1
|
Juang HH, Hsu CW, Chang KS, Iang SB, Lin YH, Chao M. Investigating the Genetic Diversity of Hepatitis Delta Virus in Hepatocellular Carcinoma (HCC): Impact on Viral Evolution and Oncogenesis in HCC. Viruses 2024; 16:817. [PMID: 38932110 PMCID: PMC11209585 DOI: 10.3390/v16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV's involvement remains uncertain. Among 300 HBV-associated HCC serum samples from Taiwan's National Health Research Institutes, 2.7% (8/300) tested anti-HDV positive, with 62.7% (5/8) of these also HDV RNA positive. Genotyping revealed HDV-2 in one sample, HDV-4 in two, and two samples showed mixed HDV-2/HDV-4 infection with RNA recombination. A mixed-genotype infection revealed novel mutations at the polyadenylation signal, coinciding with the ochre termination codon for the L-HDAg. To delve deeper into the possible oncogenic properties of HDV-2, the predominant genotype in Taiwan, which was previously thought to be less associated with severe disease outcomes, an HDV-2 cDNA clone was isolated from HCC for study. It demonstrated a replication level reaching up to 74% of that observed for a widely used HDV-1 strain in transfected cultured cells. Surprisingly, both forms of HDV-2 HDAg promoted cell migration and invasion, affecting the rearrangement of actin cytoskeleton and the expression of epithelial-mesenchymal transition markers. In summary, this study underscores the prevalence of HDV-2, HDV-4, and their mixed infections in HCC, highlighting the genetic diversity in HCC as well as the potential role of both forms of the HDAg in HCC oncogenesis.
Collapse
Affiliation(s)
- Horng-Heng Juang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chao-Wei Hsu
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-H.J.); (K.-S.C.)
| | - Shan-Bei Iang
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
| | - Mei Chao
- Liver Research Center, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (C.-W.H.); (Y.-H.L.)
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
2
|
Bahoussi AN, Wang PH, Guo YY, Rabbani N, Wu C, Xing L. Global Distribution and Natural Recombination of Hepatitis D Virus: Implication of Kyrgyzstan Emerging HDVs in the Clinical Outcomes. Viruses 2022; 14:v14071467. [PMID: 35891448 PMCID: PMC9323457 DOI: 10.3390/v14071467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Discrepancies in human hepatitis delta virus (HDV) genotypes impact the virus’ biological behavior, clinical manifestation, and treatment response. Herein, this report aims to explore the role of recombination in the worldwide genotypic distribution and genetic diversity of HDV. Three-hundred-forty-eight human HDV full-length genomic sequences of ~1678 nt in length, isolated in twenty-eight countries worldwide between 1986 and 2018, were analysed. Similarity analysis and recombination mapping were performed, and forty-eight recombination events were identified, twenty-nine of which were isolated from Kyrgyzstan and determined to be involved in the diversity and extension of HDV sub-genotypes. HDV recombination occurred only between the genetically close genotypes (genotype 5 and genotype 2) or mainly within genotype 1, suggesting the complex replicative molecular mechanisms of HDV-RNA. The global distribution and classification of HDV genotypes have been updated, indicating that HDV recombination is one of the driving forces behind the biodiversity and the evolution of human HDV genomes. The outcome analysis suggests that the expansion of HDV sub-genotypes and the complex recombination networks might be related to the genomic character of Kyrgyzstan circulating strains and extensive mobility within countries and across borders. These findings will be of great importance in formulating more effective public health HDV surveillance strategies and guiding future molecular and epidemiological research to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Nighat Rabbani
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-351-701-025
| |
Collapse
|
3
|
Giersch K, Hermanussen L, Volz T, Volmari A, Allweiss L, Sureau C, Casey J, Huang J, Fischer N, Lütgehetmann M, Dandri M. Strong Replication Interference Between Hepatitis Delta Viruses in Human Liver Chimeric Mice. Front Microbiol 2021; 12:671466. [PMID: 34305837 PMCID: PMC8297590 DOI: 10.3389/fmicb.2021.671466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis D Virus (HDV) is classified into eight genotypes with distinct clinical outcomes. Despite the maintenance of highly conserved functional motifs, it is unknown whether sequence divergence between genotypes, such as HDV-1 and HDV-3, or viral interference mechanisms may affect co-infection in the same host and cell, thus hindering the development of HDV inter-genotypic recombinants. We aimed to investigate virological differences of HDV-1 and HDV-3 and assessed their capacity to infect and replicate within the same liver and human hepatocyte in vivo. Methods Human liver chimeric mice were infected with hepatitis B virus (HBV) and with one of the two HDV genotypes or with HDV-1 and HDV-3 simultaneously. In a second set of experiments, HBV-infected mice were first infected with HDV-1 and after 9 weeks with HDV-3, or vice versa. Also two distinct HDV-1 strains were used to infect mice simultaneously and sequentially. Virological parameters were determined by strain-specific qRT-PCR, RNA in situ hybridization and immunofluorescence staining. Results HBV/HDV co-infection studies indicated faster spreading kinetics and higher intrahepatic levels of HDV-3 compared to HDV-1. In mice that simultaneously received both HDV strains, HDV-3 became the dominant genotype. Interestingly, antigenomic HDV-1 and HDV-3 RNA were detected within the same liver but hardly within the same cell. Surprisingly, sequential super-infection experiments revealed a clear dominance of the HDV strain that was inoculated first, indicating that HDV-infected cells may acquire resistance to super-infection. Conclusion Infection with two largely divergent HDV genotypes could be established in the same liver, but rarely within the same hepatocyte. Sequential super-infection with distinct HDV genotypes and even with two HDV-1 isolates was strongly impaired, suggesting that virus interference mechanisms hamper productive replication in the same cell and hence recombination events even in a system lacking adaptive immune responses.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - John Casey
- Georgetown University Medical Center, Washington, DC, United States
| | - Jiabin Huang
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
4
|
Attiku K, Bonney J, Agbosu E, Bonney E, Puplampu P, Ganu V, Odoom J, Aboagye J, Mensah J, Agyemang S, Awuku-Larbi Y, Arjarquah A, Mawuli G, Quaye O. Circulation of hepatitis delta virus and occult hepatitis B virus infection amongst HIV/HBV co-infected patients in Korle-Bu, Ghana. PLoS One 2021; 16:e0244507. [PMID: 33411715 PMCID: PMC7790253 DOI: 10.1371/journal.pone.0244507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Within HIV/HBV infected patients, an increase in HDV infection has been observed; there is inadequate information on HDV prevalence as well as virologic profile in Ghana. This study sought to determine the presence of HDV in HIV/HBV co-infected patients in Ghana. METHODS This was a longitudinal purposive study which enrolled 113 HIV/HBV co-infected patients attending clinic at Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana. After consenting, 5 mL whole blood was collected at two-time points (baseline and 4-6 months afterwards). The sera obtained were tested to confirm the presence of HIV, HBV antibodies and/or antigens, and HBV DNA. Antibodies and viral RNA were also determined for HDV. Amplified HBV DNA and HDV RNA were sequenced and phylogenetic analysis carried out with reference sequences from the GenBank to establish the genotypes. RESULTS Of the 113 samples tested 63 (55.7%) were females and 50 (44.25%) were males with a median age of 45 years. A total of 100 (88.5%) samples had detectable HBV surface antigen (HBsAg), and 32 out of the 113 had detectable HBV DNA. Nucleotide sequences were obtained for 15 and 2 samples of HBV and HDV, respectively. Phylogenetic analysis was predominantly genotype E for the HBVs and genotype 1 for the HDVs. Of the 13 samples that were HBsAg unreactive, 4 (30.8%) had detectable HBV DNA suggesting the incidence of occult HBV infections. The percentage occurrence of HDV in this study was observed to be 3.54. CONCLUSION Our data suggest the presence and circulation of HDV and incidence of occult HBV infection in HIV/HBV co-infected patients in Ghana. This informs health staff and makes it imperative to look out for the presence of HDV and occult HBV in HIV/HBV co-infected patients presenting with potential risk of liver cancers and HBV transmission through haemodialysis and blood transfusions.
Collapse
Affiliation(s)
- Keren Attiku
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Bonney
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Esinam Agbosu
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Bonney
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Vincent Ganu
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - John Odoom
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - James Aboagye
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - John Mensah
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Seth Agyemang
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Yaw Awuku-Larbi
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Augustina Arjarquah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gifty Mawuli
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Jackson K, MacLachlan J, Cowie B, Locarnini S, Bowden S, Higgins N, Karapanagiotidis T, Nicholson S, Littlejohn M. Epidemiology and phylogenetic analysis of hepatitis D virus infection in Australia. Intern Med J 2019; 48:1308-1317. [PMID: 29761607 DOI: 10.1111/imj.13967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The incidence and trends of the hepatitis D virus (HDV) in Australia have not been recently assessed, and the circulating genotypes have never been determined. AIM To characterise the current virology and epidemiology of HDV. METHODS Notifiable disease surveillance and laboratory testing data were analysed to assess demographics, risk factors and trends. HDV serology and RNA testing were performed on requested samples from 2010 to 2016. Sequencing of a 500-nucleotide amplicon of the delta antigen and phylogenetic analysis of the strains from 2009 to 2016 were also conducted. RESULTS Ninety HDV notifications were reported to the Victorian Department of Health and Human Services between 2010 and 2016. The majority (64.4%) of those diagnosed were born overseas, most commonly in Sudan, Pakistan and Vietnam. Over the same period, 190 patients tested positive for anti-HDV serology and 166 for HDV RNA. Sequencing of isolates from 169 individuals between 2009 and 2016 found that 80.5% strains were genotype 1, 16% genotype 5 and 3.5% genotype 2. Phylogenetic analysis confirmed the relatedness of strains from birth country, demonstrated the presence of the 'Pacific Island' genotype 1 strain in Queensland and supported possible transmission in correctional facilities and within families. CONCLUSIONS This study demonstrates the ongoing need for routine HDV screening and engagement in clinical care for people living with HBV in Australia. Epidemiological findings highlight the diversity in those affected and provide insights into local and global geographic distribution and transmission patterns.
Collapse
Affiliation(s)
- Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer MacLachlan
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin Cowie
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Scott Bowden
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nasra Higgins
- Department of Health and Human Services Victoria, Melbourne, Victoria, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
7
|
Miao Z, Zhang S, Ma Z, Hakim MS, Wang W, Peppelenbosch MP, Pan Q. Recombinant identification, molecular classification and proposed reference genomes for hepatitis delta virus. J Viral Hepat 2019; 26:183-190. [PMID: 30260538 PMCID: PMC7379554 DOI: 10.1111/jvh.13010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
Abstract
Hepatitis delta virus (HDV), as a defective sub-virus that co-infects with hepatitis B virus, imposes an emerging global health burden. However, genetic characteristics and molecular classification of HDV remain under investigated. In this study, we have systematically retrieved and analysed a large set of HDV full-length genome sequences and identified novel recombinants. Based on phylogenetic and genetic analyses, we have established an updated classification system for HDV when recombinants were excluded. Furthermore, we have mapped the global distribution of different genotypes and subtypes. Finally, we have compiled a complete set of reference genomes for each subtype and proposed criteria for future identification of novel genotypes and subtypes. Of note, the global distribution map indicates that currently available HDV genetic data remain limited, and thus our proposed classification will likely evolve as future epidemiological data will accumulate. These results will facilitate the future research on the diagnosis, screening, epidemiology, evolution, prevention and clinical management of HDV infection.
Collapse
Affiliation(s)
- Zhijiang Miao
- Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina,Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands
| | - Shaoshi Zhang
- Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina,Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands
| | - Zhongren Ma
- Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina
| | - Mohamad S. Hakim
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands,Department of MicrobiologyFaculty of MedicineUniversitas Gadjah MadaYogyakartaIndonesia
| | - Wenshi Wang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands
| | - Qiuwei Pan
- Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina,Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
8
|
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that depends on the presence of hepatitis B virus (HBV) for the creation of new virions and propagation of the infection to hepatocytes. Chronic infection with HDV is usually associated with a worsening of HBV infection, leading more frequently to cirrhosis, increased risk of liver decompensation and hepatocellular carcinoma (HCC) occurrence. In spite of a progressive declining prevalence of both acute and chronic HDV infection observed over several years, mainly due to increased global health policies and mass vaccination against HBV, several European countries have more recently observed stable HDV prevalence mainly due to migrants from non-European countries. Persistent HDV replication has been widely demonstrated as associated with cirrhosis development and, as a consequence, development of liver decompensation and occurrence of HCC. Several treatment options have been attempted with poor results in terms of HDV eradication and improvement of long-term prognosis. A global effort is deemed urgent to enhance the models already existing as well as to learn more about HDV infection and correlated tumourigenesis mechanisms.
Collapse
|
9
|
Delfino CM, Cerrudo CS, Biglione M, Oubiña JR, Ghiringhelli PD, Mathet VL. A comprehensive bioinformatic analysis of hepatitis D virus full-length genomes. J Viral Hepat 2018; 25:860-869. [PMID: 29406571 DOI: 10.1111/jvh.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
Abstract
In association with hepatitis B virus (HBV), hepatitis delta virus (HDV) is a subviral agent that may promote severe acute and chronic forms of liver disease. Based on the percentage of nucleotide identity of the genome, HDV was initially classified into three genotypes. However, since 2006, the original classification has been further expanded into eight clades/genotypes. The intergenotype divergence may be as high as 35%-40% over the entire RNA genome, whereas sequence heterogeneity among the isolates of a given genotype is <20%; furthermore, HDV recombinants have been clearly demonstrated. The genetic diversity of HDV is related to the geographic origin of the isolates. This study shows the first comprehensive bioinformatic analysis of the complete available set of HDV sequences, using both nucleotide and protein phylogenies (based on an evolutionary model selection, gamma distribution estimation, tree inference and phylogenetic distance estimation), protein composition analysis and comparison (based on the presence of invariant residues, molecular signatures, amino acid frequencies and mono- and di-amino acid compositional distances), as well as amino acid changes in sequence evolution. Taking into account the congruent and consistent results of both nucleotide and amino acid analyses of GenBank available sequences (recorded as of January, 2017), we propose that the eight hepatitis D virus genotypes may be grouped into three large genogroups fully supported by their shared characteristics.
Collapse
Affiliation(s)
- C M Delfino
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Microbiología y Parasitología Médica, (IMPAM), Ciudad Autónoma de Buenos Aires, Argentina
| | - C S Cerrudo
- Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular - Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - M Biglione
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Ciudad Autónoma de Buenos Aires, Argentina
| | - J R Oubiña
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Microbiología y Parasitología Médica, (IMPAM), Ciudad Autónoma de Buenos Aires, Argentina
| | - P D Ghiringhelli
- Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular - Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada (IMBA), Universidad Nacional de Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - V L Mathet
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Microbiología y Parasitología Médica, (IMPAM), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
Wang Y, Glenn JS, Winters MA, Shen LP, Choong I, Shi YL, Bi SL, Ma LY, Zeng H, Zhang FJ. A new dual-targeting real-time RT-PCR assay for hepatitis D virus RNA detection. Diagn Microbiol Infect Dis 2018; 92:112-117. [PMID: 29941366 DOI: 10.1016/j.diagmicrobio.2018.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/01/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
Abstract
In this study, a real-time reverse transcription-polymerase chain reaction (real time RT-PCR) assay targeting 2 genetic segments was established to detect HDV RNA. Utilizing the World Health Organization International Standard for Hepatitis D Virus RNA, the lower limit of detection was 575 IU/mL, and the linearity of quantification ranged from 575,000 IU/mL to 575 IU/mL. 384 HBsAg-positive samples collected from China were tested by this method and HDV antibody detection. Eleven samples were positive for anti-HDV IgG which may persist after HDV resolution, 6 samples were HDV RNA positive, and 5 samples were positive for anti-HDV IgM. This assay showed more sensitivity than the detection of anti-HDV IgM. These data demonstrate that the real-time RT-PCR assay for HDV RNA could be implemented in the clinical detection of HDV infection in chronic HBV-infected patients in China.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, P.R. China; Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Clinical Center for HIV/AIDS, Capital Medical University, Beijing, P.R. China
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mark A Winters
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Li-Ping Shen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ingrid Choong
- Eiger BioPharmaceuticals, Inc. Palo Alto, California, USA
| | - Ya-Lun Shi
- Beijing Anapure BioScientific Co. Ltd, Beijing, China
| | - Sheng-Li Bi
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fu-Jie Zhang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Clinical Center for HIV/AIDS, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
11
|
Chauhan R, Lingala S, Gadiparthi C, Lahiri N, Mohanty SR, Wu J, Michalak TI, Satapathy SK. Reactivation of hepatitis B after liver transplantation: Current knowledge, molecular mechanisms and implications in management. World J Hepatol 2018; 10:352-370. [PMID: 29599899 PMCID: PMC5871856 DOI: 10.4254/wjh.v10.i3.352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) is a major global health problem affecting an estimated 350 million people with more than 786000 individuals dying annually due to complications, such as cirrhosis, liver failure and hepatocellular carcinoma (HCC). Liver transplantation (LT) is considered gold standard for treatment of hepatitis B virus (HBV)-related liver failure and HCC. However, post-transplant viral reactivation can be detrimental to allograft function, leading to poor survival. Prophylaxis with high-dose hepatitis B immunoglobulin (HBIG) and anti-viral drugs have achieved remarkable progress in LT by suppressing viral replication and improving long-term survival. The combination of lamivudine (LAM) plus HBIG has been for many years the most widely used. However, life-long HBIG use is both cumbersome and costly, whereas long-term use of LAM results in resistant virus. Recently, in an effort to develop HBIG-free protocols, high potency nucleos(t)ide analogues, such as Entecavir or Tenofovir, have been tried either as monotherapy or in combination with low-dose HBIG with excellent results. Current focus is on novel antiviral targets, especially for covalently closed circular DNA (cccDNA), in an effort to eradicate HBV infection instead of viral suppression. However, there are several other molecular mechanisms through which HBV may reactivate and need equal attention. The purpose of this review is to address post-LT HBV reactivation, its risk factors, underlying molecular mechanisms, and recent advancements and future of anti-viral therapy.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Centre, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Shilpa Lingala
- Division of Transplant Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN 38104, United States
| | - Chiranjeevi Gadiparthi
- Division of Transplant Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN 38104, United States
| | - Nivedita Lahiri
- Division of Rheumatology, Immunology and Allergy, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Smruti R Mohanty
- Division of Gastroenterology and Hepatobiliary Disease, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, Fudan University School of Basic Medical Sciences, Shanghai 200032, China
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Health Sciences Centre, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Sanjaya K Satapathy
- Division of Transplant Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Sciences Center, Memphis, TN 38104, United States.
| |
Collapse
|
12
|
Le Gal F, Brichler S, Drugan T, Alloui C, Roulot D, Pawlotsky JM, Dény P, Gordien E. Genetic diversity and worldwide distribution of the deltavirus genus: A study of 2,152 clinical strains. Hepatology 2017; 66:1826-1841. [PMID: 28992360 DOI: 10.1002/hep.29574] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatitis delta virus (HDV) is responsible for the most severe form of acute and chronic viral hepatitis. We previously proposed that the Deltavirus genus is composed of eight major clades. However, few sequences were available to confirm this classification. Moreover, little is known about the structural and functional consequences of HDV variability. One practical consequence is the failure of most quantification assays to properly detect or quantify plasmatic HDV RNA. Between 2001 and 2014, 2,152 HDV strains were prospectively collected and genotyped in our reference laboratory by means of nucleotide sequencing and extensive phylogenetic analyses of a 400-nucleotide region of the genome (R0) from nucleotides 889 to 1289 encompassing the 3' end of the delta protein-coding gene. In addition, the full-length genome sequence was generated for 116 strains selected from the different clusters, allowing for in-depth characterization of the HDV genotypes and subgenotypes. This study confirms that the HDV genus is composed of eight genotypes (HDV-1 to HDV-8) defined by an intergenotype similarity >85% or >80%, according to the partial or full-length genome sequence, respectively. Furthermore, genotypes can be segregated into two to four subgenotypes, characterized by an intersubgenotype similarity >90% (>84% for HDV-1) over the whole genome sequence. Systematic analysis of genome and protein sequences revealed highly conserved functional nucleotide and amino acid motifs and positions across all (sub)genotypes, indicating strong conservatory constraints on the structure and function of the genome and the protein. CONCLUSION This study provides insight into the genetic diversity of HDV and a clear view of its geographical localization and allows speculation as to the worldwide spread of the virus, very likely from an initial African origin. (Hepatology 2017;66:1826-1841).
Collapse
Affiliation(s)
- Frédéric Le Gal
- Laboratoire de Microbiologie Clinique, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France.,Centre national de référence des virus des hépatites B, C et Delta, Laboratoire de Virologie, Bobigny, France
| | - Ségolène Brichler
- Laboratoire de Microbiologie Clinique, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France.,Centre national de référence des virus des hépatites B, C et Delta, Laboratoire de Virologie, Bobigny, France.,Unité INSERM U955, Equipe 18, Créteil, France
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Chakib Alloui
- Laboratoire de Microbiologie Clinique, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France.,Centre national de référence des virus des hépatites B, C et Delta, Laboratoire de Virologie, Bobigny, France
| | - Dominique Roulot
- Centre national de référence des virus des hépatites B, C et Delta, Laboratoire de Virologie, Bobigny, France.,Unité d'Hépatologie, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France
| | - Jean-Michel Pawlotsky
- Unité INSERM U955, Equipe 18, Créteil, France.,Centre national de référence des virus des hépatites B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Paul Dény
- Laboratoire de Microbiologie Clinique, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France.,Centre de Recherches en Cancérologie de Lyon, INSERM U1052, UMR CNRS 5286, Team Hepatocarcinogenesis and Viral Infection, Lyon, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Hôpitaux Universitaires de Paris Seine Saint-Denis, Site Avicenne, Université Sorbonne Paris Cité, Bobigny, France.,Centre national de référence des virus des hépatites B, C et Delta, Laboratoire de Virologie, Bobigny, France.,Unité INSERM U955, Equipe 18, Créteil, France
| |
Collapse
|
13
|
Lin CC, Lee CC, Lin SH, Huang PJ, Li HP, Chang YS, Tang P, Chao M. RNA recombination in Hepatitis delta virus: Identification of a novel naturally occurring recombinant. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:771-780. [DOI: 10.1016/j.jmii.2015.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
|
14
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
15
|
Belyhun Y, Liebert UG, Maier M. Clade homogeneity and low rate of delta virus despite hyperendemicity of hepatitis B virus in Ethiopia. Virol J 2017; 14:176. [PMID: 28899424 PMCID: PMC5596854 DOI: 10.1186/s12985-017-0844-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Although hepatitis B virus (HBV) is hyperendemic and heterogeneous in its genetic diversity in Ethiopia, little is known about hepatitis D virus (HDV) circulating genotypes and molecular diversity. Methods A total of 321 hepatitis B surface antigen (HBsAg) positives (125 HIV co-infected, 102 liver disease patients and 94 blood donors) were screened for anti-HDV antibody. The anti-HDV positive sera were subjected to Real time PCR for HDV-RNA confirmation. The non coding genome region (spanning from 467 to 834 nucleotides) commonly used for HDV genotyping as well as complete HDV genome were sequenced for genotyping and molecular analysis. Results The anti-HDV antibody was found to be 3.2% (3) in blood donors, 8.0% (10) in HIV co-infected individuals and 12.7% (13) in liver disease patients. None of the HIV co-infected patients who revealed HBV lamivudine (3TC) resistance at tyrosine-methionine/isoleucine-aspartate-aspartate (YM(I)DD) reverse transcriptase (RT) motif with concomitant vaccine escape gene mutants was positive for anti-HDV antibody. The HDV viremia rate was 33.3%, 30.0% and 23.1% in respect to the above study groups. All the six isolates sequenced were phylogenetically classified as HDV genotype 1 (HDV-1) and grouped into two monophyletic clusters. Amino acid (aa) residues analysis of clathrin heavy chain (CHC) domain and the isoprenylation signal site (Py) at 19 carboxyl (C)-terminal amino acids (aa 196–214) and the HDV RNA binding domain (aa 79–107) were highly conserved and showed a very little nucleotide variations. All the sequenced isolates showed serine at amino acid position 202. The RNA editing targets of the anti-genomic HDV RNA (nt1012) and its corresponding genomic RNA (nt 580) showed nucleotides A and C, respectively. Conclusions The low seroprevalence and viraemic rates of HDV in particular during HIV-confection might be highly affected by HBV drug resistance selected HBsAg mutant variants in this setting, although HDV-1 sequences analysis revealed clade homogeneity and highly conserved structural and functional domains. Thus, the potential role of HBV drug resistance associated polymerase mutations and concomitant HBsAg protein variability on HDV viral assembly, secretion and infectivity needs further investigation.
Collapse
Affiliation(s)
- Yeshambel Belyhun
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany. .,School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Uwe Gerd Liebert
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Melanie Maier
- Institute of Virology, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Chao M, Wang TC, Lin CC, Yung-Liang Wang R, Lin WB, Lee SE, Cheng YY, Yeh CT, Iang SB. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination. Oncotarget 2017; 8:60841-60859. [PMID: 28977829 PMCID: PMC5617389 DOI: 10.18632/oncotarget.18339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription.
Collapse
Affiliation(s)
- Mei Chao
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang, Taiwan.,Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Guishan, Taoyang, Taiwan
| | - Tzu-Chi Wang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Chia-Chi Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Robert Yung-Liang Wang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Wen-Bin Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Shang-En Lee
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Ying-Yu Cheng
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Guishan, Taoyang, Taiwan
| | - Shan-Bei Iang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang, Taiwan
| |
Collapse
|
17
|
Nguyen HM, Sy BT, Trung NT, Hoan NX, Wedemeyer H, Velavan TP, Bock CT. Prevalence and genotype distribution of hepatitis delta virus among chronic hepatitis B carriers in Central Vietnam. PLoS One 2017; 12:e0175304. [PMID: 28403190 PMCID: PMC5389633 DOI: 10.1371/journal.pone.0175304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis D virus (HDV) infection plays an important role in liver diseases. However, the molecular epidemiology and impact of HDV infection in chronic hepatitis B (CHB) remain uncertain in Vietnam. This cross-sectional study aimed to investigate the prevalence and genotype distribution of HDV among HBsAg-positive patients in Central Vietnam. 250 CHB patients were tested for HDV using newly established HDV-specific RT-PCR techniques. HDV genotypes were determined by direct sequencing. Of the 250 patients 25 (10%) had detectable copies of HDV viral RNA. HDV-2 was predominant (20/25; 80%) followed by HDV-1 (5/25; 20%). Proven HDV genotypes share the Asian nomenclature. Chronic hepatitis B patients with concomitant HDV-1 showed higher HBV loads as compared to HDV-2 infected patients [median log10 (HBV-DNA copies/ml): 8.5 vs. 4.4, P = 0.036]. Our findings indicate that HDV infection is highly prevalent and HDV-2 is predominant in Central Vietnam. The data will add new information to the management of HBsAg-positive patients in a highly HBV endemic region to in- or exclude HDV infection in terms of diagnostic and treatment options.
Collapse
Affiliation(s)
- Hung Minh Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Bui Tien Sy
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Thanh Trung
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Heiner Wedemeyer
- German Center for Infection Research, Department for Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Thirumalaisamy P. Velavan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
18
|
Berto A, Day J, Van Vinh Chau N, Thwaites GE, My NN, Baker S, Darton TC. Current challenges and possible solutions to improve access to care and treatment for hepatitis C infection in Vietnam: a systematic review. BMC Infect Dis 2017; 17:260. [PMID: 28399806 PMCID: PMC5387342 DOI: 10.1186/s12879-017-2360-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
Background Hepatitis C infection is a major public health concern in low- and middle-income countries where an estimated 71.1 million individuals are living with chronic infection. The World Health Organization (WHO) has recently released new guidance for hepatitis C virus (HCV) treatment programs, which include improving the access to new direct-acting antiviral agents. In Vietnam, a highly populated middle-income country, the seroprevalence of HCV infection is approximately 4% and multiple genotypes co-circulate in the general population. Here we review what is currently known regarding the epidemiology of HCV in Vietnam and outline options for reducing the significant burden of morbidity and mortality in our setting. Methods We performed a systematic review of the currently available literature to evaluate what has been achieved to date with efforts to control HCV infection in Vietnam. Results This search retrieved few publications specific to Vietnam indicating a significant gap in baseline epidemiological and public health data. Key knowledge gaps identified included an understanding of the prevalence in specific high-risk groups, characterization of circulating HCV genotypes in the population and likely response to treatment, and the extent to which HCV treatment is available, accessed and utilized. Conclusions We conclude that there is an urgent need to perform up to date assessments of HCV disease burden in Vietnam, especially in high-risk groups, in whom incidence is high and cross infection with multiple genotypes is likely to be frequent. Coordinating renewed surveillance measures with forthcoming HCV treatment studies should initiate the traction required to achieve the WHO goal of eliminating HCV as a public health threat by 2030, at least in this region.
Collapse
Affiliation(s)
- Alessandra Berto
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Jeremy Day
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Guy E Thwaites
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ngoc Nghiem My
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas C Darton
- Oxford University Clinical Research Unit, Vietnam Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet, District 5, Ho Chi Minh City, Vietnam.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Chao M, Lin CC, Lin FM, Li HP, Iang SB. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency. J Gen Virol 2016; 96:3460-3469. [PMID: 26407543 DOI: 10.1099/jgv.0.000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.
Collapse
Affiliation(s)
- Mei Chao
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Chia-Chi Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Feng-Ming Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Hsin-Pai Li
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Shan-Bei Iang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [PMID: 26275800 DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
21
|
Hall N, Thuy LN, Diem TDT, Waters A, Dunford L, Connell J, Carr M, Hall W, Thi LAN. High prevalence of hepatitis delta virus among persons who inject drugs, Vietnam. Emerg Infect Dis 2015; 21:540-3. [PMID: 25695327 PMCID: PMC4344271 DOI: 10.3201/eid2103.141147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Lin HH, Lee SSJ, Yu ML, Chang TT, Su CW, Hu BS, Chen YS, Huang CK, Lai CH, Lin JN, Wu JC. Changing hepatitis D virus epidemiology in a hepatitis B virus endemic area with a national vaccination program. Hepatology 2015; 61:1870-1879. [PMID: 25677884 DOI: 10.1002/hep.27742] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The emergence of hepatitis D virus (HDV) infection in the era of widespread HBV vaccination has not been described before. We aimed to investigate the changing epidemiology of HDV infection among high- and low-risk populations after an outbreak of human immunodeficiency virus (HIV) infection among injection drug users (IDUs) in Taiwan. A prospective, multicenter, cohort study of 2,562 hepatitis B surface antigen (HBsAg)-positive individuals was conducted to determine the prevalence, genotype, and risk factors of HDV infection from 2001 through 2012. The prevalence rates of HDV infection were 74.9%, 43.9%, 11.4%, 11.1%, and 4.4% among HIV-infected IDUs, HIV-uninfected IDUs, HIV-infected men who have sex with men, HIV-infected heterosexuals, and the general population of HBsAg-positive subjects, respectively. A significant increase in the trend of HDV prevalence from 38.5% to 89.8% was observed in HIV-infected IDUs (odds ratio = 3.06; 95% confidence interval: 1.68-5.56; P = 0.0002). In multivariate analysis, injection drug use, hepatitis C virus infection, HIV infection, serum HBsAg level ≧250 IU/mL, duration of drug use, and older age were significant factors associated with HDV infection. HDV genotype IV (72.2%) was the prevalent genotype circulating among IDUs, whereas genotype II was predominant in the non-IDU populations (73.3%). In the HIV cohort born after 1987 who were HBsAg negative, over half (52.9%) had antibody to hepatitis B surface antigen antibody levels of <10 mIU/mL and there was a significantly higher HBsAg seroprevalence in the HIV cohort, compared to the control group (8.1% vs. 0.0%; P = 0.02). CONCLUSION In the era of HBV vaccination, IDUs and HIV-infected individuals have emerged as high-risk groups and a reservoir for HDV infection. Effective strategies are needed to curb the reemerging epidemic of HDV infection in these high-risk groups.
Collapse
Affiliation(s)
- Hsi-Hsun Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine and Infection Control, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medicine, Medical College of National Cheng Kung University, Tainan, Taiwan
| | - Chien-Wei Su
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bor-Shen Hu
- Section of Infectious Diseases, Taipei City Hospital, Taipei City Government, Taipei, Taiwan
| | - Yaw-Sen Chen
- Department of General Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chun-Kai Huang
- Department of Medicine and Infection Control, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Department of Medicine and Infection Control, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Jiun-Nong Lin
- Department of Medicine and Infection Control, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Lin CC, Yang ZW, Iang SB, Chao M. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus. Virus Res 2014; 195:79-85. [PMID: 25172581 DOI: 10.1016/j.virusres.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/25/2022]
Abstract
Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Zhi-Wei Yang
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Shan-Bei Iang
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Mei Chao
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| |
Collapse
|