1
|
Elgioushy MM, Hassan W, Abdullah SM, Elsheikh HEM, Emam MH. Bovine Coronavirus in diarrheic pre-weaned calves in Egypt: prevalence, risk factors, and the associated biochemical alterations. Trop Anim Health Prod 2025; 57:112. [PMID: 40072713 PMCID: PMC11903644 DOI: 10.1007/s11250-025-04331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Bovine coronavirus (BCoV) is a common viral enteric pathogen responsible for diarrhea in newborn calves. Despite its economic significance, there is limited research on this virus in Egypt. This study aimed to detect the prevalence of BCoV, the associated risk factors, and the biochemical changes during infection. A cross-sectional study included 196 pre-weaned diarrheic calves chosen randomly from 16 farms. Fecal samples were obtained from these diarrheic calves, and a questionnaire was administered to investigate the positivity of BCoV and the potential risk factors. Moreover, blood samples were collected to evaluate the biochemical changes in the infected calves. Logistic regression models were used to assess the strength of the risk factors associated with bovine coronavirus. The prevalence of BCoV among pre-weaned diarrheic calves was 11.22%. The final multivariate analysis revealed that the infection of BCoV was 3.8, 5.96, and 3.2 times higher in males, age ≥ 15 days, and winter season than in female calves, age < 15 days, and other seasons, respectively. The acute phase proteins and the inflammatory biomarkers were changed in infected calves compared to healthy ones. The results indicated that calf age, gender, and exposure to cold temperatures were potential risk factors for BCoV infection. Conversely, no evidence was found to support the hypothesis that BCoV prevalence is linked to locality or ground type. Moreover, the observed biochemical changes in calves with BCoV could assist in the early diagnosis of the infection and provide valuable insights for evaluating prognosis.
Collapse
Affiliation(s)
- Magdy M Elgioushy
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, 37916, Egypt
| | - Wafaa Hassan
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Shimaa M Abdullah
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Hend E M Elsheikh
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud H Emam
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
2
|
Redda YT, Adamu H, Bergholm J, Lindahl JF, Blomström AL, Berg M, Sisay Tessema T. Detection and characterization of bovine coronavirus and rotavirus in calves in Ethiopia. BMC Vet Res 2025; 21:122. [PMID: 40022093 PMCID: PMC11869714 DOI: 10.1186/s12917-025-04563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Bovine rotavirus A (BRVA) and bovine coronavirus (BCoV) cause significant diarrhea in young calves, leading to health issues and economic losses in the cattle industry. This study aimed to detect and molecularly characterize BRVA and BCoV in calves from Addis Ababa, Ethiopia. Fecal samples were collected from 105 calves under six months old, both with and without diarrhea. BRVA and BCoV were detected using quantitative real-time Polymerase Chain Reaction (qPCR), followed by genome sequencing for phylogenetic analysis and genotype determination. RESULTS BRVA was found in 3.8% of the calves, while BCoV was detected in 2.9%. The identified rotavirus genotypes included G10, found in diarrheic calves, and G8, found in a non-diarrheic calf. All BCoV infections occurred in diarrheic calves. Phylogenetic analysis of the BCoV spike protein 1 (S1) hypervariable region (HVR) and hemagglutinin esterase (HE) gene revealed close relationships with European and Asian strains. The S1 HVR of the current virus sequence PQ249423 was 100% identical at the nucleotide level to previously reported sequences from Ethiopia. Six amino acid substitutions in the HE gene of the current BCoVs were identified compared to the reference Mebus strain of BCoV. Phylogenetic analysis showed that the current G8 BRVA sequences clustered with bovine, caprine, and human rotavirus strains, while the G10 viruses formed a distinct cluster with bovine strains. The G10 viruses showed a 99.37% nucleotide sequence similarity to a previously reported BRVA from Ethiopia, and the G8 virus displayed the highest nucleotide similarity with a caprine isolate from India. Gene segment analysis of the current BRVA viruses indicated varying similarities with human, bovine, caprine, and porcine rotavirus strains, suggesting a potential reassortment event involving artiodactyl, human, and porcine rotavirus. CONCLUSIONS This study demonstrates the presence of BRVA and BCoV in Ethiopian dairy calves and provides insights into their genetic diversity. Genetic analysis of BCoV revealed close relationships with strains from Europe and Asia. G10 and G8 were the identified BRVA genotypes, with G8 reported for the first time in Ethiopia. Future research should focus on broader sampling and molecular characterization to understand genetic diversity and devise effective control measures.
Collapse
Affiliation(s)
- Yisehak Tsegaye Redda
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- College of Veterinary Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia.
| | - Haileeyesus Adamu
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Julia Bergholm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Johanna F Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Anne-Lie Blomström
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Mikael Berg
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Shah AU, Gauger P, Hemida MG. Isolation and molecular characterization of an enteric isolate of the genotype-Ia bovine coronavirus with notable mutations in the receptor binding domain of the spike glycoprotein. Virology 2025; 603:110313. [PMID: 39681059 DOI: 10.1016/j.virol.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
BCoV new isolate was plaque purified, isolated, and propagated in vitro using MDBK and HRT-18. The full-length genome sequencing of this new BCoV isolate (31 Kbs) was drafted and deported in the GenBank. The genome organization is (5'-UTR-Gene-1-32kDa-HE-S-4.9 kDa-4.8 kDa-12.7 kDa-E-M-N-UTR-3'). Phylogenetic analysis based on the sequences of (the full-length genome, S, HE, and N) showed that the BCoV-13 clustered with other North American BCoV genotype I members. The sequence analysis shows several synonymous mutations among various domains of the S glycoprotein, especially the receptor binding domain. We found nine notable nucleotide deletions immediately downstream of the RNA binding domain of the nucleocapsid gene. Further gene function studies are encouraged to study the function of these mutations on the BCoV molecular pathogenesis and immune regulation. This research enhances our understanding of BCoV genomics and contributes to improved diagnostic and control measures for BCoV infections in cattle.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA.
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic University, Ames, IA, 50011, USA.
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA.
| |
Collapse
|
4
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
Meng W, Chen Z, Jiang Q, Chen J, Guo X, Ma Z, Jia K, Li S. A multiplex real-time fluorescence-based quantitative PCR assay for calf diarrhea viruses. Front Microbiol 2024; 14:1327291. [PMID: 38249490 PMCID: PMC10796610 DOI: 10.3389/fmicb.2023.1327291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Calf diarrhea is a significant condition that has a strong effect on the cattle industry, resulting in huge economic losses annually. Bovine torovirus (BToV), bovine enterovirus (BEV), bovine norovirus (BNoV), bovine coronavirus (BCoV), bovine rotavirus (BRV), and bovine viral diarrhea virus (BVDV) are key pathogens that have been implicated in calf diarrhea. Among these viruses, there remains limited research on BToV, BEV, and BNoV, with no available vaccines or drugs for their prevention and control. Although commercial vaccines exist for BCoV, BRV, and BVDV, the prevalence of these diseases remains high. Methods To address this issue, we developed a multiplex real-time fluorescence quantitative PCR method for detecting BToV, BEV, BNoV, BCoV, BRV, and BVDV. This method can be used to effectively monitor the prevalence of these six viruses and serve as a reference for future prevention and control strategies. In this study, we specifically designed primers and probes for the BNoV Rdrp, BEV 5'UTR, BToV M, BCoV N, BRV NSP5, and BVDV 5'UTR genes. Results This method was determined to be efficient, stable, and sensitive. The lowest detectable levels of plasmids for BNoV, BEV, BToV, BRV, BCoV, and BVDV were 1.91 copies/μL, 96.0 copies/μL, 12.8 copies/μL, 16.4 copies/μL, 18.2 copies/μL, and 65.3 copies/μL, respectively. Moreover, the coefficients of variation for all six detection methods were < 3%; they also exhibited a strong linear relationship (R2 ≥ 0.98), and an amplification efficiency of 90%-110%. A total of 295 fecal and anal swabs were collected from calves with diarrhea in Guangdong, China. The positive rates for BToV, BEV, BNoV, BCoV, BR, and BVDV were determined to be 0.34% (1/295), 6.10% (18/295), 0.68% (2/295), 1.36% (4/295), 10.85% (32/295), and 2.03% (6/295), respectively. Notably, BEV and BRV exhibited the highest prevalence. Discussion Additionally, this study identified the occurrence of BToV and BNoV in Guangdong for the first time. In summary, this study successfully established an effective method for detecting several important bovine viruses; ultimately, this holds strong implications for the future development of the cattle industry.
Collapse
Affiliation(s)
- Wenxin Meng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Qifeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jinping Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Xiaoying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Zihang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
6
|
Sahindokuyucu I, Yazici Z, Barry G. A retrospective molecular investigation of selected pigeon viruses between 2018–2021 in Turkey. PLoS One 2022; 17:e0268052. [PMID: 36037167 PMCID: PMC9423643 DOI: 10.1371/journal.pone.0268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
A recent first detection of pigeon aviadenovirus-1 and pigeon circovirus co-infection associated with Young Pigeon Disease Syndrome (YPDS) in a pigeon flock in Turkey, prompted a study focused on documenting the distribution of Pigeon aviadenovirus (PiAdV-1 and PiAdV-2), Pigeon circovirus (PiCV), Columbid alphaherpesvirus 1 (pigeon herpesvirus (PiHV)) and Fowl aviadenovirus (FAdV) in the country. These viruses were selected as they are associated with severe disease in pigeons across the world. A total of 192 cloacal swabs were collected from young (<1 year old) pigeons from 16 different private pigeon flocks across Turkey, between 2018 and 2021 as part of routine diagnostic sampling. PiCV genetic material was the most frequently detected 4/16 (25%), PiAdV-1 and CoHV-1 DNA were both found in one flock each, while neither PiAdV-2 and FAdV were detected in any of the studied pigeon flocks. PiCV and PiHV genetic material were both detected in the same pigeon flock’s cloacal samples as a co-infection with the identification of PiHV being a first in Turkey.
Collapse
Affiliation(s)
- Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Poultry Diseases Diagnostic Laboratory, Ministry of Agriculture and Forestry, Izmir, Turkey
- Now at Eville&Jones (GB) Limited Century House, Leeds, United Kingdom
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gerald Barry
- Veterinary Science Center, School of Veterinary Medicine, University College of Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
7
|
Ren Y, Chen X, Tang C, Yue H. First Isolation and Characteristics of Bovine Parainfluenza Virus Type 3 from Yaks. Pathogens 2022; 11:pathogens11090962. [PMID: 36145395 PMCID: PMC9503188 DOI: 10.3390/pathogens11090962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The yaks belong to the genus Bos within the family Bovidae that live in the Tibet Plateau and is an indispensable economic resource for the local herders. Respiratory tract infections are common diseases in yaks caused by various pathogens; however, there have been no reports of bovine parainfluenza virus type 3 (BPIV3) infection. This study was conducted to investigate the pathogens and analyze their characteristics from the four yak lung samples with severe respiratory tract infection symptoms in the yak farm. Results showed that out of four lung samples, three were identified as BPIV3-positive by RT-PCR. A BPIV3 strain (106.5 TCID50/mL) was successfully isolated from the BPIV3-positive lung samples using Madin–Darby bovine kidney cells. The isolate caused systemic infection in the BALB/c mice and induced pathological changes in the lungs. Moreover, three complete BPIV3 genomes were amplified from the clinical samples. Phylogenetic trees based on the complete genomes, hemagglutinin-neuraminidase protein (HN), phosphoprotein (P), and large polymerase subunit protein (L) amino acid sequences showed that the complete BPIV3 genomes belonged to BPIV3 genotype C, and clustered into a large branch with the Chinese strains, although the three yak BPIV3 strains were clustered into a small branch. Compared to known BPIV3 genotype C strains in GenBank, the three genomes of yak BPIV3 showed four identical amino acid mutations in the HN, P and L proteins, suggesting a unique genetic evolution of BPIV3 in yaks. This study first isolated and characterized the BPIV3 from yaks, which contributed to the understanding of the infection and evolution of BPIV3 in yaks in the Tibet Plateau.
Collapse
Affiliation(s)
| | | | | | - Hua Yue
- Correspondence: or (C.T.); or (H.Y.)
| |
Collapse
|
8
|
Xiangbo Z, Zhaofang Y, Jinjing G, Zhuandi G, Suocheng W. Bovine coronavirus nucleocapsid suppresses IFN-β production by inhibiting RIG-I-like receptors pathway in host cells. Arch Microbiol 2022; 204:536. [PMID: 35913638 PMCID: PMC9341154 DOI: 10.1007/s00203-022-03149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
The present study aimed to explore if bovine coronavirus nucleocapsid (BCoV N) impacts IFN-β production in the host cells and to reveal further molecular mechanism of BCoV pathogenesis. Human embryonic kidney (HEK) 293 T cells were transiently transfected with pMyc-BCoV-N recombinant plasmids, then infected with the vesicular stomatitis virus (VSV). Expression levels of beta interferon (IFN-β) mRNA were detected using RT-qPCR. The results showed that BCoV N gene was 1347 bp that was consistent with the expected size. pMyc-BCoV-N recombinant protein was 1347 bp which was successfully transcribed and overexpressed in HEK 293 T cells. BCoV-N recombinant protein inhibited dose-dependently VSV-induced IFN-β production (p < 0.01). MDA5, MAVS, TBK1 and IRF3 could promote transcription levels of IFN-β mRNA. But, BCoV-N protein demoted IFN-β transcription levels induced by MDA5, MAVS, TBK1 and IRF3. Furthermore, expression levels of MDA5, MAVS, TBK1 and IRF3 mRNAs were reduced in RIG-I-like receptor (RLR) pathway. In conclusion, BCoV-N reduced IFN-β levels in RIG-I-like receptor (RLR) pathway in HEK 293 T cells which were induced by MDA5, MAVS, TBK1 and IRF3(5D). BCoV-N protein inhibited IFN-β production and activation of RIG-I-like receptors (RLRs) signal pathway. Our findings demonstrated BCoV N protein is an IFN-β antagonist through inhibition of MDA5, MAVS, TBK1 and IRF3(5D) in RLRs pathway, also revealed a new mechanism of BCoV N protein to evade host innate immune response by inhibiting type I IFN production, which is beneficial to developing novel prevention strategy for BCoV disease in the animals and humans.
Collapse
Affiliation(s)
- Zhang Xiangbo
- Life Science and Engineering College, Northwest Minzu University, No. 1, Xibeixincun, Chengguan District, Lanzhou, 730030, China
| | - Yuan Zhaofang
- Life Science and Engineering College, Northwest Minzu University, No. 1, Xibeixincun, Chengguan District, Lanzhou, 730030, China
| | - Geng Jinjing
- Life Science and Engineering College, Northwest Minzu University, No. 1, Xibeixincun, Chengguan District, Lanzhou, 730030, China
- Biomedicine Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Gong Zhuandi
- Hospital, Northwest Minzu University, Lanzhou, 730030, China
| | - Wei Suocheng
- Life Science and Engineering College, Northwest Minzu University, No. 1, Xibeixincun, Chengguan District, Lanzhou, 730030, China.
- Biomedicine Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
9
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
10
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
11
|
Zhu Q, Su M, Li Z, Wang X, Qi S, Zhao F, Li L, Guo D, Feng L, Li B, Sun D. Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China. Virus Res 2021; 308:198632. [PMID: 34793872 DOI: 10.1016/j.virusres.2021.198632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
In 2020, to trace the prevalence and evolution of bovine coronavirus (BCoV) in China, a total of 1383 samples (1016 fecal samples and 367 nasal swab samples) were collected from 1016 cattle exhibiting diarrhea symptoms on dairy farms and beef cattle farms in Heilongjiang Province, Northeast China. All samples were subjected to reverse transcription-polymerase chain reaction (RT-PCR) detection of the BCoV N gene, followed by an analysis of its epidemiology and genetic evolution. The results indicated that of the 1016 diarrhea-affected cattle, 15.45% (157/1016) were positive for BCoV, in which positive rates of the fecal and nasal swab samples were 12.20% (124/1016) and 21.53% (79/367), respectively. Of the 367 cattle whose nasal swab samples were collected, the BCoV positive rate of the corresponding fecal samples was 15.26% (56/367). BCoV infection was significantly associated with age, farming pattern, cattle type, farm latitude, sample type, and clinical symptom (p < 0.05). Of the 203 BCoV-positive samples, 20 spike (S) genes were successfully sequenced. The 20 identified BCoV strains shared nucleotide homologies of 97.7-100.0%, and their N-terminal domain of S1 subunit (S1-NTD: residues 15-298) differed genetically from the reference strains of South Korea and Europe. The 20 identified BCoV strains were clustered in the Asia-North America group (GII group) in the global strain-based phylogenetic tree and formed three clades in the Chinese strain-based phylogenetic tree. The HLJ/HH-10/2020 strain was clustered into the Europe group (GI group) in the S1-NTD-based phylogenetic tree, exhibiting N146/I, D148/G, and L154/F mutations that affect the S protein structure. Of the identified BCoV strains, one potential recombination event occurred between the HLJ/HH-20/2020 and HLJ/HH-10/2020 strains, which led to the generation of the recombinant BCV-AKS-01 strain. A selective pressure analysis on the S protein revealed one positively selected site (Asn509) among the 20 identified BCoV strains located inside the putative receptor binding domain (residues 326-540). These data provide a greater understanding of the epidemiology and evolution of BCoV in China.
Collapse
Affiliation(s)
- Qinghe Zhu
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Zijian Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Xiaoran Wang
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Feiyu Zhao
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Lu Li
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China.
| |
Collapse
|
12
|
Ven S, Arunvipas P, Lertwatcharasarakul P, Ratanapob N. Seroprevalence of bovine coronavirus and factors associated with the serological status in dairy cattle in the western region of Thailand. Vet World 2021; 14:2041-2047. [PMID: 34566319 PMCID: PMC8448641 DOI: 10.14202/vetworld.2021.2041-2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Aims: Bovine coronavirus (BCoV) is a pathogen affecting the productivities of dairy cattle worldwide. The present study aimed to determine the seroprevalence and factors associated with BCoV serological status using a commercial indirect enzyme-linked immunosorbent assay (ELISA). Materials and Methods: A cross-sectional study was conducted in the western region of Thailand. Blood samples were collected from 30 dairy herds. In total, 617 blood serum samples were tested using a commercial indirect ELISA for BCoV-specific immunoglobulin G antibodies. A questionnaire was used to collect data on the factors which have been identified as risk factors for BCoV antibody detection. The age and history of diarrhea of each animal were recorded. Fisher’s exact test was performed to univariately assess the association between BCoV serological status and possible risk factors. Variables with Fisher’s exact test p<0.10 were then evaluated using multivariate logistic regression to identify factors associated with BCoV serological status. The Bonferroni adjustment was used for multiple comparisons of significant variables in the final multivariate logistic regression model. Results: No herd was free from antibodies to BCoV. The individual seroprevalence of BCoV was 97.89% (604/617). The prevalence within herds was in the range of 45.45-100%. Cattle >3 years of age were more likely to be seropositive to BCoV compared to cattle <1 year of age (p=0.003), with the odds ratio being 81.96. Disinfecting diarrhea stools were a protective factor for being BCoV seropositive, with odds ratios of 0.08 and 0.06 compared to doing nothing (p=0.008) and to clean with water (p=0.002), respectively. Conclusion: BCoV seropositive dairy cattle were distributed throughout the western region of Thailand. The probability of being seropositive for BCoV increased with increasing animal age. Cleaning the contaminated stool with appropriate disinfectants should be recommended to farmers to minimize the spread of the virus.
Collapse
Affiliation(s)
- Samnang Ven
- Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Niorn Ratanapob
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| |
Collapse
|
13
|
Tang P, Cui E, Song Y, Yan R, Wang J. Porcine deltacoronavirus and its prevalence in China: a review of epidemiology, evolution, and vaccine development. Arch Virol 2021; 166:2975-2988. [PMID: 34524535 PMCID: PMC8440736 DOI: 10.1007/s00705-021-05226-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens, and it causes enormous economic losses to the global commercial pork industry. PDCoV was initially reported in Hong Kong (China) in 2012 and subsequently emerged in swine herds with diarrhea in Ohio (USA) in 2014. Since then, it has spread to Canada, South Korea, mainland China, and several Southeast Asian countries. Information about the epidemiology, evolution, prevention, and control of PDCoV and its prevalence in China has not been comprehensively reported, especially in the last five years. This review is an update of current information on the general characteristics, epidemiology, geographical distribution, and evolutionary relationships, and the status of PDCoV vaccine development, focusing on the prevalence of PDCoV in China and vaccine research in particular. Together, this information will provide us with a greater understanding of PDCoV infection and will be helpful for establishing new strategies for controlling this virus worldwide.
Collapse
Affiliation(s)
- Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yihong Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruoqian Yan
- Henan Centre for Animal Diseases Control and Prevention, Zhengzhou, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
14
|
Seasonal and Age-Associated Pathogen Distribution in Newborn Calves with Diarrhea Admitted to ICU. Vet Sci 2021; 8:vetsci8070128. [PMID: 34357920 PMCID: PMC8310227 DOI: 10.3390/vetsci8070128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Calf mortality constitutes a substantial loss for agriculture economy-based countries and is also a significant herd problem in developed countries. However, the occurrence and frequency of responsible gastro-intestinal (GI) pathogens in severe newborn diarrhea is still not well known. We aimed to determine the seasonal and age-associated pathogen distribution of severe diarrhea in newborn calves admitted to the intensive care unit (ICU) of Erciyes University animal hospital over a year. Fecal samples were collected during the ICU admissions, and specimens were subjected to a diarrheal pathogen screening panel that included bovine coronavirus (BCoV), Cryptosporidium spp., ETEC K99+, and bovine rotavirus, using RT-PCR and conventional PCR methods. Further isolation experiments were performed with permissive cell cultures and bacterial enrichment methods to identify the clinical importance of infectious pathogen shedding in the ICU. Among the hospitalized calves aged less than 45 days old, the majority of calves originated from small farms (85.9%). The pathogen that most frequently occurred was Cryptosporidium spp. (61.5%) followed by rotavirus (56.4%). The frequency of animal admission to ICU and GI pathogen identification was higher during the winter season (44.9%) when compared to other seasons. Most calves included in the study were 1-6 days old (44.9%). Lastly, co-infection with rotavirus and Cryptosporidium spp. occurred more frequently than other dual or multi-infection events. This study was the first to define severe diarrhea-causing GI pathogens from ICU admitted newborn calves in Turkey.
Collapse
|
15
|
Abstract
Causal Organism COVID-19 is a disease caused by the novel coronavirus (SARS-CoV-2). Positive-sense ssRNA viruses are about 30 kb long. Coronaviruses have a broad spectrum of action and affect multiple organisms. Origin of Disease The disease outbreak has been initiated in Wuhan, China, in December 2019. The disease has been originated from the wet animal market of Wuhan City, where a large number of peoples have come in contact with animals. It is known to infect the neurological, respiratory, enteric, and hepatic systems. SARSCoV-2 is highly infectious, and its outbreak is worldwide (national and international level) and becomes pandemic. Control Presently, the number of cases continues to rise at a global level, and it is clear that these viruses pose a significant threat to public health. Consequently, extensive treatments, vaccines, and drugs have been developed by researchers to control the transmission of infection. This led to the isolation of patients that were administered a variety of treatments. Special attention and guidelines have been given by various government organizations to protect or reduce transmission between children, healthcare providers, and old-aged peoples.
Collapse
|
16
|
Occurrence of Cryptosporidium and other enteropathogens and their association with diarrhea in dairy calves of Buenos Aires province, Argentina. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100567. [PMID: 34024383 DOI: 10.1016/j.vprsr.2021.100567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Cryptosporidiosis of neonatal dairy calves causes diarrhea, resulting in important economic losses. In Argentina, prevalence values of Cryptosporidium spp. and other enteropathogens such as group A rotavirus (RVA), bovine coronavirus (BCoV) and enterotoxigenic Escherichia coli (ETEC, endotoxin STa+), have been independently studied in different regions. However, an integrative epidemiological investigation on large-scale farms has not been carried out. In this study, fecal samples (n = 908) were randomly collected from diarrheic and healthy calves from 42 dairy farms, and analyzed for the presence of Cryptosporidium spp., RVA, BCoV, ETEC (STa+) and Salmonella spp. In all sampled dairy farms, dams had been vaccinated against rotavirus and gram-negative bacteria to protect calves against neonatal diarrhea. The proportion of calves shedding Cryptosporidium spp., RVA, and BCoV in animals younger than 20 days of age were 29.8%, 12.4% and 6.4%, and in calves aged between 21 and 90 days, 5.6%, 3.9%, and 1.8%, respectively. ETEC was absent in the younger, and occurred only sporadically in the older group (0.9%), whereas Salmonella spp. was absent in both. The observed sporadic finding or even absence of bacterial pathogens might be explained by the frequent use of parenteral antibiotics in 25.3% and 6.5% of the younger and the older group of calves, respectively, within 2 days prior to sampling and/or vaccination of dams against gram-negative bacteria. Diarrhea was observed in 28.8% (95% CI, 24.7-32.8%) of the younger calves and 11.7% (95% CI, 9.1-15.5%) of the older calves. Importantly, Cryptosporidium spp. (odds ratio (OR) = 5.7; 95% CI, 3.3-9.9; p < 0.0001) and RVA (OR = 2.5; 95% CI, 1.2-5.1; p < 0.05) were both found to be risk factors for diarrhea in calves younger than 20 days old. Based on its high prevalence and OR, our results strongly suggest that Cryptosporidium spp. is the principal causative factor for diarrhea in the group of neonatal calves, whereas RVA seems to play a secondary role in the etiology of diarrhea in the studied farms, with about three-times lower prevalence and a half as high OR. Furthermore, a coinfection rate of Cryptosporidium spp. and RVA of 3.7% was observed in the group of younger calves, which strengthens the assumption that these events are independent. In contrast, due to a low infection rate of enteropathogens in older calves, mixed infection (<< 1%) was virtually absent in this group.
Collapse
|
17
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
18
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
19
|
Barengolts E, Smith ED. Considerations for Gut Microbiota and Probiotics in Patients with Diabetes Amidst the Covid-19 Pandemic: A Narrative Review. Endocr Pract 2021; 26:1186-1195. [PMID: 33471720 PMCID: PMC7836311 DOI: 10.4158/ep-2020-0336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Objective: To review data implicating microbiota influences on Coronavirus Disease 2019 (COVID-19) in patients with diabetes. Methods: Primary literature review included topics: “COVID-19,” “SARS,” “MERS,” “gut micro-biota,” “probiotics,” “immune system,” “ACE2,” and “metformin.” Results: Diabetes was prevalent (~11%) among COVID-19 patients and associated with increased mortality (about 3-fold) compared to patients without diabetes. COVID-19 could be associated with worsening diabetes control and new diabetes diagnosis that could be linked to high expression of angiotensin-converting enzyme 2 (ACE2) receptors (coronavirus point of entry into the host) in the endocrine pancreas. A pre-existing gut microbiota imbalance (dysbiosis) could contribute to COVID-19–related complications in patients with diabetes. The COVID-19 virus was found in fecal samples (~55%), persisted for about 5 weeks, and could be associated with diarrhea, suggesting a role for gut dysbiosis. ACE2 expressed on enterocytes and colonocytes could serve as an alternative route for acquiring COVID-19. Experimental models proposed some probiotics, including Lactobacillus casei, L. plantarum, and L. salivarius, as vectors for delivering or enhancing efficacy of anti-coronavirus vaccines. These Lactobacillus probiotics were also beneficial for diabetes. The potential mechanisms for interconnections between coronavirus, diabetes, and gut microbiota could be related to the immune system, ACE2 pathway, and metformin treatment. There were suggestions but no proof supporting probiotics benefits for COVID-19 infection. Conclusion: The data suggested that the host environment including the gut microbiota could play a role for COVID-19 in patients with diabetes. It is a challenge to the scientific community to investigate the beneficial potential of the gut microbiota for strengthening host defense against coronavirus in patients with diabetes.
Collapse
Affiliation(s)
- Elena Barengolts
- From the Department of Medicine, University of Illinois Medical Center, Chicago, Illinois; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois..
| | - Emily Daviau Smith
- From the Department of Medicine, University of Illinois Medical Center, Chicago, Illinois; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
20
|
Renaud DL, Rot C, Marshall J, Steele MA. The effect of Cryptosporidiumparvum, rotavirus, and coronavirus infection on the health and performance of male dairy calves. J Dairy Sci 2020; 104:2151-2163. [PMID: 33309376 DOI: 10.3168/jds.2020-19215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022]
Abstract
The objective of this prospective cohort study was to investigate the effect of bovine coronavirus (BCoV), bovine rotavirus (BRoV), and Cryptosporidiumparvum on dairy calf health and performance and to determine the prevalence of these pathogens. A total of 198 male dairy calves housed at a grain-fed veal facility were examined from June 11, 2018, to October 9, 2018. Calves were fed milk replacer twice daily and housed individually until weaning at 56 d. Once weaned, calves were moved into groups of 5 until they were moved to a finishing facility at 77 d. At the grain-fed veal facility, calves were scored for fecal consistency for the first 28 d and had fecal samples taken on arrival and at 7 and 14 d. Fecal samples were frozen and submitted to a commercial laboratory, where they were tested for BCoV, C.parvum, and 2 groups of BRoV: group A (BRoV A) and group B (BRoV B). Calves were weighed on arrival and at 14, 49, 56, and 77 d using a digital body scale. Treatments for disease and mortalities that occurred over the 77 d were also recorded. Statistical models, including Cox proportional hazards and repeated measures models, were built to determine the effect of infection with 1 of the pathogens. Over the 3 sampling points, 151 (85.8%), 178 (94.2%), 3 (1.5%), and 97 (57.4%) calves tested positive at least once for BCoV, BRoV A, BRoV B, and C.parvum, respectively. The source of the calves and the level of serum total protein measured on arrival were associated with testing positive for a pathogen. Calves that tested positive for C.parvum had an increased proportion of days with diarrhea and severe diarrhea; calves that tested positive for BCoV and BRoV A had an increased proportion of days with severe diarrhea. In addition, calves that tested positive for C.parvum had a higher hazard of being treated for respiratory disease. With respect to body weight, calves that had diarrhea or severe diarrhea had lower body weight at 49, 56, and 77 d. Specifically, calves that had an increased proportion of days with diarrhea showed a reduction in weight gain of up to 15 kg compared to calves without diarrhea. Calves that tested positive for C.parvum had a lower body weight at 49, 56, and 77 d; calves that tested positive for BCoV had a lower body weight at 56 and 77 d. This study demonstrates that the prevalence of BCoV, BRoV A, and C.parvum infection is high in this population of calves and has significant effects on the occurrence of diarrhea and body weight gain. Future studies should evaluate approaches for minimizing the effect of infection with these pathogens to improve the welfare, health, and productivity of dairy calves.
Collapse
Affiliation(s)
- D L Renaud
- Department of Population Medicine, University of Guelph, Ontario N1G 2W1, Canada.
| | - C Rot
- Department of Population Medicine, University of Guelph, Ontario N1G 2W1, Canada
| | - J Marshall
- Department of Population Medicine, University of Guelph, Ontario N1G 2W1, Canada
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
21
|
Luo X, Zhou GZ, Zhang Y, Peng LH, Zou LP, Yang YS. Coronaviruses and gastrointestinal diseases. Mil Med Res 2020; 7:49. [PMID: 33054860 PMCID: PMC7556584 DOI: 10.1186/s40779-020-00279-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The effects of coronaviruses on the respiratory system are of great concern, but their effects on the digestive system receive much less attention. Coronaviruses that infect mammals have shown gastrointestinal pathogenicity and caused symptoms such as diarrhea and vomiting. Available data have shown that human coronaviruses, including the newly emerged SARS-CoV-2, mainly infect the respiratory system and cause symptoms such as cough and fever, while they may generate gastrointestinal symptoms. However, there is little about the relation between coronavirus and digestive system. This review specifically addresses the effects of mammalian and human coronaviruses, including SARS-CoV-2, on the digestive tract, helping to cope with the new virus infection-induced disease, COVID-19.
Collapse
Affiliation(s)
- Xi Luo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guan-Zhou Zhou
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Ping Zou
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
22
|
Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses 2020; 12:v12050534. [PMID: 32414076 PMCID: PMC7290379 DOI: 10.3390/v12050534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south–west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s–1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Collapse
|