1
|
Kanga S, Roy P, Singh SK, Meraj G, Kumar P, Debnath J. Delineating dengue risk zones in Jaipur: An interdisciplinary approach to inform public health strategies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:154-176. [PMID: 38987233 DOI: 10.1111/risa.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.
Collapse
Affiliation(s)
- Shruti Kanga
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Priyanka Roy
- Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Suraj Kumar Singh
- Centre for Sustainable Development, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Gowhar Meraj
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, Japan
| | - Jatan Debnath
- Department of Geography, Gauhati University, Jalukbari, Assam, India
| |
Collapse
|
2
|
Bergevin MD, Ng V, Ludwig A, Sadeghieh T, Menzies P, Mubareka S, Clow KM. A Scoping Review on the Epidemiology of Orthobunyaviruses of Canadian Public and Animal Health Relevance in the Context of Vector Species. Vector Borne Zoonotic Dis 2024; 24:564-577. [PMID: 38687337 DOI: 10.1089/vbz.2023.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background: Mosquito-borne orthobunyaviruses are a growing priority for public and animal health in Canada. It is anticipated that disease incidence will increase due to a warming climate, given that habitats are expanding for reservoir hosts and vectors, particularly in Canada. Little is known about the ecology of primary vectors that perpetuate these orthobunyaviruses, including the viral transmission cycle and the impact of climatic and landscape factors. Methods: A scoping review was conducted to describe the current state of knowledge on the epidemiology of orthobunyaviruses relevant to Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines was used to characterize studies focused on vector species. A literature search was conducted in six databases and gray literature. Eligible studies characterized orthobunyavirus epidemiology related to vector species, including viral competency, geospatial distributions, seasonal trends, and/or risk factors. Results: A total of 1734 unique citations were identified. Screening of these citations revealed 172 relevant studies, from which 87 studies presented primary data related to vectors. The orthobunyaviruses included Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV). Surveillance was the predominant study focus, with most citations representing the United States, specifically, LACV surveillance in Tennessee, followed by CVV and JCV in Connecticut. Orthobunyaviruses were detected in many mosquito species across multiple genera, with high vector specificity only being reported for LACV, which included Aedes triseriatus, Aedes albopictus, and Aedes japonicus. Peridomestic areas were positively associated with infected mosquitoes compared with dense forests. Orthobunyavirus infections, coinfections, and gut microbiota affected mosquito feeding and breeding behavior. Conclusion: Knowledge gaps included Canadian surveillance data, disease modeling, and risk projections. Further research in these areas, especially accounting for climate change, is needed to guide health policy for prevention of orthobunyaviral disease.
Collapse
Affiliation(s)
- Michele D Bergevin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Victoria Ng
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Guelph, Canada
| | - Antoinette Ludwig
- National Microbiology Laboratory Branch, Public Health Agency of Canada, St. Hyacinthe, Canada
| | - Tara Sadeghieh
- Health Promotion and Chronic Disease Prevention Branch, Public Health Agency of Canada, Ottawa, Canada
| | - Paula Menzies
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti. Acta Trop 2023; 239:106837. [PMID: 36657506 DOI: 10.1016/j.actatropica.2023.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.
Collapse
|
4
|
McMahon A, França CMB, Wimberly MC. Comparing Satellite and Ground-Based Measurements of Environmental Suitability for Vector Mosquitoes in an Urban Landscape. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1936-1946. [PMID: 36189969 PMCID: PMC9667728 DOI: 10.1093/jme/tjac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 06/16/2023]
Abstract
Exposure to mosquito-borne diseases is influenced by landscape patterns and microclimates associated with land cover. These influences can be particularly strong in heterogeneous urban landscapes where human populations are concentrated. We investigated how land cover and climate influenced abundances of Ae. albopictus (Skuse) (Diptera: Culicidae) and Cx. quinquefasciatus (Say) (Diptera: Culicidae) in Norman, Oklahoma (United States). From June-October 2019 and May-October 2020 we sampled mosquitoes along an urban-rural gradient using CO2 baited BG Sentinel traps. Microclimate sensors at these sites measured temperature and humidity. We mapped environmental variables using satellite images from Landsat, Sentinel-2, and VIIRS, and the CHIRPS rainfall dataset. We also obtained meteorological data from the closest weather station. We compared statistical models of mosquito abundance based on microclimate, satellite, weather station, and land cover data. Mosquitoes were more abundant on trap days with higher temperature and relative humidity. Rainfall 2 wk prior to the trap day negatively affected mosquito abundances. Impervious surface cover was positively associated with Cx. quinquefasciatus and tree cover was negatively associated with Ae. albopictus. Among the data sources, models based on satellite variables and land cover data had the best fits for Ae. albopictus (R2 = 0.7) and Cx. quinquefasciatus (R2 = 0.51). Models based on weather station or microclimate data had weaker fits (R2 between 0.09 and 0.17) but were improved by adding land cover variables (R2 between 0.44 and 0.61). These results demonstrate the potential for using satellite remote sensing for mosquito habitat analyses in urban areas.
Collapse
Affiliation(s)
- Andrea McMahon
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman OK, USA
| | - Caio M B França
- Department of Biology, Southern Nazarene University, Bethany, OK, USA
- Quetzal Education and Research Center, Southern Nazarene University, San Gerardo de Dota, Costa Rica
| | | |
Collapse
|
5
|
Nørgaard LS, Álvarez-Noriega M, McGraw E, White CR, Marshall DJ. Predicting the response of disease vectors to global change: The importance of allometric scaling. GLOBAL CHANGE BIOLOGY 2022; 28:390-402. [PMID: 34674354 DOI: 10.1111/gcb.15950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The distribution of disease vectors such as mosquitoes is changing. Climate change, invasions and vector control strategies all alter the distribution and abundance of mosquitoes. When disease vectors undergo a range shift, so do disease burdens. Predicting such shifts is a priority to adequately prepare for disease control. Accurate predictions of distributional changes depend on how factors such as temperature and competition affect mosquito life-history traits, particularly body size and reproduction. Direct estimates of both body size and reproduction in mosquitoes are logistically challenging and time-consuming, so the field has long relied upon linear (isometric) conversions between wing length (a convenient proxy of size) and reproductive output. These linear transformations underlie most models projecting species' distributions and competitive interactions between native and invasive disease vectors. Using a series of meta-analyses, we show that the relationship between wing length and fecundity are nonlinear (hyperallometric) for most mosquito species. We show that whilst most models ignore reproductive hyperallometry (with respect to wing length), doing so introduces systematic biases into estimates of population growth. In particular, failing to account for reproductive hyperallometry overestimates the effects of temperature and underestimates the effects of competition. Assuming isometry also increases the potential to misestimate the efficacy of vector control strategies by underestimating the contribution of larger females in population replenishment. Finally, failing to account for reproductive hyperallometry and variation in body size can lead to qualitative errors via the counter-intuitive effects of Jensen's inequality. For example, if mean sizes decrease, but variance increases, then reproductive outputs may actually increase. We suggest that future disease vector models incorporate hyperallometric relationships to more accurately predict changes in mosquito distribution in response to global change.
Collapse
Affiliation(s)
- Louise S Nørgaard
- School of Biological Sciences & Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Mariana Álvarez-Noriega
- School of Biological Sciences & Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
- Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Craig R White
- School of Biological Sciences & Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Dustin J Marshall
- School of Biological Sciences & Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Rossini L, Bono Rosselló N, Speranza S, Garone E. A general ODE-based model to describe the physiological age structure of ectotherms: Description and application to Drosophila suzukii. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
La Crosse virus spread within the mosquito population in Knox County, TN. PLoS One 2021; 16:e0249811. [PMID: 33861763 PMCID: PMC8051795 DOI: 10.1371/journal.pone.0249811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
In Appalachia, La Crosse virus (LACV) is a leading pediatric arbovirus and public health concern for children under 16 years. LACV is transmitted via the bite of an infected Aedes mosquito. Thus, it is imperative to understand the dynamics of the local vector population in order to assess risk and transmission. Using entomological data collected from Knox County, Tennessee in 2013, we formulate an environmentally-driven system of ordinary differential equations to model mosquito population dynamics over a single season. Further, we include infected compartments to represent LACV transmission within the mosquito population. Findings suggest that the model, with dependence on degree days and accumulated precipitation, can closely describe field data. This model confirms the need to include these environmental variables when planning control strategies.
Collapse
|
8
|
Rossini L, Contarini M, Severini M, Speranza S. Reformulation of the Distributed Delay Model to describe insect pest populations using count variables. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Rossini L, Speranza S, Contarini M. Distributed Delay Model and Von Foerster's equation: Different points of view to describe insects' life cycles with chronological age and physiological time. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2020.101117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
11
|
Chien LC, Sy F, Pérez A. Identifying high risk areas of Zika virus infection by meteorological factors in Colombia. BMC Infect Dis 2019; 19:888. [PMID: 31651247 PMCID: PMC6814059 DOI: 10.1186/s12879-019-4499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Several Zika virus (ZIKV) outbreaks have occurred since October 2015. Because there is no effective treatment for ZIKV infection, developing an effective surveillance and warning system is currently a high priority to prevent ZIKV infection. Despite Aedes mosquitos having been known to spread ZIKV, the calculation approach is diverse, and only applied to local areas. This study used meteorological measurements to monitor ZIKV infection due to the high correlation between climate change and Aedes mosquitos and the convenience to obtain meteorological data from weather monitoring stations. METHODS This study applied the Bayesian structured additive regression modeling approach to include spatial interactive terms with meteorological factors and a geospatial function in a zero-inflated Poisson model. The study area contained 32 administrative departments in Colombia from October 2015 to December 2017. Weekly ZIKV infection cases and daily meteorological measurements were collected. Mapping techniques were adopted to visualize spatial findings. A series of model selections determined the best combinations of meteorological factors in the same model. RESULTS When multiple meteorological factors are considered in the same model, both total rainfall and average temperature can best assess the geographic disparities of ZIKV infection. Meanwhile, a 1-in. increase in rainfall is associated with an increase in the logarithm of relative risk (logRR) of ZIKV infection of at most 1.66 (95% credible interval [CI] = 1.09, 2.15) as well as a 1 °F increase in average temperature is significantly associated with at most 0.79 (95% CI = 0.12, 1.22) increase in the logRR of ZIKV. Moreover, after controlling rainfall and average temperature, an independent geospatial function in the model results in two departments with an excessive ZIKV risk which may be explained by unobserved factors other than total rainfall and average temperature. CONCLUSION Our study found that meteorological factors are significantly associated with ZIKV infection across departments. The study determined both total rainfall and average temperature as the best meteorological factors to identify high risk departments of ZIKV infection. These findings can help governmental agencies monitor at risk areas according to meteorological measurements, and develop preventions in those at risk areas in priority.
Collapse
Affiliation(s)
- Lung-Chang Chien
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas, School of Public Health, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA.
| | - Francisco Sy
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas, School of Public Health, 4505 S. Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Adriana Pérez
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston-UTHealth, School of Public Health, Austin Campus, 1616 Guadalupe, Suite 6.300, Austin, TX, 78071, USA
| |
Collapse
|