682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/25/2024] Open
Abstract
Anticoagulants have long been fundamental in preventing and treating thromboembolic disorders, with a recent shift of focus towards direct oral anticoagulants, thanks to their ease of use, efficacy, and safety. Despite these advancements, bleeding complications remain a major concern with any anticoagulant, highlighting the need for safer drugs. Factor XI (FXI) inhibitors have emerged as promising agents in this regard, offering a novel approach by targeting upstream factors in the coagulation system. Phase II trials have shown encouraging outcomes, indicating a reduced bleeding risk compared to that associated with traditional anticoagulants, particularly in the context of cardiovascular disease management when combined with antiplatelet therapy. However, the variability in findings and limited efficacy data call for a cautious interpretation pending insights from phase III trials. These trials are essential for validating the potential of FXI inhibitors to balance bleeding risk reduction and maintain anticoagulant efficacy. This review explores the pharmacology, potential indications, clinical data, and future directions of FXI inhibitors, providing a perspective on their evolving role in anticoagulant therapy. It also provides a detailed analysis of data from published clinical trials on FXI inhibitors in various indications. Preliminary data from ongoing trials are also outlined. As the field moves forward, a cautiously optimistic outlook can be expected, focusing on comprehensive data from phase III trials to define the role of FXI inhibitors in various clinical scenarios.
Collapse
Affiliation(s)
- Omri Cohen
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; National Hemophilia Center and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel-Hashomer, Israel; The Amalia Biron Institute of thrombosis research, Aviv University
| | - Davide Santagata
- Department of Medicine and Surgery, University of Insubria, Varese
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese.
| |
Collapse
|
11
|
Marè A, Cella A, Tereshko Y, Toraldo F, Gigli GL, Valente M, Merlino G. Milvexian, a novel factor XIa inhibitor for stroke prevention: pharmacokinetic and pharmacodynamic evaluation. Expert Opin Drug Metab Toxicol 2024; 20:873-880. [PMID: 39215446 DOI: 10.1080/17425255.2024.2399721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Antiplatelets and oral anticoagulants are commonly used to treat patients with various cardiovascular and cerebrovascular diseases. However, the primary concern for clinicians remains the risk of bleeding, thus necessitating the development of new therapies. Milvexian is a new anticoagulant that inhibits factor XIa, preventing the pathological formation of thrombi without increasing bleeding risk. AREAS COVERED This drug evaluation examines the pharmacokinetic properties of milvexian and provides information on its pharmacodynamics and clinical efficacy in treating some cerebrovascular conditions. EXPERT OPINION Milvexian shows a good pharmacokinetic profile with low renal elimination rates, justifying its use in patients with a high degree of renal impairment, and without relevant drug-drug interactions. In patients affected by acute non-cardioembolic ischemic stroke or high-risk transient ischemic stroke, milvexian, in addition to dual antiplatelet therapy, seems to have a positive efficacy profile without any safety concerns, especially in terms of intracranial hemorrhage. Two phase 3 trials are ongoing to investigate the efficacy and safety of milvexian for preventing cardioembolic and non-cardioembolic ischemic stroke.
Collapse
Affiliation(s)
- Alessandro Marè
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Arianna Cella
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Yan Tereshko
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | - Francesco Toraldo
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| | | | - Mariarosaria Valente
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
- DMED, University of Udine, Udine, Italy
| | - Giovanni Merlino
- Clinical Neurology, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
- Stroke Unit, Department of Head, Neck and Neurosciences, Udine University Hospital, Udine, Italy
| |
Collapse
|
12
|
Perera V, Abelian G, Luettgen J, Aronson R, Li D, Wang Z, Zhang L, Lubin S, Merali S, Murthy B. Safety, tolerability, pharmacokinetics and pharmacodynamics of milvexian with aspirin and/or clopidogrel in healthy participants. Sci Rep 2024; 14:16591. [PMID: 39025971 PMCID: PMC11258331 DOI: 10.1038/s41598-024-67182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Milvexian, an oral activated Factor XI (FXIa) inhibitor, is in clinical studies where it may be combined with antiplatelet agents, including aspirin and/or clopidogrel, to prevent thromboembolic diseases. This phase I trial assessed safety, pharmacokinetics, and pharmacodynamics of milvexian coadministration with aspirin and/or clopidogrel in healthy participants through 3 drug-drug interaction studies using a 3-period, 3-treatment, crossover design. A total of 113 participants were randomized to receive milvexian (200 mg; twice daily for 5 days) or matched placebo coadministered with once-daily aspirin (325 mg for 5 days) and/or clopidogrel (Day 1: 300 mg; Days 2-5: 75 mg). Milvexian was safe and well tolerated, with and without aspirin and/or clopidogrel. Eight mild bleeding adverse events (AEs) were reported in 5 of 113 participants across various treatment arms. Peak and total exposures of milvexian were similar with or without clopidogrel and/or aspirin. Exposure-dependent prolongation of activated partial thromboplastin time and reduction of FXI clotting activity by milvexian were similar with coadministration of aspirin and/or clopidogrel. Milvexian, with or without coadministration of aspirin and/or clopidogrel, did not affect bleeding time or platelet aggregation. Administration of milvexian alone or with aspirin and/or clopidogrel was safe and well tolerated without increased incidence of AEs, including bleeding. Pharmacokinetic and pharmacodynamic effects of milvexian, including bleeding time, were similar with or without aspirin and/or clopidogrel.ClinicalTrials.gov Identifier: NCT03698513.
Collapse
Affiliation(s)
| | | | | | | | - Danshi Li
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | - Liping Zhang
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | |
Collapse
|
13
|
Tantry US, Raghavakurup L, Becker RC, Singh S, Bliden KP, Gurbel PA. Milvexian: evaluating the factor XIa inhibitor for the treatment of acute coronary syndrome. Expert Opin Pharmacother 2024; 25:1271-1280. [PMID: 39072402 DOI: 10.1080/14656566.2024.2385062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Balancing the prevention of thrombosis with bleeding risk when combining anticoagulants and platelet antagonists remains a concern among clinicians, particularly in patients with acute coronary syndrome (ACS) who are treated with potent antiplatelet therapy. This may be because the available antiplatelet and anticoagulants are unable to uncouple physiological hemostasis and pathological thrombosis. Therefore, their use is associated with an unavoidable elevated risk of bleeding. AREAS COVERED Evidence available from studies evaluating FXIa inhibitors and milvexian was collected from a selective literature search. In this review, the authors describe the potential role of FXI/XIa in experimental thrombosis, evidence for FXIa inhibition in the treatment of clinical thrombotic events, and highlight the current evidence supporting the role of milvexian, a novel FXIa inhibitor, in patients with ACS. EXPERT OPINION The ongoing LIBREXIA-ACS trial is a large-scale study currently investigating milvexian in patients with ACS. This study may support the proof of concept of differentiating physiological hemostasis and pathological thrombosis and achieving maximum antithrombotic efficacy with minimum bleeding risk when used on top of dual antiplatelet therapy with potent P2Y12 receptor blockers.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | | | - Richard C Becker
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sahib Singh
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| |
Collapse
|
14
|
Xue H, Xi J, Wu XF, Feng S, Wang J, Chen L. Evaluation of paclitaxel-coated balloon angioplasty for the treatment of symptomatic intracranial in-stent restenosis. Front Neurol 2024; 15:1360609. [PMID: 38841701 PMCID: PMC11150793 DOI: 10.3389/fneur.2024.1360609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Background Symptomatic intracranial in-stent restenosis (sISR) poses a major challenge in the management of cerebrovascular diseases, often requiring effective and safe treatment options. Objectives This study aims to evaluate the efficacy and safety of paclitaxel-coated balloon (PCB) angioplasty for treating sISR. Methods We conducted a retrospective analysis of five patients aged 49-74 years, who were treated with PCB angioplasty between January 2017 and June 2022. Treatment procedures included pre-operative digital subtraction angiography, antiplatelet therapy, and the use of the SeQuent Please balloon. Patients received aspirin and clopidogrel prior to and after the procedure. Results The procedure achieved a 100% success rate. The degree of ISR was significantly reduced from an average pre-operative rate of 72±18.9% to a post-operative rate of 34±8.22%. Long-term follow-up showed that the majority of patients did not experience restenosis, confirming the long-term effectiveness of the treatment. Conclusions PCB angioplasty demonstrates significant potential as an effective and safe treatment option for patients with sISR, especially those considered to be at high risk. This study supports further investigation into PCB angioplasty as a standard treatment for sISR.
Collapse
Affiliation(s)
| | | | | | | | | | - Liwei Chen
- Department of Neurology, Sanmenxia Hospital of the Yellow River, Sanmenxia, China
| |
Collapse
|
15
|
Occhipinti G, Laudani C, Spagnolo M, Finocchiaro S, Mazzone PM, Faro DC, Mauro MS, Rochira C, Agnello F, Giacoppo D, Ammirabile N, Landolina D, Imbesi A, Sangiorgio G, Greco A, Capodanno D. Pharmacological and clinical appraisal of factor XI inhibitor drugs. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:245-258. [PMID: 38196141 DOI: 10.1093/ehjcvp/pvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
The evolution of anticoagulation therapy, from vitamin K antagonists to the advent of direct oral anticoagulants (DOACs) almost two decades ago, marks significant progress. Despite improved safety demonstrated in pivotal trials and post-marketing observations, persistent concerns exist, particularly regarding bleeding risk and the absence of therapeutic indications in specific subgroups or clinical contexts. Factor XI (FXI) has recently emerged as a pivotal contributor to intraluminal thrombus formation and growth, playing a limited role in sealing vessel wall injuries. Inhibiting FXI presents an opportunity to decouple thrombosis from haemostasis, addressing concerns related to bleeding events while safeguarding against thromboembolic events. Notably, FXI inhibition holds promise for patients with end-stage renal disease or cancer, where clear indications for DOACs are currently lacking. Various compounds have undergone design, testing, and progression to phase 2 clinical trials, demonstrating a generally favourable safety and tolerability profile. However, validation through large-scale phase 3 trials with sufficient power to assess both safety and efficacy outcomes is needed. This review comprehensively examines FXI inhibitors, delving into individual classes, exploring their pharmacological properties, evaluating the latest evidence from randomized trials, and offering insights into future perspectives.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Claudio Laudani
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Marco Spagnolo
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Simone Finocchiaro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Placido Maria Mazzone
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Denise Cristiana Faro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Maria Sara Mauro
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Carla Rochira
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Federica Agnello
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Daniele Giacoppo
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Nicola Ammirabile
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Davide Landolina
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Antonino Imbesi
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Antonio Greco
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-San Marco", University of Catania, Catania 95123, Italy
| |
Collapse
|
16
|
Seiffge DJ, Cancelloni V, Räber L, Paciaroni M, Metzner A, Kirchhof P, Fischer U, Werring DJ, Shoamanesh A, Caso V. Secondary stroke prevention in people with atrial fibrillation: treatments and trials. Lancet Neurol 2024; 23:404-417. [PMID: 38508836 DOI: 10.1016/s1474-4422(24)00037-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Atrial fibrillation is one of the most common cardiac arrhythmias and is a major cause of ischaemic stroke. Recent findings indicate the importance of atrial fibrillation burden (device-detected, subclinical, or paroxysmal and persistent or permanent) and whether atrial fibrillation was known before stroke onset or diagnosed after stroke for the risk of recurrence. Secondary prevention in patients with atrial fibrillation and stroke aims to reduce the risk of recurrent ischaemic stroke. Findings from randomised controlled trials assessing the optimal timing to introduce direct oral anticoagulant therapy after a stroke show that early start (ie, within 48 h for minor to moderate strokes and within 4-5 days for large strokes) seems safe and could reduce the risk of early recurrence. Other promising developments regarding early rhythm control, left atrial appendage occlusion, and novel factor XI inhibitor oral anticoagulants suggest that these therapies have the potential to further reduce the risk of stroke. Secondary prevention strategies in patients with atrial fibrillation who have a stroke despite oral anticoagulation therapy is an unmet medical need. Research advances suggest a heterogeneous spectrum of causes, and ongoing trials are investigating new approaches for secondary prevention in this vulnerable patient group. In patients with atrial fibrillation and a history of intracerebral haemorrhage, the latest data from randomised controlled trials on stroke prevention shows that oral anticoagulation reduces the risk of ischaemic stroke but more data are needed to define the safety profile.
Collapse
Affiliation(s)
- David J Seiffge
- Department of Neurology, Inselspital University Hospital Bern and University of Bern, Switzerland.
| | - Virginia Cancelloni
- Stroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Lorenz Räber
- Department of Cardiology, Inselspital University Hospital Bern and University of Bern, Switzerland
| | - Maurizio Paciaroni
- Stroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Andreas Metzner
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Center Hamburg Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research, partner site Hamburg, Kiel, and Lübeck, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Center Hamburg Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research, partner site Hamburg, Kiel, and Lübeck, Germany; Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Urs Fischer
- Department of Neurology, Inselspital University Hospital Bern and University of Bern, Switzerland; Department of Neurology, University Hospital Basel, Switzerland
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ashkan Shoamanesh
- Division of Neurology, Department of Medicine, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Valeria Caso
- Stroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Falsetti L, Guerrieri E, Zaccone V, Viticchi G, Santini S, Giovenali L, Lagonigro G, Carletti S, Gialluca Palma LE, Tarquinio N, Moroncini G. Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives. J Clin Med 2024; 13:1952. [PMID: 38610717 PMCID: PMC11012374 DOI: 10.3390/jcm13071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary embolism (PE) is a potentially life-threatening condition requiring prompt diagnosis and treatment. Recent advances have led to the development of newer techniques and drugs aimed at improving PE management, reducing its associated morbidity and mortality and the complications related to anticoagulation. This review provides an overview of the current knowledge and future perspectives on PE treatment. Anticoagulation represents the first-line treatment of hemodynamically stable PE, direct oral anticoagulants being a safe and effective alternative to traditional anticoagulation: these drugs have a rapid onset of action, predictable pharmacokinetics, and low bleeding risk. Systemic fibrinolysis is suggested in patients with cardiac arrest, refractory hypotension, or shock due to PE. With this narrative review, we aim to assess the state of the art of newer techniques and drugs that could radically improve PE management in the near future: (i) mechanical thrombectomy and pulmonary embolectomy are promising techniques reserved to patients with massive PE and contraindications or failure to systemic thrombolysis; (ii) catheter-directed thrombolysis is a minimally invasive approach that can be suggested for the treatment of massive or submassive PE, but the lack of large, randomized controlled trials represents a limitation to widespread use; (iii) novel pharmacological approaches, by agents inhibiting thrombin-activatable fibrinolysis inhibitor, factor Xia, and the complement cascade, are currently under investigation to improve PE-related outcomes in specific settings.
Collapse
Affiliation(s)
- Lorenzo Falsetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.)
| | - Emanuele Guerrieri
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.G.)
| | - Vincenzo Zaccone
- Internal and Subintensive Medicine, Azienda Ospedaliero-Universitaria delle Marche, 60126 Ancona, Italy
| | - Giovanna Viticchi
- Clinica di Neurologia, Dipartimento Scienze Cliniche e Molecolare, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Santini
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.G.)
| | - Laura Giovenali
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.G.)
| | - Graziana Lagonigro
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.G.)
| | - Stella Carletti
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.G.)
| | | | - Nicola Tarquinio
- Internal Medicine Department, INRCA-IRCCS Osimo-Ancona, 60027 Ancona, Italy
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.F.)
| |
Collapse
|
18
|
Prakash S, Mares AC, Porres-Aguilar M, Mukherjee D, Barnes GD. Factor XI/XIa inhibitors for the prevention and treatment of venous and arterial thromboembolism: A narrative review. Vasc Med 2024; 29:85-92. [PMID: 37947131 DOI: 10.1177/1358863x231206778] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
During the past decade, direct oral anticoagulants (DOACs) have advanced and simplified the prevention and treatment of venous thromboembolism (VTE). However, there remains a high incidence of bleeds, which calls for agents that have a reduced risk of bleeding. Factor XI (FXI) deficiency is associated with lower rates of venous thrombosis and stroke compared to the general population with a lower risk of bleeding. In conjunction with this, phase 2 studies have demonstrated safety and the potential for reduced thrombotic events with FXI inhibitors as compared to currently available medications. The aim of this review is to summarize key data on the clinical pharmacology of FXI, the latest developments in clinical trials of FXI inhibitors, and to describe the efficacy and safety profiles of FXI inhibitors for the prevention of venous and arterial thromboembolism.
Collapse
Affiliation(s)
- Swathi Prakash
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Adriana C Mares
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Mateo Porres-Aguilar
- Department of Internal Medicine, Divisions of Hospital and Adult Thrombosis Medicine, Texas Tech University Health Sciences Center and Paul L Foster School of Medicine, El Paso, TX, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Diseases, Texas Tech University Health Sciences Center and Paul L Foster School of Medicine, El Paso, TX, USA
| | - Geoffrey D Barnes
- Department of Internal Medicine, Division of Cardiovascular Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Chan NC, Weitz JI. New Therapeutic Targets for the Prevention and Treatment of Venous Thromboembolism With a Focus on Factor XI Inhibitors. Arterioscler Thromb Vasc Biol 2023; 43:1755-1763. [PMID: 37650326 DOI: 10.1161/atvbaha.123.318781] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
FXI (factor XI) and FXII (factor XII) have emerged as targets for new anticoagulants that have the potential to be both more efficacious and safer than the currently available direct oral anticoagulants for the prevention and treatment of venous thromboembolism. In this review, we discuss the role of FXI and FXII in the pathogenesis of venous thromboembolism, explain why FXI is a better target, and explain why FXI inhibitors have potential advantages over currently available anticoagulants. Finally, we describe the FXI inhibitors under development and discuss their potential to address unmet needs in venous thromboembolism management.
Collapse
Affiliation(s)
- Noel C Chan
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (N.C.C., J.I.W.)
- Department of Medicine (N.C.C., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada (N.C.C.)
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (N.C.C., J.I.W.)
- Department of Medicine (N.C.C., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences (J.I.W.), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Roehrig S, Ackerstaff J, Jiménez Núñez E, Teller H, Ellerbrock P, Meier K, Heitmeier S, Tersteegen A, Stampfuss J, Lang D, Schlemmer KH, Schaefer M, Gericke KM, Kinzel T, Meibom D, Schmidt M, Gerdes C, Follmann M, Hillisch A. Design and Preclinical Characterization Program toward Asundexian (BAY 2433334), an Oral Factor XIa Inhibitor for the Prevention and Treatment of Thromboembolic Disorders. J Med Chem 2023; 66:12203-12224. [PMID: 37669040 PMCID: PMC10510402 DOI: 10.1021/acs.jmedchem.3c00795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 09/06/2023]
Abstract
Activated coagulation factor XI (FXIa) is a highly attractive antithrombotic target as it contributes to the development and progression of thrombosis but is thought to play only a minor role in hemostasis so that its inhibition may allow for decoupling of antithrombotic efficacy and bleeding time prolongation. Herein, we report our major efforts to identify an orally bioavailable, reversible FXIa inhibitor. Using a protein structure-based de novo design approach, we identified a novel micromolar hit with attractive physicochemical properties. During lead modification, a critical problem was balancing potency and absorption by focusing on the most important interactions of the lead series with FXIa while simultaneously seeking to improve metabolic stability and the cytochrome P450 interaction profile. In clinical trials, the resulting compound from our extensive research program, asundexian (BAY 2433334), proved to possess the desired DMPK properties for once-daily oral dosing, and even more importantly, the initial pharmacological hypothesis was confirmed.
Collapse
Affiliation(s)
- Susanne Roehrig
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | | | | | | | | | | | - Stefan Heitmeier
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Adrian Tersteegen
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Jan Stampfuss
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Dieter Lang
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | | | | | - Kersten M. Gericke
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | | | - Daniel Meibom
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Martina Schmidt
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Christoph Gerdes
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | - Markus Follmann
- Pharmaceuticals, Research
and Development, Bayer AG, 42133 Wuppertal, Germany
| | | |
Collapse
|
21
|
Wichaiyo S, Parichatikanond W, Visansirikul S, Saengklub N, Rattanavipanon W. Determination of the Potential Clinical Benefits of Small Molecule Factor XIa Inhibitors in Arterial Thrombosis. ACS Pharmacol Transl Sci 2023; 6:970-981. [PMID: 37470020 PMCID: PMC10353063 DOI: 10.1021/acsptsci.3c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 07/21/2023]
Abstract
Anticoagulants are the mainstay for the prevention and treatment of thrombosis. However, bleeding complications remain a primary concern. Recent advances in understanding the contribution of activated factor XI (FXIa) in arterial thrombosis with a limited impact on hemostasis have led to the development of several FXIa-targeting modalities. Injectable agents including monoclonal antibodies and antisense oligonucleotides against FXIa have been primarily studied in venous thrombosis. The orally active small molecules that specifically inhibit the active site of FXIa are currently being investigated for their antithrombotic activity in both arteries and veins. This review focuses on a discussion of the potential clinical benefits of small molecule FXIa inhibitors, mainly asundexian and milvexian, in arterial thrombosis based on their pharmacological profiles and the compelling results of phase 2 clinical studies. The preclinical and epidemiological basis for the impact of FXIa in hemostasis and arterial thrombosis is also addressed. In recent clinical study results, asundexian appears to reduce ischemic events in patients with myocardial infarction and minor-to-moderate stroke, whereas milvexian possibly provides benefits in patients with minor stroke or high-risk transient ischemic attack (TIA). In addition, asundexian and milvexian had a minor impact on hemostasis even in combination with dual-antiplatelet therapy. Other orally active FXIa inhibitors also produce antithrombotic activity in vivo with low bleeding risk. Therefore, FXIa inhibitors might represent a new class of direct-acting oral anticoagulants (DOACs) for the treatment of thrombosis, although the explicit clinical positions of asundexian and milvexian in patients with ischemic stroke, high-risk TIA, and coronary artery disease require confirmation from the outcomes of ongoing phase 3 trials.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Satsawat Visansirikul
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nakkawee Saengklub
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Department
of Physiology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
| | | |
Collapse
|
22
|
Fredenburgh JC, Weitz JI. News at XI: moving beyond factor Xa inhibitors. J Thromb Haemost 2023; 21:1692-1702. [PMID: 37116752 DOI: 10.1016/j.jtha.2023.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Oral anticoagulants are a mainstay for the prevention and treatment of arterial and venous thrombosis. Direct oral anticoagulants (DOACs) have replaced vitamin K antagonists for many indications. Currently available DOACs include dabigatran, which inhibits thrombin, and apixaban, edoxaban, and rivaroxaban, which inhibit factor (F) Xa. A new class of DOACs is under development. These new DOACs, which include asundexian and milvexian, inhibit FXIa, which is positioned in the intrinsic pathway of coagulation. Anticoagulants that target FXIa have the potential to be safer than the current DOACs because there is emerging evidence that FXI is essential for thrombosis but mostly dispensable for hemostasis. In addition to the oral inhibitors of FXIa, parenteral inhibitors are also under development. These include fesomersen, an antisense oligonucleotide that reduces the hepatic synthesis of FXI; abelacimab, an antibody that binds to FXI and blocks its activation; and osocimab, an FXIa inhibitory antibody. Focusing on these new agents, this article describes the unmet needs in oral anticoagulation therapy, explains why FXI is a promising target for new oral anticoagulants, reviews phase 2 clinical data on new agents, describes ongoing phase 3 trials, and provides a perspective on the opportunities and challenges for FXI inhibitors.
Collapse
Affiliation(s)
- James C Fredenburgh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
23
|
Chiles R, Afosah DK, Al-Horani RA. Investigation of the anticoagulant activity of cyclic sulfated glycosaminoglycan mimetics. Carbohydr Res 2023; 529:108831. [PMID: 37209666 PMCID: PMC10330556 DOI: 10.1016/j.carres.2023.108831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Thrombotic disorders are among the leading causes of deaths worldwide. Anticoagulants are frequently prescribed for their prevention and/or treatment. Current anticoagulants, which target either thrombin or factor Xa, are plagued with a number of drawbacks, the most important of which is the increased risk of internal bleeding. To develop better antithrombotic agents, the anticoagulant activity of cyclic glycosaminoglycan mimetics was evaluated. Human plasma clotting assays and enzyme inhibition assays were exploited to evaluate the anticoagulant activity of sulfated β-cyclodextrin (SBCD) and its three analogs: sulfated α-cyclodextrin, β-cyclodextrin, and methylated β-cyclodextrin. In normal human plasma, SBCD selectively doubled the activated partial thromboplastin time (APTT) at ∼9 μg/mL, with no effect on prothrombin time (PT) at the same concentration. Likewise, SBCD doubled APTT at ∼9 μg/mL and at ∼8 μg/mL in antithrombin-deficient plasma and heparin cofactor II-deficient plasma, respectively. Interestingly, the three SBCD derivatives were inactive at the highest concentrations tested which highlighted the importance of the sulfate groups and the size of the molecule. Enzyme assays revealed that SBCD inhibits factor XIa (FXIa) with an IC50 value of ∼20 μg/mL and efficacy of near 100%. SBCD did not inhibit other related proteins including thrombin, factor IXa, factor Xa, factor XIIa, factor XIIIa, plasmin, chymotrypsin, or trypsin at the highest concentrations tested demonstrating a significant selectivity. In Michaelis-Menten kinetics, SBCD decreased the VMAX and increased the KM of FXIa hydrolysis of a tripeptide chromogenic substrate indicating a mixed inhibition mechanism. Together, it appears that SBCD is a potent and selective inhibitor of human FXIa with substantial anticoagulant activity in human plasma. Overall, this study introduces SBCD as a promising lead for further development as a safer anticoagulant.
Collapse
Affiliation(s)
- Raquel Chiles
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| |
Collapse
|
24
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
25
|
Wang X, Li Q, Du F, Shukla N, Nawrocki AR, Chintala M. Antithrombotic Effects of the Novel Small-Molecule Factor XIa Inhibitor Milvexian in a Rabbit Arteriovenous Shunt Model of Venous Thrombosis. TH OPEN 2023; 7:e97-e104. [PMID: 37101592 PMCID: PMC10125780 DOI: 10.1055/a-2061-3311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Background Factor XIa (FXIa) is an emerging therapeutic target, and FXIa inhibition is a promising mechanism to improve therapeutic index over current anticoagulants. Milvexian (BMS-986177/JNJ-70033093) is an oral small-molecule FXIa inhibitor. Objective Milvexian's antithrombotic efficacy was characterized in a rabbit arteriovenous (AV) shunt model of venous thrombosis and compared with the factor Xa inhibitor apixaban and the direct thrombin inhibitor dabigatran. Methods The AV shunt model of thrombosis was conducted in anesthetized rabbits. Vehicle or drugs were administered as intravenous bolus plus a continuous infusion. Thrombus weight was the primary efficacy endpoint. Ex vivo activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT) were measured as the pharmacodynamic responses. Results Milvexian dose dependently reduced thrombus weights by 34.3 ± 7.9, 51.6 ± 6.8 ( p < 0.01; n = 5), and 66.9 ± 4.8% ( p < 0.001; n = 6) versus vehicle at 0.25 + 0.17, 1.0 + 0.67, and 4.0 ± 2.68 mg/kg bolus + mg/kg/h infusion, respectively. Ex vivo clotting data supported a dose-dependent prolongation of aPTT (with 1.54-, 2.23-, and 3.12-fold increases from baseline upon the AV shunt start), but no changes in PT and TT. Dose-dependent inhibition in thrombus weight and clotting assays was also demonstrated for both apixaban and dabigatran as the references for the model validation. Conclusion Results demonstrate that milvexian is an effective anticoagulant for prevention of venous thrombosis in the rabbit model, which supports the utility of milvexian in venous thrombosis, as seen in the phase 2 clinical study.
Collapse
Affiliation(s)
- Xinkang Wang
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
- Address for correspondence Xinkang Wang, PhD Janssen Research & Development, LLC1400 McKean Road, 42-2522, Spring House, PA 19002United States
| | - Qiu Li
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Fuyong Du
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Neetu Shukla
- Formulation, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Andrea R. Nawrocki
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| | - Madhu Chintala
- Cardiovascular & Metabolism Therapeutic Area, Janssen Research & Development, LLC, Spring House, Pennsylvania, United States
| |
Collapse
|
26
|
Li W, Seo J, Kokkinidis DG, Palaiodimos L, Nagraj S, Korompoki E, Milionis H, Doehner W, Lip GYH, Ntaios G. Efficacy and safety of vitamin-K antagonists and direct oral anticoagulants for stroke prevention in patients with heart failure and sinus rhythm: An updated systematic review and meta-analysis of randomized clinical trials. Int J Stroke 2023; 18:392-399. [PMID: 35689348 DOI: 10.1177/17474930221109149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Heart failure (HF) is a major public health issue associated with significantly increased risk of stroke. It remains uncertain whether oral anticoagulation (OAC) in patients with heart failure and sinus rhythm (HF-SR) could improve prognosis. METHODS We performed a systematic search of PubMed and Embase databases for randomized controlled clinical trials assessing oral anticoagulants versus antiplatelets or placebo in patients with HF or ventricular dysfunction/cardiomyopathy without clinical HF and SR. The outcomes assessed were stroke/systemic embolism, major bleeding, myocardial infarction, all-cause mortality, and HF hospitalization. RESULTS Seven trials of 15,794 patients were eligible for our analyses. The overall follow-up duration was 32,367 patient-years corresponding to a mean follow-up of 2.05 years per patient. Four trials included patients treated with warfarin and three included patients treated with rivaroxaban. OAC was associated with reduced rate of stroke or systemic embolism compared to control (odds ratio (OR): 0.57, 95% confidence interval (CI): 0.44, 0.73, number needed to treat (NNT): 71.9) but higher rate of major bleeding (OR: 1.92, 95% CI: 1.47, 2.50, number needed to harm (NNH): 57.1). In the subgroup analysis according to the type of OAC, rivaroxaban was associated with significantly reduced rate of stroke or systemic embolism (1.24 vs 1.97 events per 100 patient-years, respectively, OR: 0.63, 95% CI: 0.45, 0.88, NNT: 82) and higher risk of major bleeding (OR: 1.66, 95% CI: 1.26, 2.20) compared to antiplatelets or placebo. There was no significant differences between groups for the outcomes of myocardial infarction, all-cause mortality, and HF hospitalization. CONCLUSION This analysis shows that any benefit of OAC for stroke prevention may be offset by an increased risk of major bleeding in HF-SR patients. A well-designed randomized controlled trial of newer safer OACs is needed in this population.
Collapse
Affiliation(s)
- Weijia Li
- Department of Medicine, New York City Health + Hospitals/Jacobi, Bronx, NY, USA
| | - Jiyoung Seo
- Department of Medicine, New York City Health + Hospitals/Jacobi, Bronx, NY, USA
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Sanjana Nagraj
- Department of Medicine, New York City Health + Hospitals/Jacobi, Bronx, NY, USA
| | - Eleni Korompoki
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Alexandra Hospital, Greece
| | | | - Wolfram Doehner
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies (BCRT), and Department of Cardiology (Virchow Klinikum) and Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - George Ntaios
- Department of Internal Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
27
|
Greco A, Laudani C, Spagnolo M, Agnello F, Faro DC, Finocchiaro S, Legnazzi M, Mauro MS, Mazzone PM, Occhipinti G, Rochira C, Scalia L, Capodanno D. Pharmacology and Clinical Development of Factor XI Inhibitors. Circulation 2023; 147:897-913. [PMID: 36913497 DOI: 10.1161/circulationaha.122.062353] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Therapeutic anticoagulation is indicated for a variety of circumstances and conditions in several fields of medicine to prevent or treat venous and arterial thromboembolism. According to the different mechanisms of action, the available parenteral and oral anticoagulant drugs share the common principle of hampering or blocking key steps of the coagulation cascade, which unavoidably comes at the price of an increased propensity to bleed. Hemorrhagic complications affect patient prognosis both directly and indirectly (ie, by preventing the adoption of an effective antithrombotic strategy). Inhibition of factor XI (FXI) has emerged as a strategy with the potential to uncouple the pharmacological effect and the adverse events of anticoagulant therapy. This observation is based on the differential contribution of FXI to thrombus amplification, in which it plays a major role, and hemostasis, in which it plays an ancillary role in final clot consolidation. Several agents were developed to inhibit FXI at different stages (ie, suppressing biosynthesis, preventing zymogen activation, or impeding the biological action of the active form), including antisense oligonucleotides, monoclonal antibodies, small synthetic molecules, natural peptides, and aptamers. Phase 2 studies of different classes of FXI inhibitors in orthopedic surgery suggested that dose-dependent reductions in thrombotic complications are not paralleled by dose-dependent increases in bleeding compared with low-molecular-weight heparin. Likewise, the FXI inhibitor asundexian was associated with lower rates of bleeding compared with the activated factor X inhibitor apixaban in patients with atrial fibrillation, although no evidence of a therapeutic effect on stroke prevention is available so far. FXI inhibition could also be appealing for patients with other conditions, including end-stage renal disease, noncardioembolic stroke, or acute myocardial infarction, for which other phase 2 studies have been conducted. The balance between thromboprophylaxis and bleeding achieved by FXI inhibitors needs confirmation in large-scale phase 3 clinical trials powered for clinical end points. Several of such trials are ongoing or planned to define the role of FXI inhibitors in clinical practice and to clarify which FXI inhibitor may be most suited for each clinical indication. This article reviews the rationale, pharmacology, results of medium or small phase 2 studies, and future perspectives of drugs inhibiting FXI.
Collapse
Affiliation(s)
- Antonio Greco
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Claudio Laudani
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Marco Spagnolo
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Federica Agnello
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | | | - Simone Finocchiaro
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Marco Legnazzi
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Maria Sara Mauro
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | | | | | - Carla Rochira
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Lorenzo Scalia
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| | - Davide Capodanno
- A.O.U. Policlinico "G. Rodolico - San Marco", University of Catania, Italy
| |
Collapse
|
28
|
Cohen O, Ageno W. Coming soon to a pharmacy near you? FXI and FXII inhibitors to prevent or treat thromboembolism. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:495-505. [PMID: 36485148 PMCID: PMC9821115 DOI: 10.1182/hematology.2022000386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anticoagulants have been in use for nearly a century for the treatment and prevention of venous and arterial thromboembolic disorders. The most dreaded complication of anticoagulant treatment is the occurrence of bleeding, which may be serious and even life-threatening. All available anticoagulants, which target either multiple coagulation factors or individual components of the tissue factor (TF) factor VIIa or the common pathways, have the potential to affect hemostasis and thus to increase bleeding risk in treated patients. While direct oral anticoagulants introduced an improvement in care for eligible patients in terms of safety, efficacy, and convenience of treatment, there remain unmet clinical needs for patients requiring anticoagulant drugs. Anticoagulant therapy is sometimes avoided for fear of hemorrhagic complications, and other patients are undertreated due to comorbidities and the perception of increased bleeding risk. Evidence suggests that the contact pathway of coagulation has a limited role in initiating physiologic in vivo coagulation and that it contributes to thrombosis more than it does to hemostasis. Because inhibition of the contact pathway is less likely to promote bleeding, it is an attractive target for the development of anticoagulants with improved safety. Preclinical and early clinical data indicate that novel agents that selectively target factor XI or factor XII can reduce venous and arterial thrombosis without an increase in bleeding complications.
Collapse
Affiliation(s)
- Omri Cohen
- National Hemophilia Center, Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Israel
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
29
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
30
|
Li T, Liu J, Wu W. Factor XI, a potential target for anticoagulation therapy for venous thromboembolism. Front Cardiovasc Med 2022; 9:975767. [PMID: 36386334 PMCID: PMC9659736 DOI: 10.3389/fcvm.2022.975767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Venous thromboembolism (VTE) is a common cause of mortality and disability in hospitalized patients, and anticoagulation is an essential therapeutic option. Despite the increasing use of direct oral anticoagulants, complications and adverse drug reactions still occur in patients with VTE. Within 5 years, 20% of patients with VTE experience recurrence, and 50% of patients with deep vein thrombosis develop post-thrombotic syndrome. Furthermore, bleeding due to anticoagulants is a side effect that must be addressed. Therefore, safer and more effective anticoagulant strategies with higher patient compliance are urgently needed. Available epidemiological evidence and animal studies have shown that factor XI (FXI) inhibitors can reduce thrombus size and loosen the thrombus structure with a relatively low risk of bleeding, suggesting that FXI has an important role in thrombus stabilization and is a safer target for anticoagulation. Recent clinical trial data have also shown that FXI inhibitors are as effective as enoxaparin and apixaban in preventing VTE, but with a significantly lower incidence of bleeding. Furthermore, FXI inhibitors can be administered daily or monthly; therefore, the monitoring interval can be longer. Additionally, FXI inhibitors can prolong the activated partial thromboplastin time without affecting prothrombin time, which is an easy and common test used in clinical testing, providing a cost-effective monitoring routine for patients. Consequently, the inhibition of FXI may be an effective strategy for the prevention and treatment of VTE. Enormous progress has been made in the research strategies for FXI inhibitors, with abelacimab already in phase III clinical trials and most other inhibitors in phase I or II trials. In this review, we discuss the challenges of VTE therapy, briefly describe the structure and function of FXI, summarize the latest FXI/activated FXI (FXIa) inhibitor strategies, and summarize the latest developments in clinical trials of FXI/FXIa inhibitors.
Collapse
Affiliation(s)
- Tingting Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Liu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Weihua Wu
- Department of Nephrology, Metabolic Vascular Disease Key Laboratory, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Weihua Wu
| |
Collapse
|
31
|
Perera V, Abelian G, Li D, Wang Z, Zhang L, Lubin S, Bello A, Murthy B. Single-Dose Pharmacokinetics of Milvexian in Participants with Normal Renal Function and Participants with Moderate or Severe Renal Impairment. Clin Pharmacokinet 2022; 61:1405-1416. [PMID: 35906349 PMCID: PMC9553801 DOI: 10.1007/s40262-022-01150-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The aim of this study was to assess the effect of moderate or severe renal impairment on the pharmacokinetic (PK) properties of milvexian. METHODS This open-label, parallel-group study assessed the PK, safety, and tolerability of a single oral 60 mg dose of milvexian in participants with normal renal function (n = 8; estimated glomerular filtration rate [eGFR] ≥ 90 mL/min/1.73 m2) and participants with moderate (n = 8; eGFR ≥ 30 to ≤ 59 mL/min/1.73 m2) or severe (n = 8; eGFR < 30 mL/min/1.73 m2) renal impairment. Regression analysis was performed using linear regression of log-transformed PK parameters versus eGFR. RESULTS Milvexian was well tolerated, with no deaths, serious adverse events, or serious bleeding reported. The maximum milvexian concentration (Cmax) was similar for all groups. Based on a regression analysis of milvexian concentration versus eGFR, participants with eGFR values of 30 and 15 mL/min/1.73 m2, respectively, had area under the curve (AUC) values that were 41% and 54% greater than in participants with normal renal function. Median time to maximum concentration (Tmax) was similar for the three groups (4.5-5.0 h). The half-life increased for participants with moderate (18.0 h) or severe (17.7 h) renal impairment compared with those with normal renal function (13.8 h). CONCLUSION A single dose of milvexian 60 mg was safe and well tolerated in participants with normal renal function and moderate or severe renal impairment. There was a similar increase in milvexian exposure between the moderate and severe renal groups. CLINICAL TRIALS REGISTRATION This study was registered with ClinicalTrials.gov (NCT03196206, first posted 22 June 2017).
Collapse
Affiliation(s)
- Vidya Perera
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA.
| | - Grigor Abelian
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Danshi Li
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Zhaoqing Wang
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Liping Zhang
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Susan Lubin
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Akintunde Bello
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Bindu Murthy
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| |
Collapse
|
32
|
Santagata D, Cammà G, Donadini MP, Squizzato A, Ageno W. Current and emerging drug strategies for the prevention of venous thromboembolism in acutely ill medical inpatients. Expert Opin Pharmacother 2022; 23:1651-1665. [PMID: 36154548 DOI: 10.1080/14656566.2022.2128757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Venous thromboembolism (VTE) is a common complication in patients hospitalized for acute medical illnesses. Therefore, medical inpatients require a careful VTE and bleeding risk assessment to drive optimal strategies for VTE prevention. Low molecular weight heparin and fondaparinux have long been used for inhospital prophylaxis for patients at increased risk of VTE. The selection of patients who require post-discharge prophylaxis, and the role of direct oral anticoagulants remain debated. New molecules currently under development may contribute to improve the risk benefit of VTE prevention in this setting. AREAS COVERED This text summarizes the evidence on approved treatments and on other drugs for the prevention of VTE in acutely ill medical patients. The main focus is on their pharmacological proprieties, clinical efficacy and safety, and the current license approved by the FDA (Food and Drug Administration) and EMA (European Medicines Agency), giving the readers a way to compare available drugs to date. The trials presented consider both inhospital and extended prophylaxis. EXPERT OPINION Thanks to the potentially favorable safety profile, factor XI inhibitors may play a role in the prevention of VTE in this setting. The expert opinion section discusses pharmacological properties, prophylaxis trials, and potential clinical applications of this novel class of drugs.
Collapse
Affiliation(s)
- D Santagata
- Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Gucciardini 9, 21100, Varese and Como, Italy
| | - G Cammà
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Curore, Largo Francesco Vito 1, 00139, Rome, Italy
| | - M P Donadini
- Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Gucciardini 9, 21100, Varese and Como, Italy
| | - A Squizzato
- Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Ravona 20 San Fermo della Battaglia (Como), 22042 Como, Italy
| | - W Ageno
- Department of Medicine and Surgery, Research Center on Thromboembolic Disorders and Antithrombotic Therapies, University of Insubria, Via Gucciardini 9, 21100, Varese and Como, Italy
| |
Collapse
|
33
|
Perera V, Wang Z, Lubin S, Christopher LJ, Chen W, Xu S, Seiffert D, DeSouza M, Murthy B. Effects of Itraconazole and Diltiazem on the Pharmacokinetics and Pharmacodynamics of Milvexian, A Factor XIa Inhibitor. Cardiol Ther 2022; 11:407-419. [PMID: 35641780 PMCID: PMC9381674 DOI: 10.1007/s40119-022-00266-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Modulation of Factor XIa (FXIa) may provide a novel mechanism for systemic anticoagulation with the potential to improve the risk-benefit profile observed with existing anticoagulants through greater efficacy or a safer bleeding profile. This study assessed the effects of co-administration with strong and moderate CYP3A inhibitors itraconazole and diltiazem, respectively, on the pharmacokinetic and pharmacodynamic properties of milvexian, a Factor XIa inhibitor. METHODS This was an open-label, non-randomized, two-period crossover study in healthy participants. In period 1, participants received a single oral dose of milvexian (30 mg) on day 1, followed by a washout on days 2 and 3. In period 2, participants received multiple oral doses of itraconazole (200 mg) or diltiazem (240 mg) with a single dose of milvexian. RESULTS A total of 28 participants entered the treatment period. Following itraconazole co-administration, milvexian exposure was increased; AUC(0-T), AUC(INF), and C24 were 2.5-, 2.5-, and 3.8-fold higher, while mean Cmax was 28% higher versus milvexian alone. Diltiazem co-administration also increased milvexian exposure; AUC(0-T), AUC(INF), and C24 were 38, 38, and 64% higher, and mean Cmax was 9.6% higher versus milvexian alone. Prolongation of activated partial thromboplastin time was observed with milvexian in a concentration-dependent fashion irrespective of co-administration with itraconazole or diltiazem. Administration of a single dose of milvexian, alone or in combination with itraconazole or diltiazem, was generally safe and well tolerated; there were no deaths or serious adverse events. CONCLUSIONS A moderate increase in milvexian exposure was observed following co-administration of itraconazole while a minimal increase was seen with diltiazem, consistent with the involvement of CYP3A metabolism and P-glycoprotein in drug absorption/elimination. Milvexian was generally safe and well tolerated in healthy participants. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov (NCT02807909; submitted June 17, 2016).
Collapse
Affiliation(s)
- Vidya Perera
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA.
| | - Zhaoqing Wang
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Susan Lubin
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Lisa J Christopher
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Wei Chen
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Sophia Xu
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Dietmar Seiffert
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Mary DeSouza
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Bindu Murthy
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA
| |
Collapse
|
34
|
Nowotny B, Thomas D, Schwers S, Wiegmann S, Prange W, Yassen A, Boxnick S. First randomized evaluation of safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, an antibody targeting coagulation factor XI and factor XIa, in healthy men. J Thromb Haemost 2022; 20:1684-1695. [PMID: 35490404 PMCID: PMC9320929 DOI: 10.1111/jth.15744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bleeding is a clinically significant issue with all current anticoagulants. Safer antithrombotic strategies are required. OBJECTIVES To investigate the safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, a humanized, factor XI (FXI)-directed monoclonal antibody, after single intravenous (i.v.) or subcutaneous (s.c.) doses in healthy volunteers. PATIENTS/METHODS In a first-in-human, phase I study, 70 volunteers were randomly assigned (4:1) to receive single-dose BAY 1831865 (3.5, 7, 17, 35, 75, or 150 mg i.v. or 150 mg s.c.) or placebo. Adverse events, pharmacodynamics, and pharmacokinetics were evaluated. RESULTS In this study, no hemorrhage, or hypersensitivity or infusion-/injection-related reactions were reported. Drug-related adverse events occurred in 3 (5.4%) of 56 volunteers; all were mild and self-limited. Dose-dependent prolongation of activated partial thromboplastin time (aPTT) and inhibition of FXI clotting activity was observed with BAY 1831865 i.v. (geometric mean maximum ratio-to-baseline: aPTT, range, 1.09-3.11 vs. 1.05 with placebo; FXI, range, 0.70-0.04 vs. 0.91 with placebo). Onset of effect was rapid after i.v. administration, with duration of effect (up to 55 days) determined by dose. BAY 1831865 s.c. had similar pharmacodynamic effects but a slower onset of action. Terminal half-life increased continuously with increasing i.v. dose (range, 28-208 h), leading to strong and continuous increases in systemic exposure to BAY 1831865. Absolute bioavailability of BAY 1831865 s.c. was 47.2% (95% confidence interval, 30.2-73.7). CONCLUSIONS BAY 1831865 i.v. or s.c. was well tolerated, with no evidence of bleeding in healthy volunteers. BAY 1831865 exhibited pronounced, sustained dose-dependent prolongation of aPTT and duration of FXI inhibition.
Collapse
Affiliation(s)
- Bettina Nowotny
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Dirk Thomas
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Stephan Schwers
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Sara Wiegmann
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Wolfgang Prange
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Ashraf Yassen
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | |
Collapse
|
35
|
Al-Horani RA, Parsaeian E, Mohammad M, Mottamal M. Sulfonated non-saccharide molecules and human factor XIa: Enzyme inhibition and computational studies. Chem Biol Drug Des 2022; 100:64-79. [PMID: 35377529 DOI: 10.1111/cbdd.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Human factor XIa (FXIa) is a serine protease in the intrinsic coagulation pathway. FXIa has been actively targeted to develop new anticoagulants that are associated with a reduced risk of bleeding. Thousands of FXIa inhibitors have been reported, yet none has reached the clinic thus far. We describe here a novel class of sulfonated molecules that allosterically inhibit FXIa with moderate potency. A library of 18 sulfonated molecules was evaluated for the inhibition of FXIa using a chromogenic substrate hydrolysis assay. Only six molecules inhibited FXIa with IC50 values of 4.6-29.5 μM. Michaelis-Menten kinetics indicated that sulfonated molecules are allosteric inhibitors of FXIa. Inhibition of FXIa by these molecules was reversed by protamine. The molecules also showed moderate anticoagulant effects in human plasma with preference to prolong activated partial thromboplastin time. Their binding to an allosteric site in the catalytic domain of FXIa was modeled to illustrate potential binding mode and potential important Arg/Lys residues. Particularly, inhibitor 16 (IC50 = 4.6 µM) demonstrated good selectivity over a panel of serine proteases including those in the coagulation process. Inhibitor 16 did not significantly compromise the viability of three cell lines. Overall, the reported sulfonated molecules serve as a new platform to design selective, potent, and allosteric inhibitors of FXIa for therapeutic applications.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Elnaz Parsaeian
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Mariam Mohammad
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Madhusoodanan Mottamal
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
36
|
Wong PC, Crain E. Calibration and validation of the rabbit model of electrolytic-mediated arterial thrombosis against the standard-of-care anticoagulant apixaban. Pharmacol Res Perspect 2022; 10:e00963. [PMID: 35680619 PMCID: PMC9184285 DOI: 10.1002/prp2.963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Apixaban is a factor Xa (FXa) inhibitor and standard‐of‐care anticoagulant with FXa Ki and plasma protein binding (free fraction) averages 0.08 nM and 0.13 in humans and 0.16 nM and 0.37 in rabbits, respectively. Apixaban at the approved dose of 5 mg BID achieved maximum and minimum plasma concentration of 373 nM (95% CI: 198 – 699 nM) and 224 nM (95% CI 89–501 nM), respectively, in patients with nonvalvular atrial fibrillation (AF). We calibrated the rabbit model of electrolytic‐mediated arterial thrombosis (ECAT) against apixaban and correlated the potencies derived from the rabbit ECAT to in vivo efficacious exposure levels in AF patients. Vehicle and apixaban at multiple doses were infused IV in ECAT rabbits and their effects on thrombus weight were measured. Apixaban exhibited dose‐related efficacy in preventing thrombosis in ECAT rabbits with EC20, EC50, EC60, EC70 and EC80 of 18, 101, 169, 296, and 585 nM, respectively. After correcting for the human‐to‐rabbit potency based on FXa Ki and plasma protein binding, we estimated a rabbit‐equally‐effective plasma concentration of 157 and 259 nM to the trough and peak plasma concentration in AF patients treated with 5 mg BID of apixaban. These rabbit‐equally‐effective plasma concentrations matched well with the rabbit ECAT EC60 and EC70. This study supports the potential of the rabbit ECAT to predict in vivo therapeutic drug exposure of FXa inhibitors. Achieving human‐equally‐effective plasma concentrations to the rabbit ECAT EC60 and EC70 may produce clinical efficacy in patient populations like AF.
Collapse
Affiliation(s)
- Pancras C Wong
- Cardiovascular & Fibrosis Drug Discovery Biology, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| | - Earl Crain
- Cardiovascular & Fibrosis Drug Discovery Biology, Bristol Myers Squibb Company, Princeton, New Jersey, USA
| |
Collapse
|
37
|
Heitmeier S, Visser M, Tersteegen A, Dietze‐Torres J, Glunz J, Gerdes C, Laux V, Stampfuss J, Roehrig S. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor XIa. J Thromb Haemost 2022; 20:1400-1411. [PMID: 35289054 PMCID: PMC9313898 DOI: 10.1111/jth.15700] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Activated coagulation factor XI (FXIa) contributes to the development and propagation of thrombosis but plays only a minor role in hemostasis; therefore, it is an attractive antithrombotic target. OBJECTIVES To evaluate the pharmacology of asundexian (BAY 2433334), a small molecule inhibitor targeting FXIa, in vitro and in various rabbit models. METHODS The effects of asundexian on FXIa activity, selectivity versus other proteases, plasma thrombin generation, and clotting assays were evaluated. Antithrombotic effects were determined in FeCl2 - and arterio-venous (AV) shunt models. Asundexian was administered intravenously or orally, before or during thrombus formation, and with or without antiplatelet drugs (aspirin and ticagrelor). Potential effects of asundexian on bleeding were evaluated in ear-, gum-, and liver injury models. RESULTS Asundexian inhibited human FXIa with high potency and selectivity. It reduced FXIa activity, thrombin generation triggered by contact activation or low concentrations of tissue factor, and prolonged activated partial thromboplastin time in human, rabbit, and various other species, but not in rodents. In the FeCl2 -injury models, asundexian reduced thrombus weight versus control, and in the arterial model when added to aspirin and ticagrelor. In the AV shunt model, asundexian reduced thrombus weight when administered before or during thrombus formation. Asundexian alone or in combination with antiplatelet drugs did not increase bleeding times or blood loss in any of the models studied. CONCLUSIONS Asundexian is a potent oral FXIa inhibitor with antithrombotic efficacy in arterial and venous thrombosis models in prevention and intervention settings, without increasing bleeding.
Collapse
Affiliation(s)
- Stefan Heitmeier
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Mayken Visser
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | | | | | - Julia Glunz
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Christoph Gerdes
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Volker Laux
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Jan Stampfuss
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| | - Susanne Roehrig
- Bayer AGResearch and Development PharmaceuticalsWuppertalGermany
| |
Collapse
|
38
|
Erratum. J Thromb Haemost 2022; 20:1030. [PMID: 35307946 PMCID: PMC9394623 DOI: 10.1111/jth.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Perera V, Wang Z, Lubin S, Ueno T, Shiozaki T, Chen W, Xu X, Seiffert D, DeSouza M, Murthy B. Safety, pharmacokinetics, and pharmacodynamics of milvexian in healthy Japanese participants. Sci Rep 2022; 12:5165. [PMID: 35338177 PMCID: PMC8956633 DOI: 10.1038/s41598-022-08768-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
This randomized, double-blind, placebo-controlled, multiple ascending-dose study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of milvexian, an oral small-molecule FXIa inhibitor, in healthy Japanese participants. Participants received oral milvexian daily under fasted (50 mg and 200 mg) or fed conditions (500 mg) or placebo over 14 days; 24 participants (8/cohort: 6 milvexian; 2 placebo) were planned. Due to an unblinding event, participants in one cohort (200 mg daily) were discontinued, and a second cohort enrolled; 32 participants were included in safety and pharmacodynamic analyses, and 24/32 in pharmacokinetic analyses. Milvexian up to 500 mg daily for 14 days was generally well tolerated, with no deaths, serious adverse events, or discontinuations due to adverse events. Milvexian exposure increased between 50-mg and 200-mg doses. Median Tmax was similar with 50-mg and 200-mg doses (2.5-3.0 h) and delayed under fed conditions (500 mg, 7.0-8.0 h). Median T1/2 was similar across doses (8.9-11.9 h). Multiple oral milvexian administrations resulted in concentration-related prolongation of aPTT and decreased FXI clotting activity. Milvexian was generally safe and well tolerated. The pharmacokinetic and pharmacodynamic profile of milvexian demonstrates suitability for further clinical development in Japanese participants.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Chen
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Xiaohui Xu
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | |
Collapse
|
40
|
Perera V, Abelian G, Li D, Wang Z, Zhang L, Lubin S, Chen W, Bello A, Murthy B. Single-Dose Pharmacokinetics of Milvexian in Participants with Mild or Moderate Hepatic Impairment Compared with Healthy Participants. Clin Pharmacokinet 2022; 61:857-867. [PMID: 35262846 PMCID: PMC9249726 DOI: 10.1007/s40262-022-01110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 01/08/2023]
Abstract
Background Patients with hepatic impairment receiving antithrombotic agents metabolized primarily through the liver can be at risk for bleeding. Milvexian (BMS-986177/JNJ-70033093) is a small-molecule, active-site inhibitor of activated Factor XI (FXIa). Modulation of FXI may provide systemic anticoagulation without increased risk of clinically significant bleeding. Objective This open-label study evaluated the effects of mild or moderate hepatic impairment on the pharmacokinetics of milvexian to assess their impact on safety and dosing. Methods Single doses of milvexian 60 mg were administered to participants with mild hepatic impairment (n = 9), moderate hepatic impairment (n = 8), and normal hepatic function (n = 9). Healthy participants were matched to participants with hepatic impairment by body weight, age, and sex. Analysis of variance was performed on natural log-transformed milvexian exposure parameters, with hepatic function group as a fixed effect. Results Single doses of milvexian 60 mg were generally well tolerated, with no serious adverse events (AEs), bleeding AEs, or discontinuations due to AEs. Geometric mean ratios (90% confidence interval) for total milvexian maximum observed plasma concentration and area under the plasma concentration–time curve from time zero extrapolated to infinite time were 1.180 (0.735–1.895) and 1.168 (0.725–1.882), respectively, for mild hepatic impairment versus normal hepatic function and 1.140 (0.699–1.857) and 0.996 (0.609–1.628), respectively, for moderate hepatic impairment versus normal hepatic function. Across groups, milvexian exposure–related increases were observed for activated partial thromboplastin time. Conclusion Milvexian was well tolerated in participants with normal, mildly impaired, and moderately impaired hepatic function. Observed pharmacokinetic changes suggest it is unlikely that dose adjustments will be necessary in patients with mild or moderate hepatic impairment. Clinical Trial RegistrationClinicaltrials.gov identifier: NCT02982707.
Collapse
Affiliation(s)
- Vidya Perera
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA.
| | - Grigor Abelian
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Danshi Li
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Zhaoqing Wang
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Liping Zhang
- Global Clinical Pharmacology, Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Susan Lubin
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Wei Chen
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Akintunde Bello
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Bindu Murthy
- Early Clinical and Translational Research, Bristol Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
41
|
Gailani D. Factor XI as a target for preventing venous thromboembolism. J Thromb Haemost 2022; 20:550-555. [PMID: 35023278 PMCID: PMC9540353 DOI: 10.1111/jth.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023]
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|